
OpenID Connect 1.0
Developer Guide

 | Contents | ii

Contents

OpenID Connect Developer Guide...3
What is OpenID Connect.. 3

Application Developer Considerations..3
The ID Token.. 3

Decoding the ID Token.. 4
JWT Header..4
JWT Payload.. 4
Digital Signature... 5
Validating the ID Token..6
Payload Validation.. 6
Signature Validation..7
Validating the token hashes (at_hash, c_hash)... 10

The UserInfo Endpoint.. 10
User Profile Claims...11
Sample UserInfo Endpoint Request... 11

Implicit Client Profile..12
Step 1: Authenticate the End-User and Receive Tokens...13
Step 2: Validate the ID Token..14
Step 3: Retrieve the User Profile... 16

Basic Client Profile.. 17
Step 1: Authenticate the End-User and Receive Code..17
Step 2: Exchange the Authorization Code for the Tokens...19
Step 3: Validate the ID Token..20
Step 4: Retrieve the User Profile... 21

Copyright ©2023

 | OpenID Connect Developer Guide | 3

OpenID Connect Developer Guide

This document provides a developer overview of the OpenID Connect 1.0 protocol (OIDC) and provides
instructions for an Application Developer to implement OpenID Connect with PingFederate. Two
walkthroughs are provided to demonstrate the OpenID Connect Basic Client Profile and the OpenID
Connect Implicit Client Profile.

This is targeted to developers, however the content will be relevant for infrastructure owners to understand
the OpenID Connect concepts. Explanations and code examples are provided for "quick win" integration
efforts. As such they are incomplete and meant to complement existing documentation and specifications.

This document assumes a basic familiarity with the OpenID Connect 1.0 protocol and the OAuth 2.0
protocol. For more information about OAuth 2.0 and OpenID Connect 1.0, refer to:

▪ PingFederate Administrator's Manual
▪ OpenID Connect 1.0 Specifications
▪ OAuth 2.0 developers guide
▪ OAuth 2.0 Specifications

i Note: This document explains a number of manual processes to request and validate the OAuth and
OpenID Connect tokens. While the interactions are simple, PingFederate is compatible with many 3rd party
OAuth and OpenID Connect client libraries that may simplify development effort.

What is OpenID Connect
The OpenID Connect protocol extends the OAuth 2.0 protocol to add an authentication and identity layer
for application developers. Where OAuth 2.0 provides the application developer with security tokens to be
able to call back-end resources on behalf of an end-user; OpenID Connect provides the application with
information about the end-user, the context of their authentication, and access to their profile information.

Two new concepts are introduced on top of the OAuth 2.0 authorization framework:

▪ an OpenID Connect "ID token" which contains information around the user's authenticated session and
▪ a UserInfo endpoint which provides a means for the client to retrieve additional attributes about the user

OpenID Connect uses the same actors and processes as OAuth 2.0 to get the ID token, and protects the
UserInfo endpoint with the OAuth 2.0 framework.

Application Developer Considerations

There are three main actions an application developer needs to handle to implement OpenID Connect:

1. Get an OpenID Connect id_token By leveraging an OAuth2 grant type, an application will request an
OpenID Connect id_token by including the "openid" scope in the authorization request.

2. Validate the id_token Validate the id_token to ensure it originated from a trusted issuer and that the
contents have not been tampered with during transit.

3. Retrieve profile information from the UserInfo endpoint Using the OAuth2 access token, access the
UserInfo endpoint to retrieve profile information about the authenticated user.

The ID Token
The ID token is a token used to identify an end-user to the client application and to provide data around the
context of that authentication.

Copyright ©2023

https://docs.pingidentity.com/csh?Product=pf-latest&topicname=kfj1564002962494.html
http://openid.net/developers/specs/
file:/csh?pubname=developer&context=dev_oauth_2_overview
http://oauth.net/2/

 | OpenID Connect Developer Guide | 4

An ID token will be in the JSON Web Token (JWT) format. In most cases the ID token will be signed
according to JSON Web Signing (JWS) specifications, however depending on the client profile used the
verification of this signature may be optional.

i Note: When the id_token is received from the token endpoint via a secure transport channel (i.e. via
the Authorization Code grant type) the verification of the digital signature is optional.

Decoding the ID Token

The id_token JWT consists of three components, a header, a payload and the digital signature. Following
the JSON Web Token (JWT) standard, these three sections are Base64url encoded and separated by
periods (.).

i Note: JWT and OpenID Connect assume base64url encoding/decoding. This is slightly different
than regular base64 encoding. Refer to RFC4648 for specifics regarding Base64 vs Base64 URL safe
encoding.

The following example describes how to manually parse a sample ID token provided below:

eyJhbGciOiJSUzI1NiIsImtpZCI6Imkwd25uIn0.eyJzdWIiOiJqb2UiLCJhdWQiOiJpbV9vaWNfY2xpZW50IiwianRpIjoidWY5MFNLNH
dzY0ZoY3RVVDZEdHZiMiIsImlzcyI6Imh0dHBzOlwvXC9sb2NhbGhvc3Q6OTAzMSIsImlhdCI6MTM5NDA2MDg1MywiZXhwIjoxMzk0MDYx
MTUzLCJub25jZSI6ImU5NTdmZmJhLTlhNzgtNGVhOS04ZWNhLWFlOGM0ZWY5Yzg1NiIsImF0X2hhc2giOiJ3Zmd2bUU5VnhqQXVkc2w5bG
M2VHFBIn0.lr4L-oT7DJi7Re0eSZDstAdOKHwSvjZfR-
OpdWSOmsrw0QVeI7oaIcehyKUFpPFDXDR0-RsEzqno0yek-_U-Ui5EM-yv0Pia
UOmJK1U-ws_C-fCplUFSE7SK-
TrCwaOow4_7FN5L4i4NAa_WqgOjZPloT8o3kKyTkBL7GdITL8rEe4BDK8L6mLqHJrFX4SsEduPk0CyHJS
ykRqzYS2MEJlncocBBI4up5Y5g2BNEb0aV4VZwYjmrv9oOUC_yC1Fb4Js5Ry1t6P4Q8q_2ka5OcArlo188XH7lMgPA2GnwSFGHBhccjpxh
N7S46ubGPXRBNsnrPx6RuoR2cI46d9ARQ

i Note: It is strongly recommended to make use of common libraries for JWT and JWS processing to
avoid introducing implementation specific bugs.

The above JWT token is first split by periods (.) into three components:

JWT Header

Contains the algorithm and a reference to the appropriate public key if applicable:

Component Value Value Decoded

JWT Header eyJhbGciOiJSUzI1NiIsImtpZCI6Imkwd25uIn0{ "alg":"RS256", "kid":"i0wnn" }

JWT Payload

The second component contains the payload which contains claims relating to the authentication and
identification of the user. The payload of the above example is decoded as follows:

Copyright ©2023

 | OpenID Connect Developer Guide | 5

Component Value Value Decoded

JWT Payload eyJzdWIiOiJqb2UiLCJhdWQiOiJpbV9vaWN
fY2xpZW50IiwianRpIjoidWY5MFNLNHdzY0
ZoY3RVVDZEdHZiMiIsImlzcyI6Imh0dHBzO
lwvXC9sb2NhbGhvc3Q6OTAzMSIsImlhdCI6
MTM5NDA2MDg1MywiZXhwIjoxMzk0MDYxMTU
zLCJub25jZSI6ImU5NTdmZmJhLTlhNzgtNG
VhOS04ZWNhLWFlOGM0ZWY5Yzg1NiIsImF0X
2hhc2giOiJ3Zmd2bUU5VnhqQXVkc2w5bGM2
VHFBIn0

{ "sub":"joe",
"aud":"im_oic_client",
"jti":"uf90SK4wscFhctUT6Dtvb2",
"iss":"https:\/\/localhost:9031",
"iat":1394060853,
"exp":1394061153,
"nonce":"e957ffba-9a78-4ea9-8eca-
ae8c4ef9c856",
"at_hash":"wfgvmE9VxjAudsl9lc6TqA" }

The following claims you can expect in an id_token and can use to determine if the authentication by the
user was sufficient to grant them access to the application. (Refer to the OpenID Connect specifications to
additional details on these attributes):

Claim Description

iss Issuer of the id_token

sub Subject of the id_token (ie the end-user's
username)

aud Audience for the id_token (must match the client_id
of the application)

exp Time the id_token is set to expire (UTC, Unix Epoch
time)

iat Timestamp when the id_token was issued (UTC,
Unix Epoch time)

auth_time Time the end-user authenticated (UTC, Unix Epoch
time)

nonce Nonce value supplied during the authentication
request (REQUIRED for implicit flow)

acr Authentication context reference used to
authenticate the user

acr Authentication context reference used to
authenticate the user

at_hash Hash of the OAuth2 access token when used with
Implicit profile

c_hash Hash of the OAuth2 authorization code when used
with the hybrid profile

Digital Signature

Base64 URL encoded signature of section 1 and 2 (period concatenated). The algorithm and key reference
used to create and verify the signature is defined in the JWT Header.

Copyright ©2023

 | OpenID Connect Developer Guide | 6

Component Value Value Decoded

JWT Signature lr4L-
oT7DJi7Re0eSZDstAdOKHwSvjZfR-
OpdWSOmsrw0QVeI7oaIce
hyKUFpPFDXDR0-RsEzqno0yek-
_U-Ui5EM-yv0PiaUOmJK1U-
ws_C-f CplUFSE7SK-
TrCwaOow4_7FN5L4i-4NAa_WqgOjZPloT8o3kKyTkBL7
GdITL8rEe4BDK8L6mLqHJrFX4SsEduPk0CyHJSykRqzYS2MEJlncocB
BI4up5Y5g2BNEb0aV4VZwYjmrv9oOUC_yC1Fb4Js5Ry1t6P4Q8q_2ka
5OcArlo188XH7lMgPA2GnwSFGHBhccjpxhN7S46ubGPXRBNsnrPx6Ru
oR2cI46d9ARQ

N/A

Validating the ID Token

The validation of the ID token includes evaluating both the payload and the digital signature.

Payload Validation

The ID token represents an authenticated user's session. As such the token must be validate before an
application can trust the contents of the ID token. For example, if a malicious attacker replayed a user's
id_token that they had captured earlier the application should detect that the token has been replayed or
was used after it had expired and deny the authentication.

Refer to the OpenID Connect specifications for more information on security concerns. The specifications
also include guidelines for validating an ID token (Core specification section 3.1.3.7). The general process
would be as follows:

Step # Test Summary

1 Decrypt the token (if encrypted)

2 Verify the issuer claim (iss) matches the OP issuer
value

3 Verify the audience claim (aud) contains the
OAuth2 client_id

4 If the token contain multiple audiences, then verify
that an Authorized Party claim (azp) is present

5 If the azp claim is present, verify it matches the
OAuth2 client_id

6, 7 & 8 Optionally verify the digital signature (required for
implicit client profile) (see section 4.4)

9 Verify the current time is prior to the expiry claim
(exp) time value

10 Client specific: Verify the token was issued within
an acceptable timeframe (iat)

11 If the nonce claim (nonce) is present, verify that it
matches the nonce passed in the authentication
request

12 Client specific: Verify the Authn Context Reference
claim (acr) value is appropriate

Copyright ©2023

 | OpenID Connect Developer Guide | 7

Step # Test Summary

13 Client specific: If the authentication time claim
(auth_time) present, verify it is within an acceptable
range

14 If the implicit client profile is used, verify that the
access token hash claim (at_hash) matches the
hash of the associated access_token

Signature Validation

i Note: Signature validation is only required for tokens not received directly from the token endpoint (i.e.
for the Implicit Client Profile). In other cases where the id_token is received directly by the client from the
token endpoint over HTTPS, transport layer security should be sufficient to vouch for the integrity of the
token.

The ID token is signed according to the JSON Web Signature (JWS) specification; algorithms used for
signing are defined in the JSON Web Algorithm (JWA) specification. PingFederate 7.1 can support the
following signing algorithms:

"alg" Value Signature Method Signing Key

NONE No Digital Signature N/A

HS256 HMAC w/ SHA-256 hash Uses the client secret of the
OAuth2 client

HS384 HMAC w/ SHA-384 hash Uses the client secret of the
OAuth2 client

HS512 HMAC w/ SHA-512 hash Uses the client secret of the
OAuth2 client

RS256 RSA PKCS v1.5 w/ SHA-256
hash

Public key available from the
JWKS (see below)

RS384 RSA PKCS v1.5 w/ SHA-384
hash

Public key available from the
JWKS (see below)

RS512 RSA PKCS v1.5 w/ SHA-512
hash

Public key available from the
JWKS (see below)

ES256 ECDSA w/ P-256 curve and
SHA-256 hash

Public key available from the
JWKS (see below)

ES384 ECDSA w/ P-384 curve and
SHA-384 hash

Public key available from the
JWKS (see below)

ES512 ECDSA w/ P-521 curve and
SHA-512 hash

Public key available from the
JWKS (see below)

i Note: RS256 is the default signature algorithm.

The basic steps to verify a digital signature involve retrieving the appropriate key to use for the signature
verification and then performing the cryptographic action to verify the signature.

To validate the signature, take the JWT header and the JWT payload and join with a period. Validate that
value against the third component of the JWT using the algorithm defined in the JWT header. Using the
above ID token as an example:

Copyright ©2023

 | OpenID Connect Developer Guide | 8

Signed data (JWT Header + "." + JWT Payload):

eyJhbGciOiJSUzI1NiIsImtpZCI6Imkwd25uIn0.eyJzdWIiOiJqb2UiLCJhdWQiOiJpbV9vaWNfY2xpZW50IiwianRpIjoidWY5MFNLNHdz
Y0ZoY3RVVDZEdHZiMiIsImlzcyI6Imh0dHBzOlwvXC9sb2NhbGhvc3Q6OTAzMSIsImlhdCI6MTM5NDA2MDg1MywiZXhwIjoxMzk0MDYxMTUz
LCJub25jZSI6ImU5NTdmZmJhLTlhNzgtNGVhOS04ZWNhLWFlOGM0ZWY5Yzg1NiIsImF0X2hhc2giOiJ3Zmd2bUU5VnhqQXVkc2w5bGM2VHFB
In0

Signature value to verify:

lr4L-oT7DJi7Re0eSZDstAdOKHwSvjZfR-OpdWSOmsrw0QVeI7oaIcehyKUFpPFDXDR0-
RsEzqno0yek-_U-Ui5EM-yv0PiaUOmJK1U-ws_C
-fCplUFSE7SK-
TrCwaOow4_7FN5L4i-4NAa_WqgOjZPloT8o3kKyTkBL7GdITL8rEe4BDK8L6mLqHJrFX4SsEduPk0CyHJSykRqzYS2MEJln
cocBBI4up5Y5g2BNEb0aV4VZwYjmrv9oOUC_yC1Fb4Js5Ry1t6P4Q8q_2ka5OcArlo188XH7lMgPA2GnwSFGHBhccjpxhN7S46ubGPXRBNsn
rPx6RuoR2cI46d9ARQ

i Note: The actual implementation of the signing algorithm used to validate the signature will be
implementation specific. It is recommended to use a published library to perform the signature verification.

For symmetric key signature methods, the client secret value for the OAuth2 client is used as the shared
symmetric key. For this reason the client secret defined for the OAuth2 client must be of a large enough
length to accommodate the appropriate algorithm (i.e. for a SHA256 hash, the secret must be at least 256
bits "“ 32 ASCII characters).

Asymmetric signature methods require the application to know the corresponding public key. The public
key can be distributed out-of-band or can be retrieved dynamically via the JSON Web Key Set (JWKS)
endpoint as explained below:

1. Determine the signing algorithm (alg) and the key identifier (kid) from the JWT header.Â Using the
sample JWT token above as an example, the following values are known:

OpenID Connect issuer https://localhost:9031

Signing algorithm (alg) RS256

Key reference identifier (kid) i0wnn

2. Query the OpenID configuration URL for the location of the JWKS:

GET https://localhost:9031/.well-known/openid-configuration HTTP/1.1

this will result in a HTTP response containing the OpenID Connect configuration for the OpenID Connect
Provider (OP) :

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "version":"3.0",

 "issuer":"https:\/\/localhost:9031",

 "authorization_endpoint":"https:\/\/localhost:9031\/as\/
authorization.oauth2",

Copyright ©2023

 | OpenID Connect Developer Guide | 9

 "token_endpoint":"https:\/\/localhost:9031\/as\/token.oauth2",

 "userinfo_endpoint":"https:\/\/localhost:9031\/idp\/userinfo.openid",

 "jwks_uri":"https:\/\/localhost:9031\/pf\/JWKS",

 "scopes_supported":
["phone","address","email","admin","edit","openid","profile"],

 "response_types_supported":["code","token","id_token","code token",
 "code id_token","token id_token","code token id_token"],

 "subject_types_supported":["public"],

 "id_token_signing_alg_values_supported":
["none","HS256","HS384","HS512","RS256",
 "RS384","RS512","ES256","ES384","ES512"],

 "token_endpoint_auth_methods_supported":
["client_secret_basic","client_secret_post"],

 "claim_types_supported":["normal"],

 "claims_parameter_supported":false,

 "request_parameter_supported":false,

 "request_uri_parameter_supported":false
}

3. Parse the JSON to retrieve the jwks_uri value (bolded above) and make a request to that endpoint,
JSON Web Keystore (JWKS), to retrieve the public key for key identifier "i0wnn" and key type (kty) of RSA
as the algorithm is RS256 that was used to sign the JWT:

GET https://localhost:9031/pf/JWKS HTTP/1.1

Which will return the JWKS for the issuer:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "keys":[
 {
 "kty":"EC",
 "kid":"i0wng",
 "use":"sig",
 "x":"AXYMGFO6K_R2E3RH42_5YTeGYgYTagLM-
v3iaiNlPKFFvTh17CKQL_OKH5pEkj5U8mbel-0R1YrNuraRXtBztcVO",
 "y":"AaYuq27czYSrbFQUMo3jVK2hrW8KZ75KyE8dyYS-
HOB9vUC4nMvoPGbu2hE_yBTLZLpuUvTOSSv150FLaBPhPLA2",
 "crv":"P-521"
 },
 ...
 {
 "kty":"RSA",
 "kid":"i0wnn",

Copyright ©2023

 | OpenID Connect Developer Guide | 10

 "use":"sig",

 "n":"mdrLAp5GR8o5d5qbwWTYqNGuSXHTIE6w9HxV445oMACOWRuwlOGVZeKJQXHM9cs5Dm7iUfNVk4pJBttUxzcnhVCRf
 9tr20LJB7xAAqnFtzD7jBHARWbgJYR0p0JYVOA5jVzT9Sc-j4Gs5m8b-
am2hKF93kA4fM8oeg18V_xeZf11WWcxnW5YZwX
 9kjGBwbK-1tkapIar8K1WrsAsDDZLS_y7Qp0S83fAPgubFGYdST71s-B4bvsjCgl30a2W-
je9J6jg2bYxZeJf982dzHFqV
 QF7KdF4n5UGFAvNMRZ3xVoV4JzHDg4xe_KJE-gOn-_wlao6R8xWcedZjTmDhqqvUw",
 "e":"AQAB"
 },
 ...
]
}

We now have the modulus (n) and the exponent (e) of the public key. This can be used to create the public
key and validate the signature.

i Note: The public key can be stored in secure storage (i.e. in the keychain) to be used for verification
of the id_token when a user is offline.

Validating the token hashes (at_hash, c_hash)

We now have the modulus (n) and the exponent (e) of the public key. This can be used to create the public
key and validate the signature.

In specific client profiles, a specific hash is included in the id_token to use to verify that the associated
token was issued along with the id_token. For example, when using the implicit client profile, an at_hash
value is included in the id_token that provides a means to verify that the access_token was issued along
with the id_token.

The following example uses the id_token above and associated access_token to verify the at_hash
id_token claim:

Signing algorithm RS256

at_hash value wfgvmE9VxjAudsl9lc6TqA

OAuth 2.0 access_token dNZX1hEZ9wBCzNL40Upu646bdzQA

1. Hash the octets of the ASCII representation of the access token (using the hash algorithm
specified in the JWT header (i.e. for this example, RS256 uses a SHA-256 hash)):
SHA256HASH("dNZX1hEZ9wBCzNL40Upu646bdzQA") = c1f82f98 4f55c630 2e76c97d 95ce93a8
9a5d61f7 dc99b9ad 37dc12b3 7231ff9d

2. Take the left-most half of the hashed access token and Base64url encode the value. Left-most half:
c1f82f98 4f55c630 2e76c97d 95ce93a8 Base64urlencode([0xC1, 0xF8, 0x2F, 0x98, 0x4F, 0x55, 0xC6,
0x30, 0x2E, 0x76, 0xC9, 0x7D, 0x95, 0xCE, 0x93, 0xA8]) = "wfgvmE9VxjAudsl9lc6TqA"

3. Compare the at_hash value to the base64 URL encoded left-most half of the access token hash bytes.

at_hash value wfgvmE9VxjAudsl9lc6TqA

left-most half value wfgvmE9VxjAudsl9lc6TqA

Validation result VALID

The UserInfo Endpoint
The OpenID Connect UserInfo endpoint is used by an application to retrieve profile information about the
Identity that authenticated. Applications can use this endpoint to retrieve profile information, preferences
and other user-specific information.

Copyright ©2023

 | OpenID Connect Developer Guide | 11

The OpenID Connect profile consists of two components:

▪ Claims describing the end-user
▪ UserInfo endpoint providing a mechanism to retrieve these claims

i Note: The user claims can also be presented inside the id_token to eliminate a call back during
authentication time.

User Profile Claims

The UserInfo endpoint will present a set of claims based on the OAuth2 scopes presented in the
authentication request.

OpenID Connect defines five scope values that map to a specific set of default claims. PingFederate
allows you to extend the "profile" scope via the "OpenID Connect Policy Management" section of the
administration console. Multiple policy sets can be created and associated on a per-client basis.

Connect scope Returned Claims

openid None - Indicates this is an OpenID Connect request

profile name, family_name, given_name, middle_name,
nickname, preferred_username, profile, picture,
website, gender, birthdate, zoneinfo, locale,
updated_at, *custom attributes

address address

email email, email_verified

phone phone_number, phone_number_verified

i Note:

▪ If a scope is omitted (i.e. the "email" scope is not present), the claim "email" will not be present in the
returned claims. For custom profile attributes, prefix the value to avoid clashing with the default claim
names.

▪ If an OpenID Connect id_token is requested without an OAuth2 access token (i.e. when using the
implicit "response_type = id_token" request), the claims will be returned in the id_token rather than the
UserInfo endpoint.

Sample UserInfo Endpoint Request

Once the client application has authenticated a user and is in possession of an access token, the client can
then make a request to the UserInfo endpoint to retrieve the requested attributes about a user. The request
will include the access token presented using a method described in RFC6750.

The UserInfo endpoint provided by PingFederate is located at: https://<pingfederate_base_url>/idp/
userinfo.openid

i Note: The UserInfo endpoint can also be determined by querying the OpenID Connect configuration
information endpoint: https://<pingfederate_base_url>/.well-known/openid-configuration.

An example HTTP client request to the UserInfo endpoint:

GET https://pf.company.com:9031/idp/userinfo.openid HTTP/1.1

Authorization: Bearer

Copyright ©2023

 | OpenID Connect Developer Guide | 12

A successful response will return a HTTP 200 OK response and the users claims in JSON format:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
 "sub":"mpavlich",
 "family_name":"Pavlich",
 "given_name":"Matthew",
 "nickname":"Pav",
 ...[additional claims]...
}

Before the client application can trust the values returned from the UserInfo endpoint (i.e. as a check for
token substitution attack), the client must verify that the "sub" claim returned from the UserInfo endpoint
request matches the subject from the id_token.

Implicit Client Profile
The OpenID Connect 1.0 Implicit Client Profile uses the OAuth 2.0 "Implicit" grant type. The flow is almost
identical to the OAuth 2.0 implicit flow with the exception of the "openid" scope and the tokens returned.

This section provides an example of using OpenID Connect Implicit Client Profile to retrieve an OpenID
Connect id_token, validate the contents (steps 1 and 2 in the diagram below) and then query the UserInfo
endpoint to retrieve profile information about the user (step 3).

This example assumes PingFederate 7.3 or higher is installed with the OAuth 2.0 Playground developer
tool. The following configuration will be used:

PingFederate server base URL https://localhost:9031

OAuth 2.0 client_id m_oic_client

OAuth 2.0 client_secret < none >

Application callback URI https://localhost:9031/OAuthPlayground/case2A-
callback.jsp

i Note: For native mobile applications, the callback URI may be a non-http URI. This is configured in
your application settings and will cause the mobile application to be launched to process the callback.

Copyright ©2023

 | OpenID Connect Developer Guide | 13

Step 1: Authenticate the End-User and Receive Tokens

The initial user authentication request follows the OAuth2 Implicit Grant Type flow. To initiate the OpenID
Connect process, the user will be redirected to the OAuth2 authorization endpoint. The request is made to
the authorization endpoint with the following parameters:

client_id im_oic_client

response_type token id_token

redirect_uri https://localhost:9031/OAuthPlayground/case2A-
callback.jsp

scope openid profile

nonce cba56666-4b12-456a-8407-3d3023fa1002

i Note: As the implicit flow transports the access token and ID token via the user agent (i.e. web
browser), this flow requires additional security precautions to mitigate any token modification / substitution.

As for the Basic Client Profile, the client can redirect the user in different ways depending on the client and
the desired user experience. For example, a web application can just issue a HTTP 302 redirect to the
browser and redirect the user to the authorization URL. A native mobile application may launch the mobile
browser and open the authorization URL.

i Note: To mitigate replay attacks, a nonce value must be included to associate a client session with an
id_token. The client must generate a random value associated with the current session and pass this along
with the request. This nonce value will be returned with the id_token and must be verified to be the same
as the value provided in the initial request.

https://localhost:9031/as/authorization.oauth2?client_id=im_oic_client
 &response_type=token%20id_token
 &redirect_uri=https://localhost:9031/OAuthPlayground/case2A-callback.jsp
 &scope=openid%20profile
 &nonce=cba56666-4b12-456a-8407-3d3023fa1002

Again, like the Basic Client Profile, the user will then be sent through the authentication process (i.e.
prompted for their username/password at their IDP, authenticated via Kerberos or x509 certificate etc).
Once the user authentication (and optional consent approval) is complete, the tokens will be returned as a
fragment parameter to the redirect_uri specified in the authorization request.

GET https://localhost:9031/OAuthPlayground/Case2A-
callback.jsp#token_type=Bearer
 &expires_in=7199
 &id_token=eyJhbGciOiJSUzI1NiIsImtpZCI6IjRvaXU4In0.eyJzdWIiOiJuZnlmZSIsImF1ZCI6Iml

 tX29pY19jbGllbnQiLCJqdGkiOiJUOU4xUklkRkVzUE45enU3ZWw2eng2IiwiaXNzIjoiaHR0cHM6XC9c

 L3Nzby5tZXljbG91ZC5uZXQ6OTAzMSIsImlhdCI6MTM5MzczNzA3MSwiZXhwIjoxMzkzNzM3MzcxLCJub

 25jZSI6ImNiYTU2NjY2LTRiMTItNDU2YS04NDA3LTNkMzAyM2ZhMTAwMiIsImF0X2hhc2giOiJrdHFvZV

 Bhc2praVY5b2Z0X3o5NnJBIn0.g1Jc9DohWFfFG3ppWfvW16ib6YBaONC5VMs8J61i5j5QLieY-
mBEeVi
 1D3vr5IFWCfivY4hZcHtoJHgZk1qCumkAMDymsLGX-
IGA7yFU8LOjUdR4IlCPlZxZ_vhqr_0gQ9pCFKDk

 iOv1LVv5x3YgAdhHhpZhxK6rWxojg2RddzvZ9Xi5u2V1UZ0jukwyG2d4PRzDn7WoRNDGwYOEt4qY7lv_N

Copyright ©2023

 | OpenID Connect Developer Guide | 14

 O2TY2eAklP-xYBWu0b9FBElapnstqbZgAXdndNs-Wqp4gyQG5D0owLzxPErR9MnpQfgNcai-
PlWI_Urvo
 opKNbX0ai2zfkuQ-qh6Xn8zgkiaYDHzq4gzwRfwazaqA
 &access_token=b5bU8whkHeD6k9KQK7X6lMJrdVtV HTTP/1.1

i Note: An error condition from the authentication / authorization process will be returned to this
callback URI with "error" and "error_description" parameters.

The application now has multiple tokens to use for authentication and authorization decisions:

OAuth 2.0 access_token b5bU8whkHeD6k9KQK7X6lMJrdVtV

OpenID Connect id_token eyJhbGciOiJSUzI1NiIsImtpZCI6IjRvaXU4In0.eyJzdWIiOi
JuZnlmZSIsImF1ZCI6ImltX29pY19jbGllbnQiLCJqdGkiOiJU
OU4xUklkRkVzUE45enU3ZWw2eng2IiwiaXNzIjoiaHR0cHM6XC
9cL3Nzby5tZXljbG91ZC5uZXQ6OTAzMSIsImlhdCI6MTM5Mzcz
NzA3MSwiZXhwIjoxMzkzNzM3MzcxLCJub25jZSI6ImNiYTU2Nj
Y2LTRiMTItNDU2YS04NDA3LTNkMzAyM2ZhMTAwMiIsImF0X2hh
c2giOiJrdHFvZVBhc2praVY5b2Z0X3o5NnJBIn0.g1Jc9DohWF
fFG3ppWfvW16ib6YBaONC5VMs8J61i5j5QLieY-
mBEeVi1D3vr
5IFWCfivY4hZcHtoJHgZk1qCumkAMDymsLGX-
IGA7yFU8LOjUd
R4IlCPlZxZ_vhqr_0gQ9pCFKDkiOv1LVv5x3YgAdhHhpZhxK6r
Wxojg2RddzvZ9Xi5u2V1UZ0jukwyG2d4PRzDn7WoRNDGwYOEt4
qY7lv_NO2TY2eAklP-
xYBWu0b9FBElapnstqbZgAXdndNs-Wqp
4gyQG5D0owLzxPErR9MnpQfgNcai-
PlWI_UrvoopKNbX0ai2zf kuQ-
qh6Xn8zgkiaYDHzq4gzwRfwazaqA

i Note: Because the implicit grant involves these tokens being transmitted via the user agent, these
tokens cannot be kept confidential; therefore a refresh_token cannot be issued using this flow.

Step 2: Validate the ID Token

The next step is to parse the id_token, and validate the contents. Note, that as the id_token was received
via the user agent, rather than directly from the token endpoint, the verification of the digital signature

Copyright ©2023

 | OpenID Connect Developer Guide | 15

is required to detect any tampering with the id_token. Firstly, decode both the header and payload
components of the JWT:

Component Value Value Decoded

Header eyJhbGciOiJSUzI1NiIsImtpZCI6IjRvaXU4In0

{
 "alg":"RS256",
 "kid":"4oiu8"
}

Payload eyJzdWIiOiJuZnlmZSIsImF1ZCI6ImltX29pY19
jbGllbnQiLCJqdGkiOiJUOU4xUklkRkVzUE45en
U3ZWw2eng2IiwiaXNzIjoiaHR0cHM6XC9cL3Nzb
y5tZXljbG91ZC5uZXQ6OTAzMSIsImlhdCI6MTM5
MzczNzA3MSwiZXhwIjoxMzkzNzM3MzcxLCJub25
jZSI6ImNiYTU2NjY2LTRiMTItNDU2YS04NDA3LT
NkMzAyM2ZhMTAwMiIsImF0X2hhc2giOiJrdHFvZ
VBhc2praVY5b2Z0X3o5NnJBIn0

{
 "sub":"nfyfe",

 "aud":"im_oic_client",

 "jti":"T9N1RIdFEsPN9zu7el6zx6",
 "iss":"https:\/\/
localhost:9031",
 "iat":1393737071,
 "exp":1393737371,

 "nonce":"cba56666-4b12-456a-8407-3d3023fa1002",

 "at_hash":"ktqoePasjkiV9oft_z96rA"
}

Now we follow the guidelines in the OpenID Connect specifications (Core specification section 3.1.3.7 also
taking into consideration section 3.2.2.11) for ID Token Validation:

Step # Test Summary Result

1 Decrypt the token (if encrypted) Token not encrypted, skip test

2 Verify the issuer claim (iss)
matches the OP issuer value

Valid

3 Verify the audience claim (aud)
contains the OAuth2 client_id

Valid

4 If the token contain multiple
audiences, then verify that an
Authorized Party claim (azp) is
present

Only one audience, skip test

5 If the azp claim is present, verify it
matches the OAuth2 client_id

Not present, skip test

6,7,8 Optionally verify the digital
signature (required for implicit
client profile) (see section 4.4)

Verify signature as per "ID Token"
section

9 Verify the current time is prior to
the expiry claim (exp) time value

Valid

10 Client specific: Verify the token
was issued within an acceptable
timeframe (iat)

Valid

Copyright ©2023

 | OpenID Connect Developer Guide | 16

Step # Test Summary Result

11 If the nonce claim (nonce) is
present, verify that it matches
the nonce passed in the
authentication request

Nonce matches, Valid

12 Client specific: Verify the Authn
Context Reference claim (acr)
value is appropriate

No acr value present, skip test

13 Client specific: If the
authentication time claim
(auth_time) present, verify it is
within an acceptable range

No auth_time present, skip test

14 If the implicit client profile is used,
verify that the access token hash
claim (at_hash) matches the hash
of the associated access_token

Validate at_hash as per
"ID_Token" section

The results of the ID token validation are sufficient to trust the id_token and the user can be considered
"authenticated".

Step 3: Retrieve the User Profile

We now have an authenticated user, the next step is to request the user profile attributes so that we can
personalize their app experience and render the appropriate content to the user. This is achieved by
requesting the contents of the UserInfo endpoint.

Accessing the UserInfo endpoint requires that we use the access token issued along with the authorization
request. As the implicit flow transports the access token using the user agent, there is the threat of tokens
being substituted during the authorization process. Before using the access token, the client should
validate the at_hash value in the id_token to ensure the received access token was issued alongside the
id_token.

To validate the at_hash value, see section 4.5. Once the at_hash is verified, the client can then use the
access token to request the user profile:

GET https://localhost:9031/idp/userinfo.openid HTTP/1.1

Authorization: Bearer b5bU8whkHeD6k9KQK7X6lMJrdVtV

The response from the UserInfo endpoint will be a JSON structure with the requested OpenID Connect
profile claims:

{
 "sub":"nfyfe",
 "family_name":"Fyfe",
 "given_name":"Nathan",
 "nickname":"Nat",
 ...[additional claims]...
}

Before we can be confident the response to the UserInfo reflects the authenticated user, we must also
check that the subject ("sub" claim) returned from the UserInfo endpoint matches the authenticated user

Copyright ©2023

 | OpenID Connect Developer Guide | 17

we received in the id_token. In this case, the "sub" claim in both the UserInfo response and the id_token
match so we can use the values in the UserInfo response for our application needs.

Basic Client Profile

The OpenID Connect 1.0 Basic Client Profile uses the OAuth 2.0 "Authorization Code" grant type. You
will notice the flow is almost identical to the OAuth 2.0 authorization code flow with the exception of the
"openid" scope and the tokens returned.

This section walks through an example authentication using the OpenID Connect Basic Client Profile. This
will step through requesting the authentication of a user, receiving and validating the OpenID Connect
id_token (step 1 through 3 below) and then query the UserInfo endpoint to retrieve profile information about
the user (step 4).

This example assumes PingFederate 7.3 or higher is installed with the OAuth 2.0 Playground developer
tool. The following configuration will be used:

PingFederate server base URL https://sso.pingdeveloper.com

OAuth 2.0 client_id ac_oic_client

OAuth 2.0 client_secret abc123DEFghijklmnop4567rstuvwxyzZYXWUT8910SRQPOnmlijhoauthplaygroundapplication

Application callback URI https://sso.pingdeveloper.com/OAuthPlayground/
case1A-callback.jsp

i Note:

▪ For native mobile applications, the callback URI may be a non-http URI. This is configured in your
application settings and will cause the mobile application to be launched to process the callback.

▪ Also with mobile applications, the client secret is guaranteed to be secret and therefore can be omitted.
The Proof Key for Code Exchange (PKCE) specification is used to mitigate this scenario.

Step 1: Authenticate the End-User and Receive Code

The initial user authentication request follows the OAuth2 Authorization Grant Type flow. To initiate the
OpenID Connect process, the user will be redirected to the OAuth2 authorization endpoint with the "openid

Copyright ©2023

 | OpenID Connect Developer Guide | 18

profile" scope value. Additional scope values can be included to return specific profile scopes. The request
is made to the authorization endpoint with the following parameters:

client_id ac_oic_client

response_type code

redirect_uri https://sso.pingdeveloper.com/OAuthPlayground/
case1A-callback.jsp

scope openid profile

The client will then form the authorization URL and redirect the user to this URL via their user agent
(i.e. browser). This can be performed in different ways depending on the client and the desired user
experience. For example, a web application can just issue a HTTP 302 redirect to the browser and redirect
the user to the authorization URL. A native mobile application may launch the mobile browser and open the
authorization URL. The authorization URL using the values above would be:

https://sso.pingdeveloper.com/as/authorization.oauth
 ?client_id=ac_oic_client
 &response_type=code
 &redirect_uri=https://sso.pingdeveloper.com/OAuthPlayground/case1A-
callback.jsp
 &scope=openid%20profile

For mobile application scenarios where it is not guaranteed that the app at the end of the redirect_uri
is the intended application, the Proof Key for Code Exchange (PKCE) specification should be used
to mitigate tokens being issued to an incorrect client. The "plain" variant of PKCE involves including
a code_challenge parameter at this stage to link this authorization request with the subsequent
token request (step 2 below). Therefore an example of a mobile authorization request (using
com.pingidentity.developer.oauthplayground://oidc_callback as the redirect_uri) will be:

https://sso.pingdeveloper.com/as/authorization.oauth2
 ?client_id=ac_oic_client
 &response_type=code
 &redirect_uri=com.pingidentity.developer.oauthplayground://oidc_callback
 &scope=openid%20profile
 &code_challenge=abcd-this-is-a-unique-per-request-value

The user will then be sent through the authentication process (i.e. prompted for their username/password
at their IDP, authenticated via Kerberos or x509 certificate etc). Once the user authentication (and optional
consent approval) is complete, the authorization code will be returned as a query string parameter to the
redirect_uri specified in the authorization request.

GET https://sso.pingdeveloper.com/OAuthPlayground/Case1A callback.jsp?
code=ABCâ€¦XYZ HTTP/1.1

(or for a mobile application, this URL will be handled in according to the mobile OS - for example in iOS in
the AppDelegate class using the application:handleOpenUrl:function)

i Note: An error condition from the authentication / authorization process will be returned to this
callback URI with "error" and "error_description" parameters.

Copyright ©2023

 | OpenID Connect Developer Guide | 19

Step 2: Exchange the Authorization Code for the Tokens

Following the Authorization Code grant type defined in the OAuth 2.0 protocol, the application will then
swap this authorization code at the token endpoint for the OAuth2 token(s) and the OpenID Connect ID
Token as follows:

POST https://sso.pingdeveloper.com/as/token.oauth2 HTTP/1.1

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
client_id=ac_oic_client&
client_secret=abc123DEFghijklmnop4567rstuvwxyzZYXWUT8910SRQPOnmlijhoauthplaygroundapplication&
code=ABC...XYZ&
redirect_uri=https://sso.pingdeveloper.com/OAuthPlayground/case1A-
callback.jsp

i Note: As the redirect_uri was specified in the original authorization request. It is required to be sent in
the token request.

In the mobile scenario, as we are using PKCE to prove to the Authorization Server that we are the same
application that initiated the authorization request, we also need to include the PKCE code_verifier
parameter and use our application's redirect_uri:

POST https://sso.pingdeveloper.com/as/token.oauth2 HTTP/1.1

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
client_id=ac_oic_client&
client_secret=abc123DEFghijklmnop4567rstuvwxyzZYXWUT8910SRQPOnmlijhoauthplaygroundapplication&
code=ABC...XYZ&
redirect_uri=com.pingidentity.developer.oauthplayground://oidc_callback&
code_verifier=abcd-this-is-a-unique-per-request-value

i Note: An OAuth client used for mobile authentication is not likely to have a client_secret. In this
scenario, the client_secret parameter int he request can be omitted.

The token endpoint will respond with a JSON structure containing the OAuth2 access token, refresh token
(if enabled in the OAuth client configuration) and the OpenID Connect ID token:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

{
 "token_type":"Bearer",
 "expires_in":7199,
 "refresh_token":"BBB...YYY",
 "id_token":"eyJhbGciOiJSUzI1NiIsImtpZCI6IjRvaXU4In0.eyJzdWIiOiJuZnlmZSIsImF1ZCI6ImFjX29pY19jbGllbnQiLCJqdGkiOi

 JIR1AwdnlxbmgwOVBjQ3MzenBHbUVsIiwiaXNzIjoiaHR0cHM6XC9cL3Nzby5tZXljbG91ZC5uZXQ6OTAzMSIsImlhdCI6MTM5MzczMDM4MCwi

 ZXhwIjoxMzkzNzMwNjgwfQ.EQeAm84Xj2lekxUMSK9H3BvoCl511JV1TWHCyQQ7vTnXcuvZYdBHE9_OpIr9gD5OHjoDrOhwVEjKUqvwwGhzBPN

Copyright ©2023

 | OpenID Connect Developer Guide | 20

 EueeY8bUgkTfIBKzUUJETSeaO1U8uH9Td0QYv7q3rRfurLhrpzubFbAIfjPOiv8jxgBjMyGEdPJ7aXtBwP_cr2RxMUzg_iBRA4cD8c4PwEOROr
 0T-
xKnwZcocDZs_rYAOHFljLPgO2tX8BBePJfqUUUG46U1K4hSqo7LP3zru4BDE2wNbZyOhb2keeLjetNq2ES33YthNU9dkmHUgbtoD-
Ji7kYn
 Maij3ta1OyLSB_HB-NbhQCKvjm4GT9ocm0w",
 "access_token":"AAA...ZZZ"
}

The application now has multiple tokens to use for authentication and authorization decisions:

OAuth 2.0 access_token AAA...ZZZ

rOAuth 2.0 refresh_token BBB...YYY

OpenID Connect id_token eyJhbGciOiJSUzI1NiIsImtpZCI6IjRvaXU4In0.eyJzdWIiOiJuZnlmZSIsImF1ZCI6ImFjX29pY19jbG
llbnQiLCJqdGkiOiJIR1AwdnlxbmgwOVBjQ3MzenBHbUVsIiwiaXNzIjoiaHR0cHM6XC9cL3Nzby5tZXlj
bG91ZC5uZXQ6OTAzMSIsImlhdCI6MTM5MzczMDM4MCwiZXhwIjoxMzkzNzMwNjgwfQ.EQeAm84Xj2lekxU
MSK9H3BvoCl511JV1TWHCyQQ7vTnXcuvZYdBHE9_OpIr9gD5OHjoDrOhwVEjKUqvwwGhzBPNEueeY8bUgk
TfIBKzUUJETSeaO1U8uH9Td0QYv7q3rRfurLhrpzubFbAIfjPOiv8jxgBjMyGEdPJ7aXtBwP_cr2RxMUzg
_iBRA4cD8c4PwEOROr0T-
xKnwZcocDZs_rYAOHFljLPgO2tX8BBePJfqUUUG46U1K4hSqo7LP3zru4BDE2
wNbZyOhb2keeLjetNq2ES33YthNU9dkmHUgbtoD-
Ji7kYnMaij3ta1OyLSB_HB-
NbhQCKvjm4GT9ocm0w

Step 3: Validate the ID Token

The next step is to parse the id_token, and validate the contents. Note, that as the id_token was received
via a direct call to the token endpoint, the verification of the digital signature is optional.

Firstly, decode both the header and payload components of the JWT:

Component Value Value Decoded

Header eyJhbGciOiJSUzI1NiIsImtpZCI6IjRvaXU4In0{ "alg":"RS256", "kid":"4oiu8" }

Payload eyJzdWIiOiJuZnlmZSIsImF1ZCI6ImFjX29pY19
jbGllbnQiLCJqdGkiOiJIR1AwdnlxbmgwOVBjQ3
MzenBHbUVsIiwiaXNzIjoiaHR0cHM6XC9cL3Nzb
y5tZXljbG91ZC5uZXQ6OTAzMSIsImlhdCI6MTM5
MzczMDM4MCwiZXhwIjoxMzkzNzMwNjgwfQ

{ "sub":"nfyfe",
"aud":"ac_oic_client",
"jti":"HGP0vyqnh09PcCs3zpGmEl",
"iss":"https:\/\/localhost:9031",
"iat":1393730380,
"exp":1393730680 }

Now we follow the guidelines in the OpenID Connect specifications (Core specification section 3.1.3.7) for
ID Token Validation (see 4.3 for details on validating the id_token)

Step # Test Summary Result

1 Decrypt the token (if encrypted) Token not encrypted, skip test

2 Verify the issuer claim (iss)
matches the OP issuer value

Valid

3 Verify the audience claim (aud)
contains the OAuth2 client_id

Valid

Copyright ©2023

 | OpenID Connect Developer Guide | 21

Step # Test Summary Result

4 If the token contain multiple
audiences, then verify that an
Authorized Party claim (azp) is
present

Only one audience, skip test

5 If the azp claim is present, verify it
matches the OAuth2 client_id

Not present, skip test

6,7,8 Optionally verify the digital
signature (required for implicit
client profile) (see section 4.4)

TLS security sufficient, skip test

9 Verify the current time is prior to
the expiry claim (exp) time value

Valid

10 Client specific: Verify the token
was issued within an acceptable
timeframe (iat)

Valid

11 If the nonce claim (nonce) is
present, verify that it matches
the nonce passed in the
authentication request

Nonce was not sent in initial
request, skip test

12 Client specific: Verify the Authn
Context Reference claim (acr)
value is appropriate

No acr value present, skip test

13 Client specific: If the
authentication time claim
(auth_time) present, verify it is
within an acceptable range

No auth_time present, skip test

14 If the implicit client profile is used,
verify that the access token hash
claim (at_hash) matches the hash
of the associated access_token

Not an implicit profile, skip test

The results of the ID token validation are sufficient to trust the id_token and the user can be considered
"authenticated".

Step 4: Retrieve the User Profile

We now have an authenticated user, the next step is to request the user profile attributes so that we can
personalize their application experience and render the appropriate content to the user. This is achieved by
requesting the contents of the UserInfo endpoint:

GET https://sso.pingdeveloper.com/idp/userinfo.openid HTTP/1.1

Authorization: Bearer AAA...ZZZ

The response from the UserInfo endpoint will be a JSON structure with the requested OpenID Connect
profile claims:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Copyright ©2023

 | OpenID Connect Developer Guide | 22

{
 "sub":"nfyfe",
 "family_name":"Fyfe",
 "given_name":"Nathan",
 "nickname":"Nat",
 ...[additional claims]...
}

Before we can be confident the response to the UserInfo reflects the authenticated user, we must also
check that the subject ("sub" claim) returned from the UserInfo endpoint matches the authenticated user
we received in the id_token.

In this case, the "sub" claim in both the UserInfo response and the id_token match so we can use the
values in the UserInfo response for our application needs.

Copyright ©2023

	Contents
	OpenID Connect Developer Guide
	What is OpenID Connect
	Application Developer Considerations

	The ID Token
	Decoding the ID Token
	JWT Header
	JWT Payload
	Digital Signature
	Validating the ID Token
	Payload Validation
	Signature Validation
	Validating the token hashes (at_hash, c_hash)

	The UserInfo Endpoint
	User Profile Claims
	Sample UserInfo Endpoint Request

	Implicit Client Profile
	Step 1: Authenticate the End-User and Receive Tokens
	Step 2: Validate the ID Token
	Step 3: Retrieve the User Profile

	Basic Client Profile
	Step 1: Authenticate the End-User and Receive Code
	Step 2: Exchange the Authorization Code for the Tokens
	Step 3: Validate the ID Token
	Step 4: Retrieve the User Profile

