
Server 5.2

 | Copyright | 1

Copyright

All product technical documentation is ©2019 Ping Identity® Corporation. All rights reserved.

Ping Identity Corporation
1001 17th Street, Suite 100
Denver, CO 80202
U.S.A.

Refer to https://support.pingidentity.com/s/product-help-home for the most current product documentation.

Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory, PingDataGovernance,
PingIntelligence, and PingOne are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other
trademarks or registered trademarks are the property of their respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty of any kind.
Ping Identity disclaims all warranties, either express or implied, including the warranties of merchantability and
fitness for a particular purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever
including direct, indirect, incidental, consequential, loss of business profits or special damages, even if Ping Identity
or its suppliers have been advised of the possibility of such damages. Some states do not allow the exclusion or
limitation of liability for consequential or incidental damages so the foregoing limitation may not apply.

https://support.pingidentity.com/s/product-help-home

 | Contents | ii

Contents

PingAccess overview... 8
PingAccess overview.. 8
What is PingAccess?.. 8
PingAccess for Azure AD..8
What can I do with PingAccess?... 9
How does PingAccess work?... 11

WAM session initiation.. 11
Token mediation..12

What can I configure with PingAccess?..13

PingAccess user interface reference guide... 16
PingAccess User Interface Reference Guide..16
Applications...16

Applications...17
Global unprotected resources... 23
Redirects..24

Sites... 24
Sites... 24
Site Authenticators..26
Third-Party Services... 29

Agents..30
Manage Agents... 30
Manage Agents - Field Descriptions..31

Rules..32
Manage Rules..33
Manage Rule Sets... 44
Manage Rule Set Groups... 45
Manage Rejection Handlers..46

Access..47
Authentication Requirements..47
Identity Mappings... 48
Virtual Hosts... 50
Web Sessions.. 52
Unknown Resources... 56

Networking..56
Availability Profiles.. 57
HTTP Requests... 57
Listeners.. 58
Load Balancing Strategies.. 59
Proxies... 60

Security..61
Certificates...61
Key Pairs...63

System... 65
Admin Authentication...65
Configuration Export/Import.. 68
Clustering.. 69
License...73

 | Contents | iii

Token Provider..73
Token Validation... 79

Install PingAccess... 80
Install PingAccess...80

Installation requirements...81
Install PingAccess on Linux...84
Install PingAccess on Red Hat Enterprise Linux...85
Install PingAccess for Windows.. 85

Start PingAccess... 86
Access the admin console for the first time.. 87
Access the PingAccess administrative API..87

Access the interactive administrative API documentation...87
Change configuration database passwords...88
Stop PingAccess..88
Run PingAccess as a service..88

Configure PingAccess to run as a Linux systemv service...89
Configure PingAccess to run as a Linux systemd service...89
Configure Multiple Instances of PingAccess as Linux services.. 90
Remove the PingAccess Linux service.. 90
Configure PingAccess to run as a Windows service... 90
Remove the PingAccess Windows service.. 90

Uninstall PingAccess.. 90

Upgrade PingAccess... 91
Upgrade a PingAccess standalone version...91
Upgrade a PingAccess cluster.. 92
Upgrade Windows using the installer.. 93
Upgrade RHEL using the installer...93
Complete the upgrade...94
Restore a PingAccess configuration backup.. 101

Configure session management... 101
Configure session management.. 101
Configure server-side session management... 102

Configure PingFederate for session management.. 102
Configure PingFederate for user-initiated single logout.. 103
Configure PingAccess for server-side session management..103

Configure logging..103
Configure logging... 103
Security audit logging...104
Logging... 106
Configure log levels... 107
Configure a class or package log level..107
Enable cookie logging.. 107
Append log messages to syslog and the console...108
Write logs to other formats.. 108

Write logs to databases...108
Write audit logs for Splunk..111

 | Contents | iv

Manage APIs... 112
PingAccess endpoints... 112

Heartbeat endpoint.. 112
OpenID Connect endpoints.. 114
Auth Token Management endpoint.. 114
Administrative API endpoints.. 115

Perform a zero downtime upgrade... 115
Introduction... 115
Step 1: Disable key rolling...115
Step 2: Upgrade the Admin node.. 116
Step 3: Upgrade engines...118

Remove the engine from the load balancer configuration... 118
Upgrade the engine...119
Resume configuration replication...120
Add the engine to the load balancer configuration..121

Step 4: Enable key rolling..121
Recovering from a failed upgrade..122

Protect a web-based application using PingFederate and PingAccess in a
proxy deployment..123

Protect a web-based application in a proxy deployment... 123
Configure PingFederate for PingAccess connectivity..123
Connect to PingFederate and configure an application in PingAccess..128
Test the configuration... 131

Customize and localize PingAccess...131
Customization of user-facing pages... 131
Localization of user-facing pages...132

Groovy development guide.. 133
Groovy...133
Groovy scripts...134
Body object... 136
Exchange object.. 136
Headers object...138
Identity object... 139
JsonNode object.. 140
Logger object.. 141
MediaType object..142
Method object... 142
OAuth Token object..143
PolicyContext object...144
Request object...144
Response object.. 145
SslData object... 146
Groovy script examples.. 147
Matchers.. 148

 | Contents | v

Addon SDK for Java..152
Preface... 152
Introduction... 152
Get started with the SDK... 153

SDK directory structure..153
SDK prerequisites... 153
How to install the SDK samples..154

Create your own plugins.. 156
Integrating with third-party services.. 158
Implementation guidelines..161

Agent SDK for Java... 162
Preface... 162
Introduction... 162
Agent SDK directory structure...164
Agent SDK prerequisites.. 164
How to install the servlet filter sample..164
PingAccess Agent SDK for Java Release History...166

Agent SDK for C.. 167
Preface... 167
Introduction... 167
Getting Started with the PingAccess Agent SDK for C.. 169

Agent SDK for C directory structure...169
Agent SDK for C sample code.. 169

Release notes...169

Addon SDK for Java migration guide... 170
PingAccess Addon SDK for Java Migration Guide.. 170

Performance tuning guide..200
Performance tuning...200
Java tuning.. 201

Configure JVM crash log in Java startup.. 201
Configure memory dumps in Java startup... 201
Modify the Java heap size..201

Operating system tuning...202
Linux tuning..202
Windows tuning.. 203

Garbage collector configuration... 203
Acceptor threads... 204
Worker threads.. 204
Backend server connections... 205
Logging and Auditing...205

Logging... 206
Auditing...206

Agent tuning..206

Clustering reference guide... 206

 | Contents | vi

Clustering.. 206
Configure cluster prerequisites...209
Configure a PingAccess cluster..209
Configure the primary administrative node... 210
Configure PingAccess subclusters..211
Configure the Replica Administrative Node..211
Manual fail over to the replica administrative node.. 212
Reinstate a replica administrative node after failing over... 212
Configure an engine... 213
Edit an engine... 213
Remove an engine's access to the Administrative Console... 213
Remove an engine.. 213

Deployment guide... 214
PingAccess deployment guide..214
Use cases and deployment architecture..214

Deploy for Gateway Web Access Management...214
Deploy for Agent Web Access Management...215
Deploy for Gateway API Access Management... 216
Deploy for auditing and proxying..216

Configuration by use case.. 216
Web Access Management Gateway deployment... 217
Web Access Management Agent deployment..217
API Access Management Gateway deployment.. 218
Auditing and proxying Gateway deployment.. 219

Web Access Management...219
Choose Between an Agent or Gateway deployment..219
Web Access Management Gateway proof of concept deployment architecture.................................. 220
Web Access Management Gateway production deployment architecture..221
Web Access Management Agent proof of concept deployment architecture.......................................223
Web Access Management Agent production deployment architecture..224

API Access Management proof of concept deployment architecture..225
API Access Management production deployment architecture... 226
Auditing and proxying proof of concept deployment architecture.. 227
Auditing and proxying production deployment architecture... 228

Configuration file reference guide.. 229
Configuration file reference..229

PingAccess for AWS: Solution setup guide..240
Introduction... 240
Setup and deployment.. 240

AWS prerequisites...241
Obtain the automation ZIP file.. 242
Create the PingAccess software repository..243
Populate the S3 bucket... 243
Create the PingAccess key pair..244
Create the PingAccess VPC... 244
Configure Security Groups...249
Access the PingAccess administration console..250
Access the PingFederate administration console... 250

Configure SSH connectivity...250
View PingAccess log files..251

 | Contents | vii

Maintaining the S3 bucket... 252
Delete the PingAccess VPC... 252
Redeploying with an existing configuration.. 252
Troubleshooting setup...252

PingAccess for AWS: PingFederate environment requirements...................... 254
Introduction... 254
Create an IAM User in AWS...254
PingFederate configuration requirements...255
Modify api.json to include details about your environment.. 260

PingAccess for AWS: Configure an application.. 261
Introduction... 261
Protect an application... 261

Install and access the unprotected PingAccess QuickStart application..261
Configure PingFederate.. 262
Configure a PingAccess web application...262
Configure a PingAccess API application...264
Test the web application...265
Test the API application... 265

PingAccess release notes.. 266
Release Notes..266

PingAccess 5.2.1 - March 2019... 266
Known issues and limitations...266
Previous releases...267

 | PingAccess overview | 8

PingAccess overview

PingAccess overview
This document provides an overview of PingAccess. Use this document to gain an understanding of the product, to
learn about what you can do, and to discover the many features it provides. To get the most from PingAccess, users
should read about and understand the concepts included in this document.

As you learn about PingAccess features and functions, review PingAccess scenario documentation for steps to
configure them. For a comprehensive set of instructions for using the PingAccess interface, see the PingAccess User
Interface Reference Guide.

This document answers the following questions:

• What is PingAccess? on page 8
• What can I do with PingAccess? on page 9
• How does PingAccess work? on page 11
• What can I configure with PingAccess? on page 13

What is PingAccess?

PingAccess is an identity-enabled access management product that protects Web Applications and APIs by applying
security policies to client requests. In simpler terms, PingAccess allows you to protect sites, APIs, and other resources
using rules and other authentication criteria. It works in conjunction with PingFederate or other common token
provider via the OAuth 2.0 and OpenID Connect protocols to integrate identity-based access management policies via
a federated corporate identity store using open standards access protocols.

PingAccess for Azure AD
PingAccess for Azure AD is a free version of PingAccess for users of Microsoft's Azure AD that allows you to
protect up to 20 applications. The goal of this solution is to allow for greater control over the access to legacy on-
premise applications through the use of PingAccess Identity Mapping functionality.

This free version includes a limited feature set that is intended to support the basic requirements for application
protection using this solution. Users of PingAccess for Azure AD are able to upgrade to a full license that will allow
the use of the full PingAccess feature set.

Important: When your PingAccess for Azure AD license expires, access to the admin API is removed and
you are unable to configure the product. Though managed access to configured applications continues, you
must upload a new license file before you can make any additional configuration changes.

Upgrade notice: PingAccess for Azure AD provides a limited feature set that may not be compatible with
existing PingAccess configurations. For this reason, upgrading from an earlier full version of PingAccess to
PingAccess for Azure AD is not supported.

The following table details the available functionality on each of the PingAccess versions, both in the PingAccess
user interface and the API.

Functionality PingAccess PingAccess for Azure AD

Create applications Yes Limited to 20 web session
applications.

Create site authenticators Yes Limited to Basic and Mutual TLS.

 | PingAccess overview | 9

Configure identity mappings Yes Limited to Header and JWT.

Create load balancing strategies Yes Limited to Header-Based and Round
Robin.

Configure web sessions Yes Limited to web sessions with OIDC
login type CODE.

Configure token provider Yes Limited to Microsoft Azure AD
authentication source.

Export/Import configuration Yes Limited to configurations that
includes only features permitted by
license type.

Configure policies Yes No

Specify authentication requirements Yes No

Create and configure custom plugins
using the SDK

Yes No

Configure sites Yes Yes

Configure agents Yes Yes

Create virtual hosts Yes Yes

Configure unknown resource
handling

Yes Yes

Configure availability profiles Yes Yes

Configure HTTP request handling Yes Yes

Configure listeners Yes Yes

Configure forward proxy settings Yes Yes

Manage certificates Yes Yes

Manage key pairs Yes Yes

Configure administrator
authentication

Yes Yes

Configure clustering Yes Yes

Manage licenses Yes Yes

What can I do with PingAccess?

PingAccess provides a highly customizable solution to identity access management that allows you to control
access in a variety of ways by specifying a wide range of conditions that must be satisfied. Read the following
sections to discover the methods PingAccess uses to control access and perform system functions. To learn more
about the configuration required for any of the following topics, see PingAccess configuration scenarios on
docs.pingidentity.com.

The main functionality of PingAccess is to allow you to protect an application or API. You can:

• Use PingAccess to protect the application and API resources to which client requests are forwarded.
• Partition applications for tighter access control through the use of resources.

https://docs.pingidentity.com

 | PingAccess overview | 10

• Customize configuration of site authenticators and authentication requirements to suit the security needs of your
organization.

• Incorporate legacy authentication mechanisms through Token Mediation.
• Apply policies to define how and when a client can access target resources.

Customize your identity access management configuration with the following features.

Apply policies
Use policies, made up of rules, set of rules, or groups of rule sets applied to an application and its
resources, to define how and when a client can access target sites. Rules are the building blocks for
access control and request processing.

Backup and restore
Backup or restore a PingAccess configuration with just a few clicks.

Configure a token provider
PingAccess can be configured to use PingFederate as the token provider or may be configured to
use a common token provider via the OAuth 2.0 or OpenID Connect protocols.

Configure administrator authentication
Allow administrators to authenticate with a simple username and password, or configure them to
authenticate via SSO or API in conjunction with PingFederate.

Configure advanced network settings
Create an availability profile to determine how you want to classify a target server as having failed,
configure listener ports, define a load balancing strategy, or use HTTP Requests to match a served
resource with the originating client.

Configure logging
Capture several log types, including those for the engine, security auditing, and cookies. Store logs
in Splunk, in an Oracle, PostgreSQL, or SQL Server database, or in a file.

Configure Single Logout
End PingAccess sessions easily when used in conjunction with PingFederate managed sessions or
compatible third party OpenID Connect providers.

Create clusters
Deploy PingAccess in a clustered environment to provide higher scalability and availability for
critical services. Use subclusters to provide better scaling of large PingAccess deployments by
allowing multiple engine nodes in the configuration to share information. Place a load balancer in
front of each subcluster in order to distribute connections to the nodes in the subcluster.

Customize PingAccess look and feel
Customize and localize the PingAccess pages your users will see, including those for error messages
and logout confirmation.

Customize with SDKs
Customize development with SDKs to extend the functionality of the PingAccess server.

Manage certificates and key pairs
Import certificates to establish trust with certificates presented during secure HTTPS sessions.
Import or generate key pairs that include the private key and X.509 certificate required for HTTPS
communication.

Manage sessions
Use web sessions to define the policies for web application session creation, lifetime, timeout,
and scope. Use multiple web sessions to scope the session to meet the needs of a target set of
applications. Web sessions improve the security model of the session by preventing unrelated
applications from impersonating the end user.

Manually configure runtime parameters

 | PingAccess overview | 11

Use a text editor to modify configuration file settings used by PingAccess at runtime.

Protect an application or API
Use PingAccess to protect the application and API resources to which client requests are
forwarded. Partition applications for tighter access control through the use of resources. Customize
configuration of site authenticators and authentication requirements to suit the security needs of
your organization.

Tune performance
Optimize a wide variety of PingAccess components for maximum performance.

Upgrade an existing installation
Easily upgrade an existing installation using the installer, or more carefully manage the upgrade
process with the PingAccess Upgrade Utility.

Use APIs
Use the PingAccess APIs to provide a powerful configuration and management experience outside
the PingAccess user interface.

How does PingAccess work?

Access requests are either routed through a PingAccess Gateway to the target Site, or they are intercepted at the target
web application server by a PingAccess Agent, which in turn coordinates access policy decisions with a PingAccess
Policy Server. In either instance, policies applied to access requests for the target Application are evaluated, and
PingAccess makes a policy-based decision to grant or deny access to the requested resource. When access is granted,
client requests and server responses can be modified to provide additional identity information required by the target
Application.

WAM session initiation

When a user authenticates, PingAccess applies the application and resource-level policies to the request. Once policy
evaluation is passed, any required token mediation between the back-end Site and the authenticated user is performed.
The user is then granted access to the Site.

Processing steps:

 | PingAccess overview | 12

1. When a user requests access to a Web resource from PingAccess, PingAccess inspects the request for a
PingAccess Token.

2. If the PA Token is missing, PingAccess redirects the user to an OpenID Connect Provider (OP) for authentication.

Info: When using an OP, an OAuth Client must already be configured in PingAccess. For steps on
configuring an OAuth Client within PingFederate, see the PingFederate Administrator's Manual. To
configure the OAuth Client within PingAccess, see the PingAccess scenario to Configure a Token
Provider.

3. The OP follows the appropriate authentication process, evaluates domain-level policies, and issues an OpenID
Connect (OIDC) ID Token to PingAccess.

4. PingAccess validates the ID Token and issues a PA Token and sends it to the browser in a cookie during a
redirect to the original target resource. Upon gaining access to the resource, PingAccess evaluates application and
resource-level policies and optionally audits the request.

Info: PingAccess can perform Token Mediation by exchanging the PA Token for the appropriate security
token from the PingFederate STS or from a cache (if token mediation occurred recently).

5. PingAccess forwards the request to the target site.
6. PingAccess processes the response from the site to the browser (step not shown).

Info: See the Session Management scenario for more information.

Token mediation

When planning a PingAccess deployment, it is necessary to take inventory of existing applications, and their
authentication requirements and mechanisms. When an existing token-based authentication mechanism is in use,
retrofitting that mechanism may not always be desirable or cost-effective.

Token Mediation allows a PingAccess gateway to use a PingFederate token generator to exchange the PA Token or an
OAuth Bearer Token for a security token used by the foreign authentication system. The access request is transparent
to the user, allowing PingAccess to transparently manage access to systems using those foreign tokens. The request
is also transparent to the protected application, which handles the access request as if it came from the user directly.
Once token mediation has occurred, the token used for accessing the application is cached for continued use during
the session.

The following illustration shows an example of token mediation using PingFederate to exchange a PA Token or
OAuth Bearer Token for a different security token.

Processing steps:

 | PingAccess overview | 13

1. A user requests a Resource from PingAccess with a PA Token or OAuth Bearer Token.

Info: This example assumes the user has already obtained a PA Token or OAuth Bearer Token. See the
Session Management scenario for information on how users authenticate with PingFederate and obtain a
PA Token or OAuth Bearer Token.

2. PingAccess evaluates resource-level policies and performs token mediation by acquiring the appropriate security
token from the PingFederate STS specified by the Site Authenticator.

3. PingAccess sends the request to the Site (Web application) with the appropriate token.
4. PingAccess returns the response to the client (not shown).

What can I configure with PingAccess?

PingAccess includes a wide range of features that allow you to customize your identity access management
deployment. To learn more about these features, read the following descriptions.

Agents
Agents are web server plugins that are installed on the web server hosting the target application.
Agents intercept client requests to protected applications and allow or deny the request to proceed
by consulting the Policy Manager or using cached information. Agents communicate with the
PingAccess Policy Server via the PingAccess Agent Protocol (PAAP) which defines in detail the
possible interactions between agents and Policy Server. Agents have a name to identify them and
a shared secret to authenticate with to Policy Server. Agents do not need to be unique. There can
be any number of agents using the same name and secret and they are all treated equally by Policy
Server. This is useful in complex deployments where unique agents would be difficult to manage.
Agents can be assigned as the destination for one or more applications by name.

Applications
Applications represent the protected web applications and APIs to which client requests are sent.
Applications are composed of one or more resources and have a common Virtual Host and Context
Root and correspond to a single target site. Applications also use a common Web Session and
Identity Mapping. Access control and request processing rules can be applied to applications and
their resources on the Policy Manager page to protect them. Applications can be protected by
PingAccess Gateway or PingAccess Agent. In a gateway deployment, the target application is
specified as a Site. In an agent deployment, the application destination is an Agent.

Authentication requirements
Authentication Requirements are policies that dictate how a user must authenticate before access is
granted to a protected Web Application. Authentication methods are string values and ordered in a
list by preference. At runtime, the type of authentication attempted is determined by the order of the
authentication methods.

For example, a user attempts to access a PingAccess Web Application configured with an
authentication requirement list containing the values (password, cert). PingAccess redirects the
user to PingFederate requesting either password or certificate user authentication. PingFederate
authenticates the user based on the password and issues an OIDC ID Token to PingAccess
(containing the authentication method that was used). PingAccess ensures that the authentication
method matched the requirements and redirects the user to the originally requested Application
with the PA cookie set. The user navigates to the Application and access is granted. When the user
attempts to access a more sensitive Application, configured with an authentication requirement list
containing the value (cert), they are redirected to PingFederate to authenticate with a certificate.

If you configure Applications with authentication requirement lists that have no overlap. For
example, one list has (password), another list (cert), a user navigating between Applications may
be required to authenticate each time they visit an Application. When configuring authentication
requirement lists to protect higher value Applications with step-up authentication, consider
including stronger forms of authentication when configuring lower value Applications.

 | PingAccess overview | 14

Auth token management
Auth token management settings define the issuer and signing configuration used by JWT identity
mappings.

Availability profiles
Availability Profiles are used in a Site configuration to define how PingAccess classifies a backend
target server as failed. Sites require the selection of an availability profile, even if only one target is
provided.

If multiple targets are specified in a site configuration but a load balancing strategy is not applied,
then the Availability Profile will cause the first listed target in the site configuration to be used
unless it fails. Secondary targets will only be used if the first target is not available.

Certificates
Certificates are used to establish anchors used to define trust to certificates presented during
secure HTTPS connections. Outbound secure HTTPS connections such as communication with
PingFederate for OAuth access token validation, identity mediation, and communication with a
target Site require a certificate trusted by PingAccess. If one does not exist, communication is not
allowed.

Certificates used by PingAccess may be issued by a CA or self-signed. CA-issued certificates
are recommended to simplify trust establishment and minimize routine certificate management
operations. Implementations of an X.509-based PKI (PKIX) typically have a set of root CAs that
are trusted, and the root certificates are used to establish chains of trust to certificates presented by a
client or a server during communication.

The following formats for X.509 certificates are supported:

• Base64 encoded DER (PEM)
• Binary encoded DER

Clustering
PingAccess can be configured in a clustered environment to provide higher scalability and
availability for critical services.

PingAccess clusters are made up of three types of nodes:

Administrative Console Provides the administrator with a configuration
interface

Replica Administrative Console Provides the administrator with the ability to
recover a failed administrative console using a
manual failover procedure.

Clustered Engine Handles incoming client requests and evaluates
policy decisions based on the configuration
replicated from the administrative console

Any number of clustered engines can be configured in a cluster, but only one administrative console
and one replica administrative console can be configured in a cluster.

Further use of subclusters provides better scaling of very large PingAccess deployments by allowing
multiple engine nodes in the configuration to share certain information.

HTTP requests
HTTP Requests are used to match a served resource with the originating client when one or more
reverse proxies are between the client and the served resource. For example, when a reverse proxy
sits between the client and the PingAccess server or a PingAccess agent, the additional proxy might
be identified as the client. Such proxies can be configured to inject additional headers to relay the
originating client address.

 | PingAccess overview | 15

Identity Mappings
Identity mappings make user attributes available to back-end sites that use them for authentication.
There are multiple types of identity mappings, each with different behavior and a distinct set of
fields to specify the identity mapping behavior.

Key pairs
Key pairs are required for secure HTTPS communication. A Key Pair includes a private key and
an X.509 certificate. The certificate includes a public key and the metadata about the owner of the
private key.

PingAccess listens for client requests on the administrative console port and on the PingAccess
engine port. To enable these ports for HTTPS, the first time you start up PingAccess, it generates
and assigns a Key Pair for each port. These generated Key Pairs are assigned on the HTTPS
Listeners page.

Additionally, Key Pairs are used by the Mutual TLS Site Authenticator to authenticate
PingAccess to a target Site. When initiating communication, PingAccess presents the client
certificate from a Key Pair to the Site during the mutual TLS transaction. The Site must be able to
trust this certificate in order for authentication to succeed.

Listeners
Listeners monitor ports for incoming requests. PingAccess can place listeners on ADMIN,
ENGINE, and AGENT ports.

Load balancing strategies

Load Balancing Strategies are used in a Site configuration to distribute the load between multiple
backend target servers. Load balancing settings are optional, and only available if more than one
target is listed for a site. This functionality can replace a load balancer appliance between the
PingAccess engine nodes and the target servers, allowing for a simpler network architecture.

The Header-Based strategy requires a header be included in the request that defines the target to
select from the Site configuration. This strategy has an option to fall back if the requested target is
unavailable, or if the header is missing from the request.

The Round Robin strategy has a sticky session option that permits a browser session to be pinned to
a persistent backend target. This strategy works in conjunction with the availability profile to select
a target based on its availability, and the load balancer will not select a target that is in a failed state.

Policies
The Policy Manager is a rich drag-and-drop interface where you can manage policies by creating
Rules, building Rule Sets and Rule Set Groups, and applying them to Applications and Resources.
Policies are rules, set of rules, or groups of rule sets applied to an application and its resources.
Policies define how and when a client can access target Sites. When a client attempts to access
an application resource identified in one of the policy's Rules, Rule Sets, or Rule Set Groups,
PingAccess uses the information contained in the policy to decide whether the client can access the
application resource and whether any additional actions need to take place prior to granting access.
Rules can restrict access in a number of ways such as testing user attributes, time of day, request
IP addresses, or OAuth access token scopes. Rules can also perform request processing such as
modifying headers or rewriting URLs.

Proxies
Configure settings to authenticate with a forward proxy server when PingAccess makes requests to
sites or token providers.

Rules, Rule sets, and Rule set groups
Rules are the building blocks for access control and request processing. There are many types of
rules, each with different behavior and a distinct set of fields to specify the rule behavior. Rule
Sets allow you to group multiple Rules into re-usable sets which can be applied to applications and
resources. Rule set groups can contain rule sets or other rule set groups, allowing the creation of

 | PingAccess user interface reference guide | 16

hierarchies of rules to any level of depth. Rule sets and rule set groups can be applied to applications
and resources as required.

Sites
Sites are the target applications or APIs which PingAccess Gateway is protecting and to which
authorized client requests are ultimately forwarded to.

Site Authenticators
When a client attempts to access a target Web Site, that Site may limit access to only authenticated
clients. PingAccess integrates with those security models using Site Authenticators. PingAccess
supports a variety of Site Authenticators that range from basic username/password authentication to
certificate and token-based authentication. Create a Site Authenticator for the type of authentication
the Site requires.

Token provider
Token providers are used as a method of providing credentials for secure access to a given target.

Unknown resources
Unknown resources are resources for which there is no PingAccess definition. You can specify the
default and per-agent handling behavior for unknown resource requests and configure custom error
responses.

Virtual Hosts
Virtual Hosts enable PingAccess to protect multiple application domains and hosts. A Virtual Host
is defined by the host name and host port.

Web sessions
Web Sessions define the policy for Web application session creation, lifetime, timeouts, and their
scope. Multiple Web Sessions may be configured to scope the session to meet the needs of a
target set of applications. This improves the security model of the session by preventing unrelated
applications from impersonating the end user.

PingAccess user interface reference guide

PingAccess User Interface Reference Guide

This guide provides a reference for configuration of PingAccess features and components. Use this guide in
conjunction with PingAccess use case documentation for a comprehensive set of instructions so you can get the most
from your PingAccess implementation.

For ease of use, navigation of this guide is modeled after the PingAccess user interface. To learn more about
configuration options for a particular screen, navigate to its topic in the same manner that you navigate the
PingAccess user interface.

To learn about PingAccess, including its features and functions, see the PingAccess Overview.

Applications

Choose from one of the following sections:

• Applications on page 17
• Global unprotected resources on page 23
• Redirects on page 24

 | PingAccess user interface reference guide | 17

Applications

Applications represent the protected web applications and APIs to which client requests are sent. Applications are
composed of one or more resources, have a common Virtual Host and Context Root, and correspond to a single target
site. Applications may also use a common Web Session and Identity Mapping. Access control and request processing
rules can be applied to applications and their resources on the Policy Manager page to protect them. Applications
can be protected by PingAccess Gateway or PingAccess Agent. In a gateway deployment, the target application is
specified as a Site. In an agent deployment, the application destination is an Agent.

There are 3 application types:

• Web
• API
• Web + API

Web + API applications allow administrators to configure both Web and API settings for an application. These
applications are able to switch between web and API processing behaviors on the fly based on whether the inbound
request contains a web session cookie (web) or an OAuth token (API). If the inbound request contains neither,
PingAccess will fallback to the method you specify as the Fallback Type for the application.

Use this page to define the applications which PingAccess protects and to which client requests are ultimately
forwarded. You can use resources to partition the application into areas requiring distinct access control. Each
Application contains at least a Root Resource. The combination of Virtual Server and Context Root must be unique
for each Application.

About SPA support

SPA Support merges the conventional 401 unauthorized response of an API application with the traditional 302
redirect response of a web application when a client request does not contain an authentication token. The SPA
Supported result is a 401 response containing a JavaScript body that can initiate a 302 redirect. API clients will ignore
the JavaScript body and react appropriately to the 401 response. However, browser clients will disregard the 401
response and execute the JavaScript body resulting in a redirect to the token provider to authenticate. Since clients
self-select the portion of the response they are prepared to process, the result is a seamless authentication experience
regardless of the client type.

SPA support can be used for all application types. When SPA support is enabled for Web + API applications, where
a variety of client types are expected to communicate with the application, a fallback type is no longer required
since both web and API clients will be properly redirected to authenticate by the same response. It may also benefit
Web or API application types, for example, if a new version of a web application contains JavaScript framework
components to call APIs. In this case, SPA Support may help mitigate issues in responding to different client types
for authentication but it will not enable the full features of the other application type. You would need to migrate
the application to a Web + API configuration in order to take advantage of the full functionality, such as that for
authentication, rules, or identity mapping.

Manage Applications

This document contains the steps required to:

• Add an application on page 17
• Edit an application on page 18
• Delete an application on page 18

Add an application

1. Navigate to Main > Applications.
2. Click Add Application.
3. Complete the fields on the screen using Manage Applications - Field Descriptions on page 18 as a guide.
4. Click either Save or Save & Go to Resources when finished. The latter option allows you to configure additional

application resources.

 | PingAccess user interface reference guide | 18

Note: When you save the application, PingAccess verifies the Redirect URI for the Application's virtual
host is configured in the PingFederate. If PingAccess determines that the Redirect URI is not defined, you
will receive the following warning:

Save succeeded. Unable to find a matching Redirect URI in the
 PingFederate OAuth Client configuration for [<VHost>/pa/oidc/cb]

If you see this warning, ensure that there is a Redirect URI that matches configured. If you have a
wildcard in your Virtual Host configuration, ensure the Redirect URI list includes the same wildcard host
definition, otherwise you may have a configuration that is only valid in some circumstances.

This validation is performed if the Application Type is Web or Web + API, a Web Session is selected,
and the PingFederate Administration connection is configured.

Edit an application

1. Navigate to Main > Applications.
2. Expand the application on the Properties tab and click .
3. Make the required changes using Manage Applications - Field Descriptions on page 18 as a guide.
4. Click Save or Save and Go to Resources.

Delete an application

1. Navigate to Main > Applications.
2. Expand the application and click .
3. Click Delete to confirm.

Manage Applications - Field Descriptions

The following table describes the fields available for managing applications at Main > Applications > Applications.

Field Required Description

Name Yes A unique name for the application.

Description No An optional description for the application.

Context Root Yes The context at which the application is accessed at the site.

Note: This value must meet the following criteria:

• It must start with /.
• It can contain additional / path separators.
• It must not end with /.
• It must not contain wildcards or regular expression

strings.
• The combination of the Virtual Host and Context Root

must be unique. The following is allowed and incoming
requests will match the most specific path first:

• vhost1:443/App
• vhost1:443/App/Subpath

• /pa is, by default, reserved for PingAccess and is
not allowed as a Context Root. You can change this
reserved path using the PingAccess Admin API.

Case Sensitive Path No Indicates whether or not to make request URL path matching case
sensitive.

 | PingAccess user interface reference guide | 19

Virtual host(s) Yes Specifies the virtual host for the application. Click Create to create a
virtual host.

Application Type Yes Specifies the application type, either Web, API, or Web + API.

• If the Application Type is Web, specify whether or not you
want to enable SPA Support. Select the Web Session if the
application is protected and, if applicable, the Identity Mapping
for the application. Click Create to create a Web Session or
Identity Mapping.

• If the Application Type is API, specify whether or not you
want to enable SPA Support. Indicate the method of Access
Validation and, if applicable, select the Identity Mapping for
the application. Click Create to create an Identity Mapping.

• If the Application Type is Web + API, specify whether or not
you want to enable SPA Support. Indicate the method of Access
Validation. Select the Web Session and, if applicable, the
Identity Mappings to use for each type. In this configuration,
the Web Session is required and the API is protected by default.

Destination Yes Specifies the application destination type, either Site or Agent.

• If the destination is a Site, select the Site requests are sent
to when access is granted. If HTTPS is required to access this
application, and at least one non-secure HTTP listening port
is defined, select the Require HTTPS option. Click Create to
create a Site.

• If the destination is an Agent, select the agent which intercepts
and validates access requests for the Application. Click Create to
create an Agent.

Enabled No Select to enable the application and allow it to process requests.

Manage Application Resources

This document allows you manage application resources. Application resources are components in an application that
require a different level of security.

Choose from one of the following topics:

• Manage an application resource
• Manage resource policies
• Resource ordering
• About path patterns

Manage an application resource

1. Navigate to Main > Applications.
2. Expand an application and click .
3. Click the Resources tab.
4. To add a resource, click Add Resource.

Info: To edit a resource, expand the resource and click . To delete the resource, expand the resource
and click .

5. Enter a unique Name up to 64 characters, including special characters and spaces.
6. Enter a list of URL path patterns (within the Context Root) that identify this resource. If resource ordering is

enabled, select the path pattern type, Basic or Regex.

 | PingAccess user interface reference guide | 20

Info: The path pattern must start with a slash (/). It begins after the application context root and extends
to the end of the URL.

a. If automatic path pattern evaluation ordering is in use (default), patterns may contain one or more
wildcard characters (*). No use of wildcards is assumed, thus there is a difference between /app/ and
/app/*.

b. If manual path pattern ordering (resource ordering) is enabled, the use of regular expressions is
permitted. When one or more path patterns contain a regular expression, you cannot revert to
automatic path pattern ordering unless that path pattern is removed.

Note: If resource ordering is enabled, and you have specified a regular expression, ensure you select the
Regex path pattern type. Failure to do so will cause the pattern to be interpreted incorrectly as a Basic text
string.

Note: The application reserved path cannot be used as a path pattern when the context root is /. The
default application reserved path is /pa (/pa*). You can modify the default application reserved path
using the PingAccess Admin API.

7. Select the type of Resource Authentication:

• Select Standard if the resource requires the same authentication as the root application.
• Select Anonymous if this resource has no authentication requirements. Identity mappings are still applied if

the user is already authenticated. Access Control and Processing rules are applied where applicable.
• Select Unprotected if this resource has no authentication requirements. Processing rules are applied where

applicable. No application or resource access control policy is applied.

Note: These options are not available for unprotected applications. Web applications types are
unprotected when they do not have an associated web session. API applications are unprotected when they
are not configured to be protected by an authorization server.

8. If the application type is API or Web + API, enter the Methods supported by the Resource. Leave the asterisk
default if the Resource supports all HTTP methods, including custom methods. Defining Methods for a Resource
allows more fine-grained access control policies on API Resources. For example, if you have a server optimized
for writing data (POST, PUT) and a server optimized for reading data (GET), you may want to segment traffic
based on the operation being performed.

9. Select the Audit checkbox to log information about the transaction to the audit store.
10. If the application type is Web + API, and SPA Support is disabled on the root application, indicate whether the

application resource should override the fallback type specified for the main application. If you select Yes for this
option, select the method to be used for the application resource when a request does not contain a web session
cookie or OAuth token.

Important: It is important to carefully consider your configuration when making this selection. Changing
the Application Fallback Type can have unexpected effects on Resources that do not override the Fallback.
For example, if you configure a Web + API Application with a Fallback Type of Web along with several
Resources that do not override the Fallback Type, these Resources will emit a 401 response (rather
than a 302 to PingFederate) if you later change the Fallback Type to API on the main application. The
PingAccess runtime uses Fallback Type to determine which processing flow (Web or API) to use when the
request does not contain a web session or an API OAuth Bearer token. When a request does not contain
either of these authentication mechanisms, it will rely on this configuration to determine which processing
flow to use.

11. Select the Enabled check box to enable the resource.
12. Click Save.

Manage resource policies

To manage resource policies, see Manage Application and Resource Policies on page 23.

 | PingAccess user interface reference guide | 21

Resource ordering

Resources have one or more path patterns. When handling requests, PingAccess determines the path pattern that
matches and associates the proper resource. When one or more path patterns matches a request, PingAccess uses the
first matching pattern it identifies. As such, the order in which path patterns are evaluated is important.

By default, PingAccess orders path patterns automatically so that the most specific patterns are matched first.
However, if more explicit control is needed, or if regular expressions are to be used, resource ordering can be enabled
to manually specify the order in which path patterns are evaluated.

For example, an application may have three resources, such as:

• /images/logo.png (Basic)
• /images/* (Basic)
• /.+/[a-z]\.png (Regex)

A request to resource /images/logo.png is matched by all 3 path patterns, yet each resource may have different
policy requirements. Resource ordering allows you to specify which of these path patterns is parsed first, further
allowing you to control the policy that is applied to a particular request.

Enable resource ordering

To enable resource ordering, edit an existing application, navigate to the Resources tab, and click . Modify the
resource order as necessary, then click Save to persist the changes.

Disable resource ordering

To disable resource ordering, you must first remove any Regex path patterns. Edit an existing application, navigate to
the Resources tab, and click . Click Disable manual ordering.

Auto-order resources

When resource ordering is enabled, PingAccess can assist in the process by attempting to intelligently order resources
based on their path patterns. While editing an application, navigate to the Resources tab, click , then click Auto
Order. Modify the resource order as necessary, then click Save to persist the changes.

Important: The Auto Order function will reorder all resources for an application. You cannot undo this
action, though you are able to re-order resources manually as appropriate.

About path patterns

To allow for more flexible resource matching, PingAccess supports two types of path matching patterns, Basic and
Regex.

Note: In order to specify a path pattern as Basic or Regex, you must enable Resource Ordering. When
Resource Ordering is not enabled, all path patterns are assumed to be Basic, and are parsed as such.

Basic patterns

Basic path patterns (or “wildcard patterns”) are the default path pattern type. Each pattern defines a path to a specific
resource or a pattern that matches multiple paths. Basic patterns may contain any number of “*” wildcards, which
match zero to many characters in the path.

For example, the Basic pattern:

/path/x/*

would match any of the following request paths:

/path/x/
/path/x/index.html
/path/x/y/z/index.html

Regex patterns

 | PingAccess user interface reference guide | 22

Regex path pattern support is enabled when you enable resource ordering. Regex path patterns allow for more
flexibility in resource matching. The supported syntax for regex patterns is that documented by the RE2 wiki.

Note: When one or more regex path patterns are defined, resource ordering cannot be disabled. You must
delete any regex path pattern entries before you can disable resource ordering.

For example, the Regex pattern:

/[^/]+/[a-z]+\.html

would match any of the following request paths:

/images/gallery.html
/search/index.html

but would not match any of these paths:

/images/gallery2.html
/search/pages/index.html
/index.html

Important: Use of regex path patterns in agent deployments

Though Regex path patterns will function in an agent deployment, a performance decrease may be incurred
because the agent must consult PingAccess for policy decisions on all Regex path pattern resources.

In a deployment with Basic path patterns and resource ordering disabled, when a PingAccess agent receives a
request for a resource, it consults its policy cache for policy decisions.

Agents are unable to interpret Regex path patterns, so a request to an agent for a resource with a Regex path
pattern will result in the agent consulting PingAccess for each policy decision.

In a resource ordering scenario, the agent stops consulting its policy cache if it reaches a Regex path pattern,
and continues this behavior for all resources ordered after the Regex path pattern resource, regardless of their
type. Thus, the ordering of resources is critical to performance.

For example, consider the following scenario:

Application A: context root /, resource ordering enabled
Resource 1, Basic, /content
Resource 2, Regex, /\w+-\w+/.*
Root Resource

If Resource 2 is ordered before Resource 1, and a request for Resource 1 is received by the agent, the agent
will not leverage its policy cache, since a Regex path pattern disables caching for the associated resource and
all resources after it.

If Resource 1 is ordered before Resource 2, the agent will leverage its policy cache for requests to Resource
1.

The agent is only able to consult the policy cache for Basic path pattern resources that are ordered before any
Regex path pattern resources. If a Basic path pattern resource is ordered after a Regex path pattern resource,
the agent will not consult the policy cache, instead contacting PingAccess directly, and thus a performance
decrease may be incurred.

Tip: If you are using Regex path patterns in an agent deployment, and if the order in which resources are
ordered is unimportant, Regex path patterns should be ordered at the end of the list. If the order is important,
perhaps because a particular policy needs to be applied before others, place the resource where appropriate
to ensure the correct policy is being applied at the correct time, while potentially incurring a performance
impact.

https://github.com/google/re2/wiki/Syntax

 | PingAccess user interface reference guide | 23

If your deployment makes extensive use of agents and Regex path patterns, and you are experiencing
performance problems, you might consider redeploying these applications in a proxy configuration where
possible.

Manage Application and Resource Policies

This document allows you to apply rules, rule sets, and rule set groups to applications and resources. Note that all
changes made in this task are applied instantly.

1. Navigate to Main > Applications.
2. Expand an application in the list and click .
3. (Optional) To manage the policies for a resource, select the Resources tab, expand the resource you want to edit,

and click .
4. Select the applicable tab. For Web applications, select the Web Policy tab. For API applications, select the API

Policy tab. For Web + API applications, you can configure both Web Policy and API Policy on separate tabs, as
required.

5. Using the radio selection, filter by Rules, Rule Sets, Rule Set Groups, or Rule Type.
6. To create a new rule, click Create Rule.
7. To apply a rule, rule set, or rule set group, drag a rule from Available Rules onto the policy bar.
8. Drag items around in the box to change the order in which they are evaluated at runtime.

Note: Rule ordering can affect PingAccess performance; if an access control rule is more likely to reject
access, it should appear near the top of the list to reduce the amount of processing that occurs before that
rule is applied. This can be more noticeable if, for example, access control policies are applied along
with processing rules. Applying your access control policies first ensures that no processing happens on
responses unless the user is determined to be allowed access.

9. Click - next to an item to remove it from an application or resource.

Global unprotected resources

Global Unprotected Resources are resources that you specify as unprotected for all applications. To specify a specific
resource as unprotected for a single application, see Manage Application Resources on page 19.

Manage Global Unprotected Resources

This document contains the steps required to:

• Add a Global Unprotected Resource on page 23
• Edit a Global Unprotected Resource on page 24
• Delete a Global Unprotected Resource on page 24

Add a Global Unprotected Resource

Warning: The following steps describe how to globally unprotect resources. Since any resource captured by
the Wildcard Path of any entry is left unprotected for all applications, great care must be taken in planning
these entries. To unprotected a resource for a specific application, see Manage Application Resources on page
19.

1. Navigate to Main > Applications > Global Unprotected Resources.
2. Click Add Global Unprotected Resource.
3. Enter a Name for the entry.
4. (Optional) Enter a Description for the entry.
5. (Optional) Select the Audit Level checkbox if you want to record access requests for this resource in the audit

store.
6. Specify the Wildcard Path that identifies the Global Unprotected Resource. This entry must start with a slash (/)

and may contain one or more wildcard characters (*). Examples include:

• /*.jpg

 | PingAccess user interface reference guide | 24

• /resources/*.css
• /*/resources/favicon.ico

Note: Global Unprotected Resource paths are relative to the application context root. Reserved paths such
as /pa, /pa/ or /pa/* are allowed at the global level, but will not be evaluated for applications that are
configured with a context root of /.

7. To enable the Global Unprotected Resource, select the Enabled checkbox.
8. Click Save.

Edit a Global Unprotected Resource

1. Navigate to Main > Applications > Global Unprotected Resources.
2. Expand the Global Unprotected Resource you want to edit and click .
3. Make the required changes.
4. Click Save.

Delete a Global Unprotected Resource

1. Navigate to Main > Applications > Global Unprotected Resources.
2. Expand the Global Unprotected Resource you want to delete and click .
3. Click Delete to confirm.

Redirects

Redirects are used to redirect an incoming request to another target. To configure a redirect, you map the host and port
of an incoming request to that of a different target. At runtime, requests made to the Source will be redirected to the
configured Target. This feature is useful in redirecting HTTP requests to an equivalent HTTPS URL.

Redirects are not associated with applications, but rather with the source:port combination you specify.

To configure a Redirect:

1. Navigate to Main > Applications > Redirects.
2. Click Add Redirect.
3. Specify the Source host and port that you want to redirect.
4. Specify the Target host and post that indicates the destination for the redirect.
5. Using the Secure Target check box, indicate whether or not the target is secure.
6. Specify the HTTP Response Code you want to associate with the redirect. 301 is specified as the default.

Sites

Choose from one of the following sections:

• Sites on page 24
• Site Authenticators on page 26

Sites

Sites are the target applications, endpoints, or APIs which PingAccess Gateway is protecting and to which authorized
client requests are ultimately forwarded to.

Manage Sites

This document contains the steps required to:

• Add a site on page 25
• Edit a site on page 25

 | PingAccess user interface reference guide | 25

• Delete a site on page 25

Add a site

1. Navigate to Main > Sites > Sites.
2. Click Add Site.
3. Complete the fields on the screen using Manage Sites - Field Descriptions on page 25 as a guide.
4. To configure advanced settings, click Show Advanced.
5. Click Save.

Note: If the target site cannot be contacted, the site is saved and a warning is displayed indicating the
reason the site was not reachable.

Edit a site

1. Navigate to Main > Sites > Sites.
2. Expand the site you want to edit, then click .
3. Make the required changes.
4. Click Save.

Note: If the target site cannot be contacted, the site is saved and a warning is displayed indicating the
reason the site was not reachable.

Delete a site

1. Navigate to Main > Sites > Sites.
2. Expand the site you want to delete.
3. Click .
4. When prompted, click Delete to confirm.

Manage Sites - Field Descriptions

The following table describes the fields available for managing applications at Main > Sites > Sites.

Field Required Description

Name Yes Enter a unique Site Name up to 64 characters, including special
characters and spaces.

Targets Yes Specify one or more Targets. The format for this is
hostname:port. For example, www.example.com:80.

Secure Yes Select Secure if the Site is expecting HTTPS connections. If the site
is configured for Secure connections, select a Trusted Certificate
Group from the list, or select Trust Any to trust any certificate
presented by the listed targets.

Site Authenticators No If the Site requires the use of site authenticators, select one or
more authenticators from the list. Click Create to create a Site
Authenticator. Click x to remove a Site Authenticator.

Use Target Host Header No Select the check box to have PingAccess modify the Host header
for the Site's Target Host and Target Port rather than the Virtual Host
configured in the application.

Note: When cleared, PingAccess makes no changes to the
Hostheader. This is often required by target web servers
to ensure they service the HTTP request with the correct
internal virtual server definition.

 | PingAccess user interface reference guide | 26

Skip Hostname Verification No To skip hostname verification, select the checkbox.

Expected Certificate
Hostname

No If you have not selected to skip hostname verification, enter
the name of the host expected in the certificate in the Expected
Certificate Hostname field. This field is available only if the Skip
Hostname Verification checkbox is not selected. If left blank, the
certificates will be verified using the target hostnames.

Availability Profile No Select an Availability profile. Click Create to create an Availability
Profile.

Load Balancing Strategy No Select a Load balancing strategy if the site contains more than one
target. Click Create to create a Load Balancing Strategy.

Send Token No Leave the check box selected to include the PA Token in the request
to the back-end Site. Clear the check box to remove the PA Token
from the request.

Maximum Connections No Enter the maximum number of HTTP persistent connections you
want PingAccess to have open and maintain for the Site. A value of
-1 indicates unlimited connections.

Maximum Websocket
Connections

No If the number of WebSocket connections needs to be limited, enter a
value. The default of -1indicates no limit.

Use Proxy No Select if requests to the site should use a configured proxy.

Note: If the node is not configured with a proxy, requests
are made directly to the site.

CAUTION: If your proxy uses availability handling to
retry multiple targets in the event of a network problem,
PingAccess should be configured to use only one target for
the site. Unexpected behavior could occur if PingAccess
and the proxy are both configured to perform availability
handling.

Site Authenticators

Site Authenticators define the authentication mechanism that target sites require to control access.

Manage Site Authenticators

This document contains the steps required to:

• Add a site authenticator on page 26
• Edit a site authenticator on page 27
• Delete a site authenticator on page 27

Add a site authenticator

1. Navigate to Main > Sites > Site Authenticators.
2. Click Add Site Authenticator.
3. Enter a unique Name.

Note: Special characters and spaces are allowed. This name appears in the Site Authenticator list on the
New Site page.

4. Select the type of authentication from the list. Choose one of the following authentication types to continue.

• Basic authentication site authenticator on page 27
• Mutual TLS site authenticator on page 27

 | PingAccess user interface reference guide | 27

• Token mediator site authenticator on page 27

Edit a site authenticator

1. Navigate to Main > Sites > Site Authenticators.
2. Expand the site authenticator you want to edit, then click .
3. Make the required changes.
4. Click Save.

Delete a site authenticator

Info: If a site authenticator is associated with a site, you cannot delete it.

1. Navigate to Main > Sites > Site Authenticators.
2. Expand the site authenticator you want to delete.
3. Click .
4. When prompted, click Delete to confirm.

Basic authentication site authenticator

Use HTTP Basic authentication (username:password) to authenticate a client requesting access to a site that requires
Basic authentication.

Info: Obtain the username and password from your target Site provider.

Field Description

Username The username required for access to the protected Site.

Password The password required for access to the protected Site.

Mutual TLS site authenticator

Use Key Pairs to authenticate PingAccess to a target Site. When initiating communication, PingAccess presents the
client certificate from a Key Pair to the Site during the mutual TLS transaction. The Site must be able to trust this
certificate in order for authentication to succeed.

Tip: Several setup steps are required for PingAccess certificate management before configuring the Mutual
TLS Site Authenticator.

Field Description

Key Pair The imported/generated key pair for client
authentication. Select the key pair you want to use to
authenticate PingAccess to the target Site. To create a
key pair, see Import an existing key pair on page 63
or Generate a new key pair on page 63.

Token mediator site authenticator

This Site Authenticator uses the PingFederate STS to exchange a PA Token for a security token, such as a WAM
Token or OpenToken, that is valid at the target site.

Note: The token mediator site authenticator may benefit from the configuration of a PingAccess subcluster to
provide fault-tolerance for mediated tokens if a cluster node is taken offline.

https://docs.pingidentity.com/bundle/pa_m_ClusteringReferenceGuide_pa51/page/pa_c_Clustering1.html

 | PingAccess user interface reference guide | 28

Field Description

Token Generator ID Defines the Instance Name of the Token Generator that
you want to use. The Token Generator is configured
in PingFederate (see PingFederate documentation).
If PingFederate Administration is configured, and
PingFederate has one or more token generators
configured, this field becomes a list of available token
generator IDs.

Logged In Cookie Name Defines the cookie name containing the token that the
target site is expecting.

Logged Off Cookie Name Defines the cookie name that the target site responds
with in the event of an invalid or expired token. If the
PA Token is still valid, PingAccess re-obtains a valid
WAM Token and makes the request to the site again. If
the site responds with the cookie set as logged off again,
PingAccess responds to the client with an access denied
page.

Logged Off Cookie Value Defines the value placed in the Logged Off Cookie to
detect an invalid/expired WAM Token event.

Source Token Defines the token type exchanged for a security token
during identity mediation. Select PA Cookie for Web
access or OAuth Bearer Token for API identity
mediation.

Send Cookies to Browser Allows the Token Mediator to send the backend cookie
defined in the Logged In Cookie Name field back to the
browser if the protected application has updated it.

If the set-cookie header isn't in the response from the
protected site, and the Token Mediator Site Authenticator
has a cached token for that session, the Token Mediator
Site Authenticator will create a new set-cookie response
header based on the Cookie Domain, Cookie Max Age,
HTTP-Only Cookie and Secure Cookie fields in the UI.

The admin now can direct the Token Mediator Site
Authenticator to be an active player in returning cookies
to the user's browser, even when the protected site isn't
doing that.

This could be used to enable a seamless SSO experience
for users navigating from PingAccess protected
applications to those protected by a 3rd party Web
Access Management system.

Cookie Domain Enter the domain of the logged in cookie.

Cookie Max Age Define the length of time in minutes, that you want the
generated logged in cookie to be valid.

HTTP-Only Cookie Define the logged in cookie as HTTP-Only. An HTTP-
Only cookie is not accessible using non-HTTP methods,
such as calls via JavaScript (for example, referencing
document.cookie).

Secure Cookie Indicate whether the generated logged in cookie must be
sent using only HTTPS connections.

 | PingAccess user interface reference guide | 29

Field Description

Token Processor ID Defines the Instance Name of a Token Processor that
you want to use. The Token Processor is configured
in PingFederate (see PingFederate documentation).
Specify this value if more than one instance of either
the JWT Token Processor or the OAuth Bearer
Access Token Processor is defined in PingFederate.
If PingFederate Administration is configured, and
PingFederate has one or more token processors
configured, this field becomes a list of available token
processor IDs.

Third-Party Services

The configuration of a third-party is similar to that of a site. A third-party service configuration defines the destination
for HTTPS outbound calls. These definitions are used by custom plugins to indicate how the HTTP client will
communicate with the destination.

Manage Third-Party Services

This document contains the steps required to:

• Add a Third-Party Service on page 29
• Edit a Third-Party Service on page 29
• Delete a Third-Party Service on page 29

Add a Third-Party Service

1. Navigate to Main > Sites > Third-Party Services.
2. Click Add Third-Party Service.
3. Complete the fields on the screen using Manage Third-Party Services - Field Descriptions on page 29 as a

guide.
4. Click Save.

Edit a Third-Party Service

1. Navigate to Main > Sites > Third-Party Services.
2. Expand the Third-Party Service you want to edit and click .
3. Make the required changes.
4. Click Save.

Delete a Third-Party Service

1. Navigate to Main > Sites > Third-Party Services.
2. Expand the Third-Party Service you want to delete and click .
3. Click Delete to confirm.

Manage Third-Party Services - Field Descriptions

The following table describes the fields available for managing applications at Main > Sites > Third-Party Services.

Field Required Description

Name Yes Specify a name that identifies the third party service.

Targets Yes Specify one or more hostname:port pairs used to reach the third
party service.

 | PingAccess user interface reference guide | 30

Secure No Indicate whether or not the target is expecting a secure connection.

Host Value No An optional value used as the Host header field value used in
requests to a third party service regardless of the target used.

Skip Hostname Verification No For secure connections, select to indicate that the third-party service
should not perform hostname verification of the certificate.

Expected Certificate
Hostname

No For secure connections, enter the name of the host expected in the
certificate when hostname verification is enabled.

Availability Profile Yes Indicate the availability profile to use.

Load Balancing Strategy No Select the load balancing strategy to use if more than one target is
defined.

Maximum Connections Yes Indicates the maximum number of HTTP persistent connections
PingAccess will open and maintain for the service. The default of -1
indicates unlimited connections.

Use Proxy No Indicates that requests to the site should use a configured proxy.

Agents

Agents are web server plugins that are installed on the web server hosting the target application. Agents intercept
client requests to protected applications and allow or deny the request to proceed by consulting the Policy Manager
or using cached information. Agents communicate with the PingAccess Policy Server via the PingAccess Agent
Protocol (PAAP) which defines in detail the possible interactions between agents and Policy Server. Agents have
a name to identify them and a shared secret to authenticate with to Policy Server. Agents do not need to be unique.
There can be any number of agents using the same name and secret and they are all treated equally by Policy Server.
This is useful in complex deployments where unique agents would be difficult to manage. Agents can be assigned as
the destination for one or more applications by name.

Prior to defining an agent, import or create an Agent listener key pair and assign it to the AGENT Listener by
performing the following steps:

1. Import or Generate a Key Pair. The key pair's subject or subject alternative names list need to include the host or
hosts the agent will use to contact the PingAccess Policy Server.

2. Navigate to Networking > Listeners > HTTPS Listeners.
3. In the AGENT dropdown, select the Key Pair you want to use, and then click Save.
4. Restart PingAccess.

Info: If the environment is clustered, check the pingaccess.log file on each engine to ensure replication
completed before restarting each engine.

Manage Agents

This document contains the steps required to:

• Add an agent on page 30
• Edit an agent on page 31
• Delete an agent on page 31

Add an agent

1. Navigate to Main > Agents > Agents.
2. Click Add Agent.
3. Complete the fields on the screen using Manage Agents - Field Descriptions on page 31 as a guide.

 | PingAccess user interface reference guide | 31

4. To configure advanced settings, click Show Advanced.
5. Click Save & Download to save the configuration and download <agent-name>_agent.properties for

use with the PingAccess Agent.

Note: The Shared Secret is generated by PingAccess server and identified on this page with a timestamp.
Existing secrets can be deleted by clicking the Remove button in the secret field. If an additional secret is
needed, edit the agent and click Save & Download to generate and download a new Shared Secret.

Note: PingAccess can generate additional agent agent.properties files containing the specified
information which can be used to configure the agent plugin. Existing configurations can also be re-
downloaded if necessary.

Edit an agent

1. Navigate to Main > Agents > Agents.
2. Expand an existing agent, then click .
3. Make the required changes.
4. To download the Shared Secret, click the Download button. To remove the Shared Secret, click the Remove

button.
5. Click Save & Download to download the file.

Delete an agent

1. Navigate to Main > Agents > Agents.
2. Expand an existing agent, then click .
3. When prompted, click Delete to confirm.

Manage Agents - Field Descriptions

The following table describes the fields available for managing applications at Main > Agents.

Field Required Description

Name Yes Enter a unique alphanumeric Name for the agent, up to 64
characters.

Description No Enter an optional Description for the agent and its purpose.

PingAccess Host Yes In the PingAccess Host fields, enter the Hostname and Port of the
PingAccess server where the agent should send requests.

Info: The PingAccess Hostname and Port may not be
the actual host and port that Policy Server is listening to,
depending on network routing configuration and network
elements such as reverse proxies and load balancers. The
PingAccess Host and PingAccess Port are where the agent
sends its requests. For example, if you have a cluster of
engines behind a load balancer, the PingAccess Host and
PingAccess Port values might point to the load balancer
rather than directly to an engine host in order to provide
fault tolerance for the agent connectivity.

 | PingAccess user interface reference guide | 32

Failover Host No In the Failover Host fields, enter the Hostname and Port of the
PingAccess server where the agent should send requests in the event
of a failover from the PingAccess Host.

Tip: Additional failover hosts may be added via API. For
more information, see the PingAccess API Management
Guide.

Agent Trusted Certificate Yes Specify the Agent Trusted Certificate to export in the agent
properties file. The agent uses the selected certificate to
communicate with the PingAccess engine via SSL/TLS. PingAccess
gathers these certificates from imported certificates. If the
appropriate certificate is not available, it needs to be imported into
the system.

Override Request IP Source
Configuration

No If required, select Yes to Override Request IP Source
Configuration and enable additional controls that configure the
agent to use different IP Source information.

• Enter the Header Names used to identify the source IP address.
• If more than one value is included in the Header Names field,

use List Value Location to specify whether the first value or the
last value in the list is used as the source address. The default
value is Last.

• Select Fall Back to Last Hop IP to use the last hop IP address
as the source address when none of the listed Header Names
are found. When this option is not selected, if none of the listed
Header Names are found, access is denied and a Forbidden
result is returned.

Override Unknown Resource
Configuration

No If required, select Yes to Override Unknown Resource
Configuration to specify how requests for unknown resources
should be handled. This mode is optional. If not set, the default
agent mode will be used. Select a Mode to specify how requests
for unknown resources should be handled, either Deny or Pass-
Through.

Max Retries Yes Enter the Max Retries before considering a PingAccess server
unavailable.

Failed Retry Timeout Yes Enter, in seconds, the Failed Retry Timeout before retrying a failed
PingAccess server.

Rules

The Policy Manager is a rich drag-and-drop interface where you can manage policies by creating Rules, building
Rule Sets and Rule Set Groups, and applying them to Applications and Resources. Policies are rules, set of rules, or
groups of rule sets applied to an application and its resources. Policies define how and when a client can access target
Sites. When a client attempts to access an application resource identified in one of the policy's Rules, Rule Sets, or
Rule Set Groups, PingAccess uses the information contained in the policy to decide whether the client can access the
application resource and whether any additional actions need to take place prior to granting access. Access control
rules can restrict access in a number of ways such as testing user attributes, time of day, request IP addresses, or
OAuth access token scopes. Processing rules can perform request processing such as modifying headers or rewriting
URLs.

Note: Rule requests are processed in the order in which they appear in the Administration interface. Rule
responses are processed in reverse order.

 | PingAccess user interface reference guide | 33

Tip: Ensure that any headers used in access control rules (such as X-Forwarded-For, which is used by
Network Range rules) are sanitized and managed exclusively by inline infrastructure that users must be routed
through before reaching PingAccess and the protected applications.

Info: Processing rules cannot be used with Agents.

Manage Rules

This document contains the steps required to:

• Create a rule on page 33
• Edit a rule on page 33
• Delete a rule on page 33
• Configure advanced fields for rules on page 33

Create a rule

1. Navigate to Main > Rules.
2. Click + to the right of the Rules heading.
3. Enter a unique Name. The name can be up to 64 characters long. Special characters and spaces are allowed.
4. Select the rule Type to use. Fields associated with that Rule type are shown.
5. Enter the required information for the type of rule you are creating. For additional information, see the appropriate

subtopic.
6. Click Save.

Edit a rule

1. Navigate to Main > Rules.
2. Expand the rule you want to edit and click .
3. Make the required changes.
4. Click Save.

Delete a rule

1. Navigate to Main > Rules.
2. Expand the rule you want to delete and click .
3. When prompted, click Remove to delete the rule.

Configure advanced fields for rules

You can customize the action to take if policy evaluation fails. The Default action is to use a Rejection Handler that
defines whether to display an error template or redirect to a URL. To use a rejection handler, select it from the list.

With Basic rejection handling, you can customize an error message to display as part of the default error page
rendered in the end-user's browser if Rule evaluation fails. This page is among the templates you can modify with
your own branding or other information. Use the following fields, available in the Advanced - Rejection Handling
section of a rule, to configure basic error handling.

Field Description

Error Response Code The HTTP status response code you want to send if Rule
evaluation fails. For example, 403.

Error Response Status Message The HTTP status response message you want to return if
Rule evaluation fails. For example, Forbidden.

 | PingAccess user interface reference guide | 34

Field Description

Error Response Template File The HTML template page for customizing the error
message that displays if Rule evaluation fails. This
template file is located in the PA_HOME/conf/
template/ directory.

Error Response Content Type The type of content for the error response so the client
can properly display the response.

Authentication requirements rule

Prerequisites:

• A PingFederate configuration that uses the Requested AuthN Context Authentication Selector.
• A configured authentication list.

The Authentication Requirements Rule is a PingAccess access control rule used to limit access to resources or
applications protected by PingAccess based on the ACR values returned by the PingFederate Requested AuthN
Context Authentication Selector. This allows authentication requirements to be applied when a policy decision is
being made by the PingAccess Engine, allowing an entire application or individual resources to require a particular
authentication type.

Use of this rule also allows for configurations that require more secure authentication methods. For example, a web
site might allow a user to authenticate and view personal data using only a username and password, but editing their
personal data could require an additional PingID verification step. When used in this manner, an additional step-up
authentication event is automatically triggered.

Tip: When used in a rule set with Any criteria, this rule should be positioned first in the list to ensure step-up
authentication is triggered upon rule set criteria failure.

To configure an Authentication Requirements rule:

1. Select an Authentication Requirements List.
2. Select a Minimum Authentication Requirement.

Note: The possible values for the Minimum Authentication Requirement are derived from the selected
Authentication Requirements list.

Cross-origin Request rule

Cross-Origin Resource Sharing (CORS) provides a means for a web server to grant access to restricted resources
(fonts, JavaScript, images, etc.) to an application served by another domain without granting access to those resources
beyond a list of predefined origin servers.

Before a CORS request is sent, the originating web server generally sends a "pre-flight" OPTIONS request if the
request from the client includes credentials. This pre-flight request is used to determine if the target server permits
CORS requests to be processed from the originating web server.

PingAccess can be used to evaluate the headers provided in a CORS request to grant or deny access to resources.

Note: In addition to allowing PingAccess to evaluate the CORS request, you can also allow the request to
be handled by the protected application, and let PingAccess be excluded from the process of evaluating the
access request, if the target application type is API. In order to do this with a resource path that is protected
by PingAccess and requires user authentication, configure a second resource with the same path pattern, but
set the Methods field to OPTIONS and the Anonymous option needs to be cleared. This configuration allows
the API request being made to be handled anonymously.

To Configure a Cross-Origin Request Rule

1. Enter one or more Allowed Origins values, clicking to add additional values.

Important: While it is allowed, we recommend against using a value of * in this field. While this is a
valid configuration, it is considered to be an insecure practice.

 | PingAccess user interface reference guide | 35

2. If additional options need to be configured, click Show Advanced.
3. To permit user credentials to be used in determining access, enable Allow Credentials.
4. To modify the Allowed Request Headers values, use the following options:

• To add a new header, click New Value.
• To edit an existing header, click the field and make your changes.
• To remove an existing header, click .

The default headers are Authorization, Content-Type, and Accept.
5. To make specific response headers available to the client that originated the cross-origin request, enter the headers

in the Exposed Response Headers field. Click New Value to add additional headers to the list.
6. To define the request methods allowed in cross-origin requests, select the desired overrides in the Overridden

Request Methods field.
7. To modify the amount of time the pre-flight OPTIONS request is cached, enter the maximum age (in seconds)

desired in the OPTIONS Cache Max Age field. The default is 600 seconds.
8. Click Save.

Rewrite rules overview

It is sometimes necessary to manipulate requests to sites and their responses. PingAccess allows for the manipulation
of the Request URI, the cookie domain, the cookie path, and three of the response headers (Location, Content-
Location, and URI), as well as the response content.

For example, a site is hosted on https://server1.internalsite.com under /content/. Users access the
site via the following URL in their browser:

https://server1.internalsite.com/content/

For example purposes, let's say this results in a 302 Redirect to an importantContent.html page as well as
setting a domain cookie for .internalsite.com. If you protect this site with PingAccess (using the virtual host
publicsite.com) under the application /importantstuff/, you need to rewrite the content. The information
below discusses an example scenario.

Info: This example assumes that a virtual host, a site, and an application are already configured.

Create a Rewrite Content rule

A Rewrite Content Rule alters content in the HTTP Response body.

• In the Response Content-Types field, you define a response type of text/html.
• In the Find and Replace criteria, you specify <a href="https://server1.internalsite.com/

content/"> and .
• Add the Rule to the application. A query to a page with links in it that point to https://

server1.internalsite.com/content/ now point to https://publicsite.com/
importantstuff/.

Create a Rewrite Cookie Domain rule

A Rewrite Cookie Domain Rule allows the rewriting of the Domain field on cookies when they are set by the back-
end site.

• In the Server-Facing Cookie Domain, you enter internalsite.com.
• In the Public-Facing Cookie Domain, you enter publicsite.com.
• Add the Rule to the application.

Cookies associated with the domain publicsite.com (or .publicsite.com) are rewritten to pertain to
internalsite.com (or .internalsite.com).

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3

 | PingAccess user interface reference guide | 36

Create a Rewrite Cookie Path rule

A Rewrite Cookie Path Rule converts the cookie path returned by the Site into a public-facing path.

• In the Server-Facing Cookie Path field, you enter /content/.
• In the Public-Facing Cookie Path field, you enter /importantstuff/.
• Add the Rule to the application.

Cookies associated with a cookie path of /content/ are rewritten to pertain to /importantstuff/.
After configuring the rewrite Rules as discussed above, a user could access the https://
publicsite.com/importantstuff/ and PingAccess would route that request to https://
server1.internalsite.com/content/. If the Site sends a redirect to https://
server1.internalsite.com/content/index.html, PingAccess would return a redirect to
https://publicsite.com/importantstuff/index.html. If the Site then returned a cookie with
a domain of .internalsite.com and a path of /content/, PingAccess would rewrite that cookie to be
relevant to .publicsite.com and /importantstuff/.

Create a Rewrite Response Header rule

A Rewrite Response Header Rule alters the response header used in the 302 Redirect.

• In the Server-Facing URI field, you enter https://server1.internalsite.com/content/.
• In the Public Path field, you enter /importantstuff/.
• Add the Rule to the application. A query resulting in a response containing a 302 Redirect to https://

server1.internalsite.com/content/ is rewritten to https://publicsite.com/
importantstuff/.

Info: This also works for relative redirects: /content/ is rewritten to /importantstuff/. It also
works for the path beneath the one defined in the URI: /content/news/index.html is rewritten to
importantstuff/news/index.htm.

Create a Rewrite URL rule

A Rewrite URL Rule alters the Request URI.

• In the Map From field, you enter ^/importantstuff/(.*) as the regex of the URL's path and query you
want to match.

• In the Map To field, you enter /content/$1.
• Add the Rule to the application. A query to https://publicsite.com/importantstuff/ results in

PingAccess routing that query to https://server1.internalsite.com/content/.

Rewrite Content rule

Use the Rewrite Content Rule to modify text in HTTP response bodies as it is served to the client. This rule uses
a subset of the Java Regular Expression syntax that excludes look-behind constructs (for example, \b) and the
boundary matcher (\G). If no Java regular expression syntax is used, the effect is to perform a case-sensitive search
and replace. The most common use case for this rule is to rewrite host names within URLs contained in HTML,
JavaScript or CSS content.

Important: While adding a Content Rewrite Rule in PingAccess 4.2, you cannot add a new row via the UI.
Clicking the link to add a new row may cause page controls to become unresponsive. To workaround this
issue, use the API to create the rule or create multiple Content Rewrite Rules in the UI and combine them in a
rule set.

Info: Extensive use of Rewrite Content Rules may have significant performance implications.

This rule supports content that is either chunked or streamed from the target server. When sent to the client, the
content is always chunked.

To configure a Content Rewrite rule:

1. Enter a name for the rule.

 | PingAccess user interface reference guide | 37

2. Select Rewrite Content from the list.
3. Enter one or more Response Content-Types to define what type of response data the rewrite rule applies to. The

default values are text/html, text/plain, and application/json. The list is an ordered list.

Info: Only text-based content types are supported. Text-based content types compressed with gzip,
deflate, or compress will be decompressed prior to rewrite rule processing, however the content is not then
re-compressed before being sent to the client.

4. Define one or more set of Find and Replace Criteria. If multiple criteria are specified, each operation is
performed against the original content - effectively applying the rule concurrently.

Important: Changes can affect CSS, Javascript, and other text-based elements served to the client. Be
sure to properly craft the regular expression to avoid modifying content that wasn't intended.

5. If necessary, increase the size of the buffer used to perform the replace operation by clicking Show Advanced and
entering a value in Maximum Buffer Size.

Note: Replacement values cannot be larger than the buffer size. The minimum buffer size that can be
specified is 1024 bytes; there is no maximum value.

6. If the protected application does not return a Content-Type header, select Missing Content-Type Allowed.
7. If Missing Content-Type Allowed is enabled, you must specify the encoding the application returns in the

Missing Content-Type Charset field. For example, this field could contain UTF-8. A list of valid values is
available in this Oracle Java 8 SE Technical Note.

Examples:

Example
description

Original content Content-type Find criteria Replacement
value

Modified text

Rewrite URL
portion of a web
link

<a href="https://
serverx.inside.corp/
app/">

text/html serverx.inside.corpwww.acme.com <a href="https://
www.acme.com/
app/">

Case-sensitive
text replacement

ACMEcorp text/html Ecorp E
Corporation

ACME
Corporation

JSON Value
masking

{

 "origin":
 "127.0.0.1,
 192.168.1.1"
}

application/
json

(127.0.0.1,).*"***********" {

 "origin":
 "127.0.0.1,
 ***********"
}

Replacing text
inside a specified
element using
Java regex
groups

This text is bold. text/html (bold)</
b>

not $1 This text is not
bold.

Case-insensitive
text replacement
using a Java
regex match flag

HTTP text/html (?i)http FTP FTP

Rewrite Cookie Domain rule

Converts the cookie domain returned by the Site into a public-facing domain. For example, a Site places a cookie on
a cookie domain such as internalsite.com (or .internalsite.com). Using the information configured in

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

 | PingAccess user interface reference guide | 38

the Rewrite Cookie Domain Rule, PingAccess rewrites the Domain portion of the Set-Cookie response header
with a public-facing domain such as publicsite.com (or .publicsite.com).

Info: You should only set the cookie (in the Public-Facing Cookie Domain field) to the virtual host name
associated with that application or to a domain that is above. For example, myserver.acme.com can be
set to acme.com.

To configure a Rewrite Cookie Domain rule:

1. Name the Rule.
2. Select Rewrite Cookie Domain from the list.
3. If the target host needs to be explicitly defined, clear the Any Site Target Host checkbox.

When the Any Site Target Host checkbox is enabled, PingAccess will rewrite the cookie domain if it is set to the
domain defined in a site's target host list.

4. Conditional: If Any Site Target Host is cleared, enter the domain name to used by the back-end site in the
Server-Facing Cookie Domain field.

5. In the Public-Facing Cookie Domain field, enter the domain name you want to display in the response from
PingAccess.

6. Click Save.

Rewrite Cookie Path rule

Converts the cookie path returned by the Site into a public-facing path. This enables the details of exposed
applications to be managed by PingAccess for security and request routing purposes. For example, a Site places a
cookie in a server-facing cookie path such as /content/. Using the information configured in the Rewrite Cookie
Path Rule, PingAccess rewrites the Path portion of the Set-Cookie response header with a public-facing cookie
path such as /importantstuff/.

To configure a Rewrite Cookie Path rule:

1. Name the Rule.
2. Select Rewrite Cookie Path from the list.
3. In the Server-Facing Cookie Path field, enter the path name where the cookie is valid for the back-end Site.
4. In the Public-Facing Cookie Path field, enter the path name you want to display in the response from

PingAccess.
5. Click Save.

Rewrite Response Header rule

Converts the response header value returned by the Site into a public-facing value. This Rule rewrites one of three
response headers: Location, Content-Location, and URI. For example, the server-facing Location
response header includes a path that begins with /test-war/. Using the information configured in the Rewrite
Response Header Rule, PingAccess rewrites http://private/test-war/ with a public-facing path such as
http://public/path/.

To configure a Rewrite Response Header rule:

1. Name the Rule.
2. Select Rewrite Response Header from the list.
3. If the target host needs to be explicitly defined, clear the Any Site Target Host checkbox.

When the Any Site Target Host checkbox is enabled, PingAccess will rewrite the response header URI if it
contains a domain defined in a site's target host list.

4. If Any Site Target Host is cleared, enter the domain name to used by the back-end site in the Server-Facing URI
field.

5. In the Public Path box, enter a valid URI path that you want to write into the URI. This must be a valid URI path
and begin and end with a slash (/). For example: /importantstuff/ or /

6. Click Save.

 | PingAccess user interface reference guide | 39

Rewrite URL rule

Examines the URL of every request and determines if a pattern matches. For example, you define a regular expression
(regex) in the rule. If a pattern matches, PingAccess uses the information configured in the Rewrite URL Rule and
rewrites that portion of the URL into a path that the Site can understand. The following table displays four example
Rewrite URL Rule configurations:

Map from value Map to value Example request Rewrite by PingAccess

/bank/ /application/ /bank/content.html /application/
content.html

^/bank/(.*) /application/$1 /bank/content.html /application/
content.html

/bank/index.html /application/
index.jsp

/bank/index.html /application/
index.jsp

/bank/index.html /application/
index.jsp

/bank/index.html?
query=stuff

/application/
index.jsp?
query=stuff

To configure a Rewrite URL rule:

1. Name the Rule.
2. Select Rewrite URL from the drop-down list.
3. In the Map From box, enter the regex of the URL's path and the query you want to match. For example: ^/

bank/(.*) This example illustrates matching the Request-Line in the request. The Request-Line
begins with /bank/ (the ^ indicates "begins with") and places the rest of the URL into the first capture group
(for more information on regex patterns, see the Oracle Java Docs).

4. In the Map To box, enter the URL's path and query you want to generate. For example: /application/$1
This example defines the replacement string, which generates / followed by the content of the first capture group
(to better understand the use of special characters such as \ and $ in the replacement string, see the Oracle Java
Docs).

5. Click Save.

Groovy script rule

Groovy scripts provide advanced Rule logic that extends PingAccess Rule development beyond the capabilities of the
packaged Policy Manager rules.

Note: Through Groovy scripts, PingAccess administrators can perform sensitive operations that could affect
system behavior and security. Please note that since the regular Groovy Rule and the OAuth Groovy Rule
differ in the scope of their functionality, the relevant rules are tagged for Web App or for API, respectively, in
the rules dropdown menu.

See Advanced Fields for information about error handling.

1. Enter the Groovy Script to use for Rule evaluation. For example, to create an OAuth Scope Rule that matches
more than one scope, your Groovy script might contain: hasScopes("access","portfolio")

2. If you need to configure error handling parameters, click Show Advanced to provide those configuration options.
3. Click Save when you finish.

HTTP Request Header rule

Examines a request and determines whether to grant access to a requested resource based on a match found in one of
the specified headers in the HTTP request.

Note: See Advanced Fields for information about error handling.

If more than one Field and Value pair is listed, then all conditions must match in order for the rule to succeed.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html#replaceAll(java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html#replaceAll(java.lang.String)

 | PingAccess user interface reference guide | 40

To configure an HTTP Request Header rule:

1. In the Field column, enter a Header name you want to match in order to grant or not grant the client access.
2. Enter the Value for the Header you want to match in order to grant or not grant the client access. The wildcard (*)

character is supported.

Tip: If you want to match on the Host header, include both the host and port as the Value, or add a
wildcard after the hostname (host* or host:*) to match what is in the HTTP request.

3. Select Case Sensitive if the values should be matched only if the value case is an exact match.
4. Select Negate if access should be denied when a match is found.

Info: Ensure that the attribute name entered in the Field field is spelled correctly and exists. If you enter
an attribute that does not exist and you select Negate, the rule will always succeed. The Negate control
applies to the entire set of conditions specified, and passes the rule if any condition is not met.

5. If additional Header pairs are needed, click Add Row to add an additional row, then repeat steps 1-4.
6. If you need to configure error handling parameters, click Show Advanced to provide those configuration options.
7. Click Save.

HTTP Request Parameter rule

Examines a request and determines whether to grant access to a requested resource based on a match found in
specified form parameters of the HTTP request.

This rule determines if the parameters are passed as part of the URL query string parameters or as part of a request
body submitted using an HTTP PUT or POST method. If the request is a POST request, the content-type must
be set to application/x-www-form-urlencoded to process the field names in the request.

If this rule is applied to an Agent configuration, only URL query string parameters are compared, because the Agent
does not receive the request body for processing.

If more than one Field and Value pair is listed, then all conditions must match in order for the rule to succeed.

Note: See Advanced Fields for information about error handling.

To configure an HTTP Request Parameter rule:

1. In the Field column, enter a Parameter name you want to match in order to grant or not grant the client access.
2. Enter the Value for the field you want to match in order to grant or deny the client access. The wildcard (*)

character is supported.

Note: Values entered here will be URL-encoded prior to the comparison. For example, if the value
specified in the Value field is v1 v2, when the engine performs the comparison, this value will be
converted to v1%20v2 before the search is performed.

3. Select Case Sensitive if the values should be matched if the value case is an exact match.
4. Select Negate if when a match is found, access is not allowed.

Info: Ensure that the field name you enter is spelled correctly and exists. If you enter a field name that
does not exist and you select Negate, the rule will always succeed. The Negate control applies to the
entire set of conditions specified, and passes the rule if any condition is not met.

5. If additional Parameters pairs are needed, click Add Row to add an additional row, then repeat steps 1-4.
6. If you need to configure error handling parameters, click Show Advanced to provide those configuration options.
7. Click Save.

Network Range rule

Examines a request and determines whether to grant access to a target Site based on whether the IP address falls
within a specified range (using Classless Inter-Domain Routing notation).

To configure a Network Range rule:

 | PingAccess user interface reference guide | 41

1. Enter a Network Range in the field. For example, 127.0.0.1/8. PingAccess supports both IPv4 and IPv6
addresses.

2. Select Negate if when a match is found, access is not allowed.
3. Conditional: If you wish to override source address handling defined in the HTTP Requests configuration, click

Show Advanced and perform the following steps:
a) Select the Override Request IP Source Configuration option.
b) Enter the Headers used to define the Source IP address to use.
c) Select the Header Value Location to use when multiple addresses are present in the specified header. Valid

values are Last (the default) and First.
d) Select the Fall Back to Last Hop IP option to determine if, when the specified Headers are not present,

PingAccess should return a Forbidden result or if it should use the address of the previous hop as the source
to make policy decisions.

4. Additional advanced fields for handling error responses may also be defined here. See Advanced Fields for more
information about these fields.

5. Click Save.

OAuth Attribute Value rule

Examines a request and determines whether to grant access to a target Service based on a match found between the
attributes associated with an OAuth access token and attribute values specified in the OAuth Attribute Rule.

To configure an OAuth Attribute Value rule:

1. Select an Attribute Name you want to match to an attribute associated with an OAuth access token.
2. In the Attribute Value box, enter the value to match.

Note: The attribute values come from the contract in your OAuth access token manager in PingFederate.
See Defining the Access Token Attribute Contract for more information.

3. Add additional rows of attribute name/value pairs as needed.

Note: If multiple rows are included here, all conditions must match in order for the rule to match.

4. Select Negate if when a match is found, access is not allowed.

Info: Verify what you enter for the attribute. If you enter an attribute that does not exist (for example,
misspell it) and you select Negate, the rule will always succeed.

5. Click Save.

OAuth Groovy Script rule

Determines whether to grant access to a target Site based on the results returned from a Groovy script that evaluates
request details and OAuth details. This Rule allows you to create more sophisticated OAuth Scope and OAuth
Attribute Value Rules for API applications.

Info: Please note that since the regular Groovy Rule and the OAuth Groovy Rule differ in the scope of their
functionality, the relevant rules are tagged for Web App or for API, respectively, in the UI's rules dropdown
menu.

To configure an OAuth Groovy Script rule:

1. Enter the Groovy Script to use for Rule evaluation.
2. Conditional: If you need to specify a custom Error Response Template File, click Show Advanced and fill in the

Error Response Template File and Error Response Content Type fields.
3. Click Save.

See Advanced Fields for information about error handling.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_BearerAccessTokenMgmtPluginTasklet_CreateAdapterContractState

 | PingAccess user interface reference guide | 42

OAuth Scope rule

Examines the contents of the PingFederate validation response and determines whether to grant access to a back-end
target Site on a match found between the scopes of the validation response and scope specified in the OAuth Scope
Rule. For example, a Resource may require that the OAuth Access Token contain the scope superuser.

1. Select the Scope you want to match to values returned from the access token.

Info: This is one scope requirement in the set of scopes associated with the access token.

2. Select Negate if when a match is found, access is not allowed.
3. Optional: If you want to use a customized error response template, click Show Advanced and provide the Error

Response Template File and Error Response Content Type values.
4. Click Save.

OAuth Token Cache Time To Live rule

Use this rule to configure the caching behavior for access tokens. This rule allows the global OAuth token cache
configuration to be selectively overridden for specific applications or resources.

To configure an OAuth Token Cache Time To Live rule:

1. Enter a Name for the rule.
2. Specify whether you want to cache the introspection of access tokens.
3. Specify the number of seconds to cache the introspection of the access token. This value should be less than the

token provider's token lifetime. A value of -1 means no limit.

Rate Limiting rule

The Rate Limiting Rule allows the administrator to define access to limit a client from overloading the server with too
many requests in a specified period of time. The implementation of this rule uses a Token Bucket in order to control
the number of incoming requests.

Note: The rate limiting rule may benefit from the configuration of a PingAccess subcluster to ensure rate
limits are enforced properly if the front-end load balancer does not provide a sticky session.

The way this works is that the configuration defines a number of requests and an interval that must elapse between
requests. The allowed number of requests within the time window is controlled by the Max Burst Requests setting
visible when you click Show Advanced. For example, if the Max Burst Requests value is 1, two requests are
allowed in the request interval — one normal request, and one burst request.

The number of allowed requests is incremented by one at the end of each Request Interval if a request was not
received. This continues until the number of allowed requests equals the value defined by the Max Burst Requests
setting.

Note: Using the Rate Limiting Rule in a clustered PingAccess environment may impose stricter clock
synchronization requirements for requests processed by multiple engine nodes. Alternatively, a load balancer
sitting in front of a PingAccess cluster can be configured to stick the session to a specific engine, thus
ensuring that the rate limiting rule is applied by a single PingAccess engine node.

1. Select a Policy Granularity, as defined in the following table:

Policy Granularity Definition

Resource Restricts the rate of requests based on the resource
requested.

Identity Restricts the rate of requests to the identity associated
with the current authentication token (a PA Cookie or
an OAuth token). This is the default value.

https://docs.pingidentity.com/bundle/pa_m_ClusteringReferenceGuide_pa51/page/pa_c_Clustering1.html

 | PingAccess user interface reference guide | 43

IP Restricts the number of requests based on the source IP
address. The IP address used to apply this policy comes
from the HTTP Requests IP Source configuration
options or options that override that configuration, if
those options are configured.

OAuth Client Restricts the number of requests to all OAuth tokens
obtained by a specific Client ID.

2. Enter, in milliseconds, a Request Interval.
3. If more than 1 request should be allowed a request interval, expand the Advanced section of the page, and enter

the number of requests to allow in the Max Burst Requests field.

Note: PingAccess increases the number of available requests only after a request interval that serves
no requests to the client. As a result, in the period following a cycle where the remaining allowed burst
requests is reduced to 0, no burst requests would be allowed, regardless of this setting.

4. If PingAccess should reply to the client with a Retry-After header instructing the client to wait for a period of
time, select the Set Retry-After Header option.

5. To customize the error response sent to the client, click Show Advanced and modify the Error Response Code,
Error Response Status Message, Error Response Template File, and Error Response Content Type fields.
See Advanced Fields for more information about these fields.

Redirect rule

Use a redirect rule with an application to specify a fixed URL that a user agent should request in response to being
denied access to the requested resource. Redirect rules can be applied to one or more applications.

To configure a Redirect rule:

1. Specify the Response Status Code you want to associate with the redirect. The default is 302.
2. Specify the URL to which you want to redirect requests. URLs must include the http/https prefix. The URL

can be specified with or without defining the port.

Rejection rule

Use a rejection rule with an application to specify the action to take when a request to an application or resource
is rejected by policy evaluation. A rejection rule uses Rejection Handlers to define which action you want to take,
either rejecting the request and displaying an error template, or redirecting the user to another URL for error details,
instructions, or additional actions.

To configure a Rejection rule:

1. Specify the Rejection Handler you want to use for the rule.
2. Click Save.

Time Range rule

Examines a request and determines whether to grant access to a back-end target site based on the request falling
within a defined time frame. For example, use this Rule when you want to restrict access to specific endpoints for
certain time periods, such as during the work day from 8 am to 5 pm.

To configure a Time Range rule:

1. Enter the beginning time for the time frame in the Start Time field. For example: 8:00 AM.
2. Enter the ending time for the time frame in the End Time field. For example: 5:00 PM.

Info: If you are using Internet Explorer or Firefox, you must enter the time in 24 hour format. For
example, 5:00 PM is 17:00.

3. Select Negate if when a match is found, access is not allowed.
4. Click Save when you finish.

pa_c_manageRejectionHandlers.dita

 | PingAccess user interface reference guide | 44

See Advanced Fields for information about error handling.

Web Session Attribute rule

Examines a request and determines whether to grant access to a target Site based on an attribute value match found
within the PA Token.

To configure a Web Session Attribute rule:

1. Select the Attribute Name that you want to match in order to grant the client access. For example, Group.
2. Enter the Attribute Value for the Attribute Name. For example, Sales. If the attribute has multiple values at

runtime, the attribute value you specify here must match one of those values.

Info: PA Token attributes are obtained from the PingFederate OpenID Connect Policy attribute contract
(see Configuring OpenID Connect Policies).

3. Click Add Row to add more attributes, or click to remove a row.
4. Select Negate to disallow access when a match is found.

Info: Ensure the attribute name is spelled correctly and exists. If you enter an attribute that does not exist
and you select Negate, the rule will always succeed.

5. Click Save.

Info: To use this Rule, we recommend that you leave the Request Profile checkbox selected, indicating
that you want PingAccess to request additional profile attributes from PingFederate when requesting the ID
Token.

See Advanced Fields for information about error handling.

WebSocket Handshake rule

Allows the administrator to define the domains that are allowed to open a cross-origin WebSocket to the application
or resource. Additionally, allowed WebSocket subprotocols and extensions may be defined, providing more fine-
grained control over how the application behaves.

To configure a WebSocket Handshake rule:

1. Enter one or more Allowed Origins. If no origins are defined, all cross-origin WebSocket requests are denied.

Important: While it is allowed, we recommend against using a value of * in this field. While this is a
valid configuration, it is considered to be an insecure practice.

2. Modify the list of Allowed Subprotcools. Subprotcols are defined in the Sec-WebSocket-Protcool
handshake header. The default value of * allows all subprotocols..

3. Modify the list of Allowed Extensions. WebSocket extensions are defined in the Sec-WebSocket-
Extensions handshake header. The default value of * allows all extensions.

See Advanced Fields for information about error handling.

Manage Rule Sets

This document contains the steps required to:

• Add a rule set on page 44
• Edit a rule set on page 45
• Delete a rule set on page 45

Add a rule set

1. Navigate to Main > Rules.
2. Click + to the right of the Rule Sets and Groups heading.
3. Drag a Rule from the Rules column onto the box that appears.
4. Enter a name for the Rule Set in the box that appears. Special characters and spaces are allowed.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState

 | PingAccess user interface reference guide | 45

5. Select All as the Success Criteria to require all Rules in the set to succeed. Select Any to require just one of the
Rules in the set to succeed.

Info: When Success Criteria is set to Any, the first rule establishes the error handling and is flagged with
a tooltip that displays a message indicating that. When Success Criteria is set to All, the first rule in the
set that fails establishes the error handling.

Note: When Success Criteria is set to Any, PingAccess flags Processing Rules in a Rule Set with
tooltip that warns that if the first rule in the list succeeds, additional rules will not be processed. This is
considered a misconfiguration because in an Any Rule Set, the first Processing Rule should succeed,
causing all other rules in the set to not be evaluated. If you want to use Processing Rules on protected
applications as well as handle access control decisions using Any criteria, assign Processing Rules directly
to the application or create a separate Rule Set for the Processing Rules using the All criteria."

6. Click Save to save the Rule Set.
7. Add more Rules.

Edit a rule set

1. Navigate to Main > Rules > Rule Sets.
2. Expand the rule set you want to edit. Choose from:

• Drag a rule within a rule set up or down to re-order the rules.
• Click - to the right of any rule you want to remove from a rule set.
• Click to delete the rule set.
• Click to edit the rule set Name or Success Criteria.

3. Click Save after changing these values.

Delete a rule set

Note: A rule set that is associated with an application or resource cannot be deleted

1. Navigate to Main > Rules.
2. Expand the rule set you want to delete.
3. Click .
4. When prompted, click Remove to confirm the delete request.

Manage Rule Set Groups

This document contains the steps required to:

• Add a rule set group on page 45
• Edit a rule set group on page 46
• Delete a rule set group on page 46

Add a rule set group

1. Navigate to Main > Rules.
2. Click + to the right of the Rule Sets and Groups heading.
3. Drag a Rule Set from the Rule Sets and Groups column onto the box that appears.
4. Enter a name for the Rule Set Group in the box that appears. Special characters and spaces are allowed.
5. Select All as the Success Criteria to require all Rules in the set to succeed. Select Any to require just one of the

Rules in the set to succeed.

Info: When Success Criteria is set to Any, the first rule set establishes the error handling and is flagged
with a tooltip that displays a message indicating that. When Success Criteria is set to All, the first rule in
the set that fails establishes the error handling.

 | PingAccess user interface reference guide | 46

Note: When Success Criteria is set to Any, PingAccess flags Processing Rules in a Rule Set Group
with tooltip that warns that if the first rule in the list succeeds, additional rules will not be processed. This
is considered a misconfiguration because in an Any Rule Set Group, the first Processing Rule should
succeed, causing all other rules in the set to not be evaluated. If you want to use Processing Rules on
protected applications as well as handle access control decisions using Any criteria, assign Processing
Rules directly to the application or create a separate Rule Set Group for the Processing Rules using the All
criteria."

6. Click Save to save the Rule Set Group.
7. Add more rule sets or rule set groups.
8. Configure rule set hierarchy by dragging rule sets in the rule set group. Processing occurs from top to bottom. The

configuration is automatically saved.
9.

Edit a rule set group

1. Navigate to Main > Rules > Rule Sets and Groups.
2. Expand the rule set group you want to edit. Chose from:

• Drag a rule set within a rule set group up or down to re-order the rules.
• Click - to the right of any rule set you want to remove from a rule set group.
• Click to delete the rule set group.
• Click to edit the rule set groupName or Success Criteria.

3. Click Save after changing these values.

Delete a rule set group

This task allows you to remove a rule set group. You cannot remove a rule set group if it is associated with an
application or resource. To remove a rule set group, you must first remove this association.

1. Navigate to Main > Rules.
2. Expand the rule set group you want to delete.
3. Click .
4. When prompted, click Remove to confirm.

Manage Rejection Handlers

This document contains the steps required to:

• Create a Rejection Handler on page 47
• Edit a Rejection Handler on page 47
• Delete a Rejection Handler on page 47

A rejection handler defines the action to take when a request to an application or resource is rejected by policy
evaluation. This feature allows you to decide if you want to display an error template or redirect the user to another
URL for error details, instructions, or additional actions. You can specify the response status code that you want to
send if policy evaluation fails.

You include a rejection handler in a rule by expanding the Advanced section of the Create Rule screen.

PingAccess contains 3 predefined rejection handlers:

• Default API Rejection Handler - Returns a 403 status code in a JSON template
• Default Rate Limiting Rejection Handler - Returns a 429 status code in a JSON template
• Default Web Rejection Handler - Returns a 403 status code in HTML template

 | PingAccess user interface reference guide | 47

Create a Rejection Handler

1. Navigate to Main > Rules > Rejection Handlers.
2. Click Add Rejection Handler.
3. Specify a Name for the object.
4. Choose the Type, Error Template or Redirect.

• If you selected Error Template, specify the Response Status Code, the Template File, and the Content Type.
• If you selected Redirect, specify the Response Status Code, and URL to which you want to redirect if policy

evaluation fails.

Edit a Rejection Handler

1. Navigate to Main > Rules > Rejection Handlers.
2. Expand the rule you want to edit and click .
3. Make the required changes.
4. Click Save.

Delete a Rejection Handler

1. Navigate to Main > Rules > Rejection Handlers.
2. Expand the rule you want to delete and click .
3. When prompted, click Remove to delete the rule.

Access

Choose from one of the following sections:

• Authentication Requirements on page 47
• Identity Mappings on page 48
• Virtual Hosts on page 50
• Web Sessions on page 52
• Unknown Resources on page 56

Authentication Requirements

Authentication Requirements are policies that dictate how a user must authenticate before access is granted to a
protected Web Application. Authentication methods are string values and ordered in a list by preference. At runtime,
the type of authentication attempted is determined by the order of the authentication methods.

For example, a user attempts to access a PingAccess Web Application configured with an authentication requirement
list containing the values (password, cert). PingAccess redirects the user to PingFederate requesting either password
or certificate user authentication. PingFederate authenticates the user based on the password and issues an OIDC ID
Token to PingAccess (containing the authentication method that was used). PingAccess ensures that the authentication
method matched the requirements and redirects the user to the originally requested Application with the PA cookie
set. The user navigates to the Application and access is granted. When the user attempts to access a more sensitive
Application, configured with an authentication requirement list containing the value (cert), they are redirected to
PingFederate to authenticate with a certificate.

If you configure Applications with authentication requirement lists that have no overlap. For example, one list has
(password), another list (cert), a user navigating between Applications may be required to authenticate each time they
visit an Application. When configuring authentication requirement lists to protect higher value Applications with step-
up authentication, consider including stronger forms of authentication when configuring lower value Applications.

Configure an authentication requirements list

 | PingAccess user interface reference guide | 48

1. Navigate to Settings > Access > Authentication Requirements, and click Add Authentication Requirement.
2. Enter a unique name for the Authentication Requirements list.
3. Enter an authentication method. For example, cert or password.

Info: The values you enter here must match the result values defined for the Requested AuthN Context
Selector configured within PingFederate (see Configuring the Requested AuthN Context Selector).

4. Click Add Authentication Requirement to add additional authentication requirements.
5. Click Save.

Edit an authentication requirements list

1. Navigate to Settings > Access > Authentication Requirements.
2. Expand list you want to edit, then click .
3. Make your changes.
4. Click Save.

Delete an authentication requirements list

1. Navigate to Settings > Access > Authentication Requirements.
2. Expand the authentication requirement you want to delete.
3. Click .
4. When prompted, click Delete to confirm.

Identity Mappings

Identity mappings make user attributes available to back-end sites that use them for authentication. There are multiple
types of identity mappings, each with different behavior and a distinct set of fields to specify the identity mapping
behavior.

Configure Auth Token Management

Auth Token Management settings define the issuer and signing configuration used by JWT Identity Mappings.

1. Navigate to Settings > Access > Identity Mappings.
2. Specify the Key Roll Interval (h) to indicate how often (in hours) you want to roll the keys. Key rollover updates

keys at regular intervals to ensure the security of the signed auth tokens.
3. Specify a published, unique Issuer identifier to be used with auth tokens. For example, set the issuer to a value

that more closely represents your company. PingAccess inserts this value as the iss claim within the auth tokens.
4. Specify the Signing Algorithm used to protect the integrity of the auth tokens (the default is ECDSA using P-256

Curve).
5. Click Save.

Create a new identity mapping

This document provides the steps necessary to configure an identity mapping. Identity mappings make user attributes
available to back-end sites that use them for authentication. There are multiple types of identity mappings, each with
different behavior and a distinct set of fields to specify the identity mapping behavior.

Tip: When configuring identity mappings, the dot notation is supported so that session token structure can be
maintained. For example, if the session token contains the following entry:

{
 "address": {
 "line1": "123 Any St",
 "line2": "Apt 123",
 "city": "Anytown",

https://documentation.pingidentity.com/pingfederate/pf82/adminGuide/pf_t_configureRequestedAuthnContextAuthenticationSelector.html

 | PingAccess user interface reference guide | 49

 "state": "CO",
 "zip": "12345"
 }
}

You can define an identity mapping using the following entries to maintain the structure of the target JWT:

User Attribute Name JWT Claim Name

address.line1 address.line1

address.line2 address.line2

address.city address.city

address.state address.state

address.zip address.zip

1. Navigate to Settings > Access > Identity Mappings.
2. Click Add Identity Mapping.
3. Enter a Name for the mapping.
4. Select the identity mapping Type to use. Fields associated with the type are shown.
5. Enter the required information for the type of identity mapping you are creating.
6. Click Save.

Header identity mapping

Header identity mappings make user attributes or client certificates available as HTTP request headers to applications,
both site and agent based, that use them for authentication. A single Header identity mapping can expose a number of
attribute values or a certificate chain up to 3 levels deep. Header identity mappings are assigned to applications.

Use the following steps to configure Header identity mapping.

1. (Optional) In the Attribute to Header Mapping section, enter the name of the attribute to retrieve from
the user web session in the Attribute Name field. For example, sub.

2. Enter the name of the HTTP requests header to contain the attribute value in the Header Name field. The
HTTP header you specify here is the actual header name over the HTTP protocol, not an environment variable
interpreted format. For example, enter the User-Agent browser type identifying header as User-Agent, not
HTTP_USER_AGENT.

3. Select which attribute is used as the Subject.
4. (Optional) In the Certificate to Header Mapping section, enter the header name included in a PEM-

encoded client certificate. The row position correlates to the index in the client certificate chain. For example, the
first row always maps to the leaf certificate. If you are using a certificate chain, click Add Row to add another
row.

5. Click Save.

JWT identity mapping

A JWT Identity Mapping makes user attributes available in a signed JWT (JSON Web Token) sent to the application
in a header.

Tip: The JWT issuer and signing configuration is defined in Configure Auth Token Management on page
48.

Tip: PingAccess engines provide a JWKS (JSON Web Key Set) endpoint at /pa/authtoken/JWKS that can be
used by backend sites to validate the signature of the JWT.

Use the following steps to configure JWT identity mapping.

1. Enter the name of the header to use when sending the signed JWT to the target application in the Header Name
field. The HTTP header you specify here is the actual header name over the HTTP protocol, not an environment

 | PingAccess user interface reference guide | 50

variable interpreted format. For example, enter the User-Agent browser type identifying header as User-
Agent, not HTTP_USER_AGENT.

2. Enter the audience to be set as the aud claim in the signed JWT in the Audience field.
3. Enter the name of the attribute to retrieve from the user web session in the User Attribute Name field. For

example, sub.
4. Enter the name of the JWT claim to contain the attribute value in the JWT Claim Name field.
5. Select which attribute is used as the Subject.
6. (Optional) In the Certificate to JWT Claim Mapping field, enter the name of the JWT claim to contain the

client certificate chain array.
7. If you are performing Certificate to JWT Claim Mapping, in the Client Certificate Chain Max Depth field,

specify the maximum number of certificates from the client certificate chain included in the JWT claim array.
8. Optional: Click Show Advanced and select Cache JWT. When enabled, a cached signed JWT will be used for

repeated requests for a given user. If user attributes change or the key used to sign the JWT changes, a new JWT
will be created even if JWT caching is enabled.

9. Click Save.

Edit an identity mapping

Follow the steps below to edit an existing identity mapping.

1. Navigate to Settings > Access > Identity Mappings.
2. Expand the identity mapping you want to edit.
3. Click .
4. Make the required changes.
5. Click Save.

Delete an identity mapping

Follow the steps below to delete an existing identity mapping.

1. Navigate to Settings > Access > Identity Mappings.
2. Expand the identity mapping you want to edit.
3. Click the Delete icon.
4. In the confirmation window that appears, click Delete.

Virtual Hosts

Virtual Hosts enable PingAccess to protect multiple application domains and hosts. A Virtual Host is defined by the
host name and host port.

A wildcard (*) can be used either to define either any host (*:443, for example) or any host within a domain
(*.example.com, for example).

Note: Prior to availability of SNI in Java 8, an HTTPS port could only present a single certificate. In order
to handle multiple Virtual Hosts you have to use a wildcard name certificate or the Subject Alternative Name
(SAN) extension. With SNI available, Virtual Hosts can present different certificates on a single HTTPS port.
You can assign which certificates (Key Pairs) are used by which Virtual Host on the HTTPS Listeners page.

The Agent Resource Cache TTL advanced field is used to control PingAccess Agent resources for each virtual host.

Create a new virtual host

Use this task to create a new virtual host.

1. Navigate to Settings > Access > Virtual Hosts.
2. Click Add Virtual Host.

http://www.openssl.org/docs/apps/x509v3_config.html#Subject_Alternative_Name_

 | PingAccess user interface reference guide | 51

3. Enter the Host name for the Virtual Host. For example: myHost.com. You can use a wildcard (*) to indicate that
any host name is acceptable. A wildcard host may also be specified (e.g. *.example.com).

4. Enter the Port number for the Virtual Host. For example: 1234.
5. Enter the Agent Resource Cache TTL indicating the number of seconds the Agent can cache resources for this

application. Only applies to destination of type Agent.
6. Click Save.

Configure virtual host trusted certificate groups

This procedure provides the steps to configure virtual host trusted certificate groups that are used to implement client
certificate authentication. Assigning a trusted certificate group to a virtual host provides a mechanism to authenticate
using client certificates during any request to sites using the specified virtual host.

Note: Trusted certificate groups are applied at the host name level and are independent of the configured
port. This means that a mapping to a virtual host of *.example.com will apply to requests received on
virtual hosts *.example.com:3000 and *.example.com:443.

1. Navigate to Settings > Access > Virtual Hosts. Virtual Hosts that have certificate authentication configured will
display the message Client Certificate Authentication in the associated bar.

2. Select and expand the Virtual Host you want to modify.
3. In the Properties list, click the to select a Trusted Certificate Group.
4. Select the appropriate Trusted Certificate Group.
5. Click Save.
6. Add the following two Groovy script rules to force validation of the SNI and client certificate chain. Apply these

rules to applications using this virtual host.

Validate SNI

if(exc?.getSslData()?.getSniServerNames()?.isEmpty())
{
 fail();
}
else
{
 pass();
}

Validate client certificate chain

if(exc?.getSslData()?.getClientCertificateChain()?.isEmpty())
{
 fail();
}
else
{
 pass();
}

Edit a virtual host

Use this task to edit a virtual host.

1. Navigate to Settings > Access > Virtual Hosts.
2. Expand the virtual host you want to edit and click .
3. Make the required changes.
4. Click Save.

 | PingAccess user interface reference guide | 52

Delete a virtual host

Use this task to delete a virtual host.

1. Navigate to Settings > Access > Virtual Hosts.
2. Expand the virtual host you want to edit and click .
3. Click Delete to confirm.

Web Sessions

Web Sessions define the policy for Web application session creation, lifetime, timeouts, and their scope. Multiple
Web Sessions may be configured to scope the session to meet the needs of a target set of applications. This improves
the security model of the session by preventing unrelated applications from impersonating the end user. Use the
following tasks to configure secure Web Sessions for use with specific applications and to configure global Web
Session settings.

Application scoped Web Sessions

PingAccess Tokens can be configured to have their Web Sessions scoped to a specific application. This improves the
security model of the session by preventing unrelated applications from impersonating the end user.

Several controls exist to scope the PA Token to an application:

Audience Attribute The audience attribute defines who the token is
applicable to and is represented as a short, unique
identifier. Requests are rejected that contain a PA Token
with an audience that differs from what is configured in
the Web Session associated with the target Resource.

Audience Suffix The audience attribute is also used as a suffix of the
cookie name to ensure uniqueness. For example,
PA.businessAppAudience.

Cookie Domain The cookie domain can also optionally be set to limit
where the PA Token is sent.

Info: In addition to these controls, parameters such as session timeout can be adjusted to match the policy
requirements of each application.

Corresponding OAuth clients must be defined in PingFederate for each Web Session. Redirect URL whitelists
defined in PingFederate dictate from which servers and domains the session can originate. Controlling this within
PingFederate enables flexibility of the attribute contract (and its fulfillment) for that particular application. This
ensures that each application and its associated policies only deal with attributes related to it.

Configure Web Session Management settings

Use this task to configure Web Session Management settings.

1. Navigate to Settings > Access > Web Sessions.
2. In the Web Session Management section, enter the Key Roll Interval, in hours, to specify how often you want

to roll the keys (the default is 24 hours). Key rollover updates keys at regular intervals to ensure the security of
signed and encrypted PA Tokens.

3. In the Issuer field, enter the published, unique identifier to be used with the Web session (The default is
PingAccess). For example, set the issuer to a value that more closely represents your company. PingAccess inserts
this value as the iss claim within the PA Token.

4. Select the Signing Algorithm used to protect the integrity of the PA Token (the default is ECDSA using
P-256 Curve). PingAccess uses the algorithm when creating signed PA Tokens and when verifying signed
tokens in a request from a user’s browser. The algorithm is also used for signing tokens in Token Mediation use
cases when PA Tokens are encrypted.

 | PingAccess user interface reference guide | 53

5. Select the Encryption Algorithm used to encrypt and protect the integrity of the PA Token (the default is AES
128 with CBC and HMAC SHA 256). PingAccess uses the algorithm when creating encrypted PA Tokens
and when verifying them from a user’s browser.

Info: Higher encryption levels are available if the administrative console supports it. To enable higher
encryption levels, update the administrative console JRE to support unlimited strength security policy.

Info: In a clustered environment, be sure to add the security policy changes to the engines as well as the
administrative console for the cluster.

6. Enter the browser Cookie Name that contains the PA Token (the default is PA).
7. In the Session State Cookie Name field, enter a name for the browser cookie to contain session state attributes.
8. In the Update Token Window(s) field, enter the number of seconds before the idle timeout is updated in the PA

token. When this time window expires, PingAccess will reissue a new PA cookie.
9. Click Save.

Create a Web Session

This task allows you to create a new web session.

1. Navigate to Settings > Access > Web Sessions
2. On the Web Session page, click Add Web Session.
3. Enter a unique Name for the web session, up to 64 characters, including special characters and spaces.
4. Select a Cookie Type.

An Encrypted JWT token uses authenticated encryption to simultaneously provide confidentiality, integrity, and
authenticity of the PA Token.

A Signed JWT token uses asymmetric cryptography with a private/public key pairing to verify the signed
message and to confirm that the message was not modified during transit.

Signed JWT is the default setting. Changing this setting may affect existing ongoing sessions, forcing the user to
re-authenticate to access protected resources.

5. Specify the Audience that the PA Token is applicable to, represented as a short, unique identifier between 1 and
32 characters.
Requests are rejected that contain a PA Token with an audience that differs from what is configured in the Web
Session associated with the target application. Changing this setting may affect existing ongoing sessions, forcing
the user to re-authenticate to access protected resources.

6. Specify the OpenID Connect Login Type that defines how the user’s identity is verified based on authentication
performed by an OpenID Provider and how additional profile claims are obtained. Three login profiles are
supported: Code and POST, and x_post. Select a login profile.

Code

A standard OpenID Connect login flow that provides confidentiality for sensitive user claims. In this profile the
relying party (PingAccess) makes multiple back-channel requests in order to exchange an authorization code for
an ID Token and then exchange an access token for additional profile claims from the UserInfo endpoint at the
provider (PingFederate). This login type is recommended for maximum security and standards interoperability.

POST

A login flow that uses the form_post response mode. This flow follows the OAuth 2.0 Form Post Response
Mode draft specification. This option requires PingFederate 7.3 or later.

A form auto-POST response containing the ID Token (including profile claims) is sent to PingAccess from
PingFederate via the browser after authentication. Back-channel communication between PingAccess and
PingFederate is required for key management in order to validate ID Tokens. This login type is recommended for
maximum performance in cases where the exchanged claims do not contain information that should be hidden
from the end user.

http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

 | PingAccess user interface reference guide | 54

Be sure to select the Implicit grant type when configuring the OAuth Client within PingFederate (see Configuring
a Client). The ID Token Signing Algorithm in PingFederate must be set to either one of the ECDSA algorithms or
one of the RSA algorithms.

x_post

A login flow based on OpenID Connect that passes claims from the provider via the browser. As with the
POST login type, select the Implicit grant type and use either one of the ECDSA algorithms or one of the RSA
algorithms as the ID Token Signing Algorithm.

Info: If PingFederate 7.3 or later is used in the environment, we recommend using POST rather than
x_post, as x_post was defined by Ping Identity prior to the development of the OAuth 2.0 Form Post
Response Mode draft specification.

7. Specify the Client ID that was assigned when you created the OAuth Relying Party client within PingFederate
(for more information, see Configuring a Client in the PingFederate documentation). Enter the unique identifier
(Client ID).

8. Specify the Client Secret that was assigned when you created the OAuth Relying Party Client within
PingFederate. Required when configuring the Code Login Type. Enter the secret (Client Secret).

Info: The OAuth Client you use with PingAccess Web sessions must have an OpenID Connect
policy specified (for more information see Configuring OpenID Connect Policies in the PingFederate
documentation).

9. Specify an Idle Timeout that defines the amount of time, in minutes, that the PA Token remains active, when no
activity is detected by the user (the default is 60 minutes). Enter, in minutes, the length of time you want the PA
Token to remain active when no activity is detected. Defining an idle expiration protects against unauthorized use
of the resource by limiting the amount of time the session remains active when not being used. For example, idle
expiration is useful when a user is no longer at the computer and does not log out of the session. When the idle
expiration is reached, the session automatically terminates.

Info: If there is an existing valid PingFederate session for the user, an idle time out of the PingAccess
session may result in its re-establishment without forcing the user to log in again.

10. Specify a Max Timeout that defines the maximum amount of time, in minutes, that the PA Token remains active
(the default is 240 minutes). Enter, in minutes, the length of time you want the PA Token to remain active. Once
the PA Token expires, an authenticated user must re-authenticate. This protects against unauthorized use of a
resource, ensuring that a session ends after the specified time and requiring the user to re-authenticate to continue.

Note: This value needs to be set to a smaller value than the PingFederate Access Token Lifetime defined
in the PingFederate Access Token Management instance. See Configuring Reference-Token Management
in the PingFederate Administrator's Manual for more information.

11. To configure advanced settings, click Show Advanced.
12. Specify the valid Cookie Domain where the cookie is stored. For example, corp.yourcompany.com.

Info: If you set the Cookie Domain, all of your web resources must reside within that domain. If you do
not set the Cookie Domain, the PA Token is recreated for each host domain where you access applications.

13. Select Secure Cookie to indicate that the PingAccess cookie must be sent using only HTTPS connections.
Selected by default.

Note: Setting an invalid Cookie Domain or selecting Secure Cookie in a non-HTTPS environment causes
authentication to fail. This results in PingAccess re-directing the user to re-authenticate with PingFederate
indefinitely.

14. Select Http-Only Cookie to enable the HttpOnly flag on cookies that contain the PA Token. An HttpOnly
flagged cookie is not accessible using non-HTTP methods such as calls via JavaScript (for example, referencing
document.cookie) and therefore cannot be easily stolen via cross-site scripting.

15. Configure the Scopes you want to request from the token provider when requesting the ID token. If you have a
token provider configured, published scopes are available to select from the list based on the selected Client ID.
You can specify unverified scopes by typing the scope and clicking Use unverified scope "[scopename]".

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState
http://documentation.pingidentity.com/pingfederate/pf80/index.shtml#task_configuringReferenceTokenManagement.html

 | PingAccess user interface reference guide | 55

Your token provider must be properly configured to handle all of the requested scopes you specify, including any
custom scope values.

Note: The user can access all attributes by examining browser traces. While they are integrity protected
to prevent changes, any sensitive or confidential attributes can be viewed should the user decode the ID
Token's value.

16. Select Validate Session so that PingAccess will validate sessions with the configured PingFederate instance
during request processing. Use of this feature requires additional configuration in PingFederate. This option is not
selected by default.

Session timeouts are synchronized between PingAccess and PingFederate when the following conditions are met:

• A minimum release of PingFederate 8.2 is deployed with Authentication Session Settings configured.
• You have selected the Validate Session checkbox.

Changing this setting may affect existing ongoing sessions, forcing the user to re-authenticate to access protected
resources.

17. When Refresh User Attributes is enabled, PingAccess will periodically contact PingFederate to update user data
used in evaluating policy claims. This option works in conjunction with the PingAccess Web Session Management
features to automatically require user re-authentication if user attribute data used as issuance criteria for a token in
PingFederate causes the token to be revoked.

For example, if the PingFederate OpenID Connect Policy has issuance criteria configured to only issue a token if
the account is enabled, enabling this Web Session option allows PingAccess to terminate the session the next time
the user accesses a protected resource if the user's account was disabled in the user datastore.

The Refresh User Attributes Interval determines the length of time the user data is cached, so the effect
of a change that results in a session being terminated may take up to 60 seconds (by default) to take effect.
This interval can be tuned by adding pa.websession.refreshSessionInterval to conf/
run.properties and assigning it a value in seconds.

Changing this setting may affect existing ongoing sessions, forcing the user to re-authenticate to access protected
resources.

This option is selected by default.
18. When Cache User Attributes is enabled, PingAccess caches user attributes internally for use in policy decisions.

By doing this, an attribute list that is longer than the maximum cookie size can contain information used to
evaluate access requests. In practice, this is 4096 bytes, although the maximum cookie size can vary depending on
the browser.

When this option is disabled, user attribute data is encoded, signed or encrypted (depending on the web session
cookie type), and stored in the browser's cookie store. The information is sent from the browser back to
PingAccess with each request.

Changing this setting may affect existing ongoing sessions, forcing the user to re-authenticate to access protected
resources.

This option is not selected by default.
19. Specify a Consult Server Duration to define the maximum amount of time, in seconds, that a PingAccess Agent

caches policy decisions for the web session before sending a request to the Policy Server. This option only applies
to agents.

Info: The value used for this setting should not be larger than the Idle Timeout value, and ideally, should
be defined to be a value less than half the timeout.

20. Select Request Preservation to specify the type of request data to be preserved if the user is redirected to an
authentication page when submitting information to a protected resource. Available options are None, POST, or
POST and Fragment.

21. Specify the type of Web Storage to be used for request preservation data.
Session Storage is recommended. Use Local Storage if it is common for users to use Internet Explorer with
security zones enabled and PingFederate is in a different zone than PingAccess.

 | PingAccess user interface reference guide | 56

22. Click Save.

Edit a Web Session

This task allows you to edit a web session.

1. Navigate to Settings > Access > Web Sessions.
2. Expand the Web Session you want to edit and click .
3. Edit the Web Session.
4. Click Save.

Delete a Web Session

This task allows you to delete a web session.

Info: If the Web Session is currently associated with an application, you cannot delete it.

1. Navigate to Settings > Access > Web Sessions.
2. Expand the web session you want to delete.
3. Click .
4. When prompted, click Delete to confirm the request.

Unknown Resources

Unknown resources are those for which there is no associated application. These settings define the error responses to
be generated for requests that don't match the virtual host and context root of an application. Additionally, agents may
be configured to allow unprotected access instead of returning an error response.

Configure unknown resource management

These steps allow you to define the default action to take when unknown resources are requested. Unknown resources
are those for which there is no matching Application.

1. Navigate to Settings > Access > Unknown Resources.
2. Specify the Error Status Code for the HTTP response. This must be a client/server error code in the range 400 -

599.
3. Specify the name of the velocity Error Template File to use for generating the response body. This template file

is located in the PA_HOME/conf/template/ directory.
4. Specify the Error Content Type of the response; HTML, JSON, TEXT, or XML.
5. Specify the Agent Default Mode that determines whether an agent should Deny requests for unknown resources

and generate an error response or allow requests to Pass-Through unfiltered. This default setting may be
overridden by individual agents.

6. Specify the default agent resource Cache TTL (in seconds) to be used for unknown resources if Pass-Through
mode is enabled.

7. Click Save.

Networking

Choose from one of the following sections:

• Availability Profiles on page 57
• HTTP Requests on page 57
• Listeners on page 58
• Load Balancing Strategies on page 59
• Proxies on page 60

 | PingAccess user interface reference guide | 57

Availability Profiles

Availability Profiles are used in a Site configuration to define how PingAccess classifies a backend target server as
failed. Sites require the selection of an availability profile, even if only one target is provided.

A connection failure can be determined based on whether a backend target is not responding, or based on specified
HTTP status codes that should be treated as failures of a specific backend target. For example, if a backend target is
responding to requests with a "500 Server Error" status, it may be desirable to consider that server down even though
the web service is responsive.

If multiple targets are specified in a site configuration but a load balancing strategy is not applied, the Availability
Profile will cause the first listed target in the site configuration to be used unless it fails. Secondary targets will only
be used if the first target is not available.

Currently, the only availability profile type is On-Demand. You may wish to create different profiles for different
sites based on differing site needs for retry counts, retry delays, timeouts, or HTTP status codes.

Create an availability profile

1. Go to Settings > Networking > Availability Profiles, then click Add Availability Profile.
2. Enter a unique descriptive name for the profile.
3. Select the On-Demand Type.
4. Enter the number of milliseconds to wait for a connection to be established to a backend target in the Connect

Timeout (ms) field.
5. Enter the number in milliseconds the amount of time to wait before timing out the request for a pooled connection

to the target site in the Pooled Connection Timeout (ms) field. Enter -1 for no timeout.
6. Enter the number in milliseconds the amount of time to wait before timing out the read of the response from a

target site in the Read Timeout (ms) field. Enter -1 for no timeout.
7. Enter the number of times to retry a connection to a backend target before considering the target failed in the Max

Retries field.
8. Enter the number of milliseconds to wait between retries in the Retry Delay (ms) field.
9. Enter the number of seconds to wait before trying a failed target again in the Failed Retry Timeout (s) field.
10. Optionally enter a list of HTTP status codes that should be considered as a failure in the Failure HTTP Status

Codes field. The sequence for this list is not important.
11. Click Save.

Edit an availability profile

1. Navigate to Settings > Networking > Availability Profiles, expand the desired profile, then click .
2. Make the required changes to the profile.
3. Click Save.

Delete an availability profile

1. Navigate to Settings > Networking > Availability Profiles.
2. Expand the desired profile, then click .
3. Click Delete to confirm.

HTTP Requests

The settings for HTTP Requests are used to match a served resource with the originating client when one or more
reverse proxies are between the client and the served resource. For example, when a reverse proxy sits between the
client and the PingAccess server or a PingAccess agent, the additional proxy might be identified as the client. Such
proxies can be configured to inject additional headers to relay the originating client address. The settings on this page
allow PingAccess to be configured to identify the originating client's address using a list of alternative headers. These

 | PingAccess user interface reference guide | 58

settings are used by the PingAccess Policy Server when evaluating network range rules, as well as the inIpRange()
Groovy script matcher.

The list of header names for the IP Source and Host Source sections is an ordered list, with the first header match
being used. By default, X-Forwarded-For is configured for IP Source requests, and both X-Forwarded-Host
and Host are configured for Host Source requests.

Info: The IP Source address settings only affect PingAccess as a Gateway; Agents will use the address for
the first or last hop, as configured.

In addition, the Protocol Source section can be used to define the header that identifies the protocol used for the
original request. The default value is X-Forwarded-Proto.

When the PingAccess Agent is behind a load balancer that is performing HTTPS offload, the load balancer must
inject X-Forwarded-Proto for the redirect_uri to be properly set.

Configure an alternative IP Source header

1. Navigate to Settings > Networking > HTTP Requests
2. In the IP Source section of the page, enter a header name to search for in the Header Names list.
3. Select either First or Last for the List Value Location to determine whether, when a list of values is in the

header, the first value or the last value in the list should be used as the IP Source value. The default value is Last.
4. Enable or Disable the Fallback to Last Hop IP checkbox to determine, if none of the listed headers is present in

the request, whether the upstream IP address should be used for rule evaluation. If this value is disabled and no
headers match, the network range rule will return a Forbidden status.

5. Click Save.

Configure an alternative Host Source header

1. Navigate to Settings > Networking > HTTP Requests
2. In the Host Source section of the page, click Header Names to enter a header name to search for in the Header

Names list.
3. If desired, click to the right of an existing header to delete it from the list.
4. Select either First or Last for the List Value Location to determine, when a list of values is in the header, if

the first value or the last value in the list should be used as the Host Source value. The default value is Last.
5. Click Save.

Configure an alternative Protocol Source header

1. Navigate to Settings > Networking > HTTP Requests.
2. In the Protocol Source section of the page, enter a header name in the Header Name field.
3. Click Save.

Listeners

The Listeners configuration page is used to assign key pairs to the administrative, agent, and engine listeners, as well
as to define additional listener ports for the PingAccess engine.

Cipher Suite ordering for HTTPS Listeners

PingAccess supports the use of a defined order for cipher suite usage to help ensure the most secure cipher
suites are used first, regardless of the client request. The cipher suite order is defined in <PA_HOME>/conf/
run.properties using the tls.default.cipherSuites property.

On new installs, or in the case of an upgrade to release 5.1, this behavior is the default. You can disable this behavior
and specify PingAccess to use the order provided by the client by setting useServerCipherSuiteOrder to
false via the PingAccess API /httpsListeners endpoint.

 | PingAccess user interface reference guide | 59

HTTPS listeners
Assign a Key Pair to a Listener

1. Navigate to Settings > Networking > Listeners
2. In the HTTPS Listeners section of the page, click the drop-down menu to the right of the listener and select a key

pair.
3. Click Save.

Engine key pairs
Assign a Key Pair to a Virtual Host

1. Navigate to Settings > Networking > Listeners
2. In the Engine Key Pairs section of the page, click Edit in the row the desired key pair appears in
3. Use the drop-down list to select select the virtual hosts the key pair should be used for
4. Click Save

Engine listeners
Define an engine listener

1. Navigate to Settings > Networking > Listeners
2. Click Add Engine Listener.
3. Enter a descriptive name for the listener.
4. Enter the port the listener will open.

Info: Remember to open the port in the system firewall, or the listener will not be able to process any
incoming requests.

5. If the port should listen for HTTP connections, clear the Secure option.

Note: By default, engine listeners listen for HTTPS connections to protect sensitive data.

6. Click Save.

Edit an engine listener

Use this task to modify an existing engine listener.

1. Navigate to Settings > Networking > Listeners
2. In the Engine Listeners section, expand an existing engine listener.
3. Click .
4. Make the required changes.
5. Click Save.

Delete an engine listener

Use this task to delete an existing engine listener.

1. Navigate to Settings > Networking > Listeners
2. In the Engine Listeners section, expand an existing engine listener.
3. Click .
4. Click Delete to confirm.

Load Balancing Strategies

Load Balancing Strategies are used in a Site configuration to distribute the load between multiple backend target
servers. Load balancing settings are optional and only available if more than one target is listed for a site. This
functionality can replace a load balancer appliance between the PingAccess engine nodes and the target servers,
allowing for a simpler network architecture.

 | PingAccess user interface reference guide | 60

The load balancing strategies currently available are Header-Based and Round Robin.

The Header-Based strategy requires a header be included in the request that defines the target to select from the
Site configuration. This strategy has an option to fall back if the requested target is unavailable, or if the header is
missing from the request.

The Round Robin strategy has a sticky session option that permits a browser session to be pinned to a persistent
backend target. This strategy works in conjunction with the availability profile to select a target based on its
availability, and the load balancer will not select a target that is in a failed state.

Configure a Load Balancing Strategy

1. Go to Settings > Networking > Load Balancing Strategies
2. Click Add Load Balancing Strategy.
3. Enter a unique descriptive name for the strategy.
4. Select the Type, either Header-Based or Round Robin.
5. Configure the options for the selected Load Balancing Strategy type:

• For a Header-Based Load Balancing Strategy:

a. In the Header Name field, enter the name of the header that contains the selected target host.
b. If desired, click Show Advanced and select the Fall Back to First Available Host option to tell

PingAccess to use the first available target defined for the site if the target specified in the header is not
available or if the header is not present in the request.

Note: If this option is not enabled and the specified target is not available or the request header is
not present, the client will receive a Service Unavailable response.

• For a Round Robin Load Balancing Strategy:

a. If browser sessions should not be pinned to a persistent backend target, clear the Sticky Session Enabled
option. This option is enabled by default.

b. If the Sticky Session Enabled option is enabled, enter a cookie name to use in the Cookie Name field.
This cookie is used by the PingAccess engine to track the persistent backend targets for a session.

Note: When a web session is defined, the Cookie Name field defines a cookie prefix to use. The
rest of the cookie name comes from the Audience field in the Web Session.

Edit a Load Balancing Strategy

1. Go to Settings > Networking > Load Balancing Strategies.
2. Expand the load balancing strategy you want to edit, then click .
3. Make any desired changes to the profile.
4. Click Save.

Delete a load balancing strategy

1. Go to Settings > Networking > Load Balancing Strategies.
2. Expand the load balancing strategy you want to edit, then click .
3. Click Delete to confirm.

Proxies

Where applicable, this page contains the forward proxy configuration used when PingAccess makes requests to Sites
or Token Providers.

 | PingAccess user interface reference guide | 61

Add a proxy

This task allows you to add a forward proxy configuration to be used when PingAccess makes requests to sites or
token providers.

1. Navigate to Settings > Networking > Proxies.
2. Click Add Proxy.
3. Specify a Name for the proxy configuration.
4. Enter an optional Description.
5. Enter the Host name for the forward proxy.
6. Enter the Port number for the forward proxy.
7. If the forward proxy requires authentication, select the Requires Authentication checkbox.
8. If required, enter the Username for the forward proxy.
9. If required, enter the Password for the forward proxy.
10. Click Save.

Edit a proxy

This task allows you to edit a proxy configuration.

Note: If you edit a proxy configuration that is associated with an engine or replica administrative node, you
must download and install a new configuration on those nodes.

1. Navigate to Settings > Networking > Proxies.
2. Expand an existing proxy configuration.
3. Click .
4. Make the required changes.
5. Click Save.

Delete a proxy

1. Navigate to Settings > Networking > Proxies.
2. Expand an existing proxy configuration.
3. Click .
4. Click Delete to confirm.

Security

Choose from one of the following sections:

• Certificates on page 61
• Key Pairs on page 63

Certificates

Administrators import certificates into PingAccess to establish anchors used to define trust to certificates presented
during secure HTTPS connections. Outbound secure HTTPS connections such as communication with PingFederate
for OAuth access token validation, identity mediation, and communication with a target Site require a certificate
trusted by PingAccess. If one does not exist, communication is not allowed.

Certificates used by PingAccess may be issued by a CA or self-signed. CA-issued certificates are recommended to
simplify trust establishment and minimize routine certificate management operations. Implementations of an X.509-
based PKI (PKIX) typically have a set of root CAs that are trusted, and the root certificates are used to establish
chains of trust to certificates presented by a client or a server during communication.

 | PingAccess user interface reference guide | 62

The following formats for X.509 certificates are supported:

• Base64 encoded DER (PEM)
• Binary encoded DER

A Certificate Group is a trusted set of anchor certificates used when authenticating outbound secure HTTPS
connections. The Java Trust Store group contains all the certificates included in the keystore located in the Java
installation at $JAVA_HOME/lib/security/cacerts. This group of certificates contains well-known, trusted
CAs. If you are connecting to Sites that make use of certificates signed by a CA in the Java Trust Store, you do not
need to create an additional Trusted Certificate Group for that CA. You cannot manage the Java Trust Store group
from the PingAccess administrative console. Expand a section for steps to import and manage certificates and create
and manage trusted certificate groups.

Import a certificate

1. Navigate to Settings > Security > Certificates.
2. Click + to the right of the Certificates subheading.
3. Enter an Alias for the certificate.
4. Click Choose File to select the certificate.
5. Click Add to import the certificate. A new certificate row appears on the Certificates page.

Note: If the Certificate is either expired or not yet valid, PingAccess displays a warning, but the import
will proceed.

Delete a certificate

1. Navigate to Settings > Security > Certificates.
2. Expand the certificate you want to delete.
3. Click .
4. When prompted, click Delete to confirm the deletion request.

Info: If the certificate is associated with a trusted certificate group, you cannot delete it.

Create a Trusted Certificate Group

1. Navigate to Settings > Security > Certificates.
2. Click + to the right of the Trusted Certificate Groups heading.
3. Drag a certificate onto the box that appears.
4. Enter a Name for the group in the box that appears.
5. Select the Use Java Trust Store checkbox to set the new group to include the Java Trust Store group. For

example, if you create your own intermediate CA certificate that is signed by a well-known CA in the Java Trust
Store.

6. Select the Skip certificate date checks checkbox to allow PingAccess to ignore date-related errors for certificates
that are not yet valid or have expired.

7. Click Add.
8. Additional certificates can be added to the new trusted certificate group by dragging them into the group.

Add a certificate to a Trusted Certificate Group

1. Navigate to Settings > Security > Certificates.
2. Drag a certificate into an existing trusted certificate group.

Edit a Trusted Certificate Group

1. Navigate to Settings > Security > Key Pairs.

 | PingAccess user interface reference guide | 63

2. Expand the trusted certificate group you want to edit.

• Add a certificate to the group by dragging it into the group from the certificate list.
• Delete a certificate from the group by clicking - to the right of the certificate.
• Edit the trusted certificate group parameters by clicking and then making your changes. If you edit these

options, click Save to save them.

Remove a Certificate from a Trusted Certificate Group

1. Expand the Trusted Certificate Group containing the certificate you want to remove.
2. Click on the certificate you want to remove.

Delete a Trusted Certificate Group

1. Navigate to Settings > Security > Certificates.
2. Expand the trusted certificate group you want to delete.
3. Click .
4. When prompted, click Delete to confirm the deletion request.

Key Pairs

PingAccess provides built-in Key Pairs, which are required for secure HTTPS communication. A Key Pair includes
a private key and an X.509 certificate. The certificate includes a public key and the metadata about the owner of the
private key.

PingAccess listens for client requests on the administrative console port and on the PingAccess engine port. To enable
these ports for HTTPS, the first time you start up PingAccess, it generates and assigns a Key Pair for each port. These
generated Key Pairs are initially assigned on the HTTPS Listeners page.

Additionally, Key Pairs are used by the Mutual TLS Site Authenticator to authenticate PingAccess to a target Site.
When initiating communication, PingAccess presents the client certificate from a Key Pair to the Site during the
mutual TLS transaction. The Site must be able to trust this certificate in order for authentication to succeed..

Info: Ensure that the administrative console node and engines in a cluster have the same cryptographic
configuration. For example, if you generate an elliptic curve Key Pair on the administrative console and the
engines in the cluster are not configured to support elliptic curve Key Pairs, then the engines are not able to
use that Key Pair for the engine HTTPS Listeners or as the Key Pair in a Mutual TLS Site Authenticator.
Cryptographic configuration differences are often caused by having a Java Cryptographic Extension with
limited strength providers installed (see the Oracle Java documentation for more information).

Import an existing key pair

Use this function to import a key pair from a PKCS#12 file.

1. Navigate to Settings > Security > Key Pairs.
2. Click Import.
3. In the Alias field, enter a name that identifies the key pair. Special characters and spaces are allowed. This name

identifies the key pair when assigning the key pair to various configurations such as HTTPS Listeners.
4. Enter the Password used to protect the PKCS#12 file. PingAccess uses the password to read the file.
5. Click Choose File to locate the PKCS#12 file.
6. Click Save to import the file.

Note: If the key pair is either expired or not yet valid, PingAccess displays a warning, but the import will
proceed.

Generate a new key pair

Use this function to generate a key pair and the self-signed certificate.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits

 | PingAccess user interface reference guide | 64

1. Navigate to Settings > Security > Key Pairs.
2. Click Add Key Pair.
3. Enter the fields required for the new key pair.

If the key pair is going to be used for incoming requests on multiple hosts or multiple IP addresses, enter
additional Subject Alternative Names to meet those requirements.

4. Click Save.

Generate a Certificate Signing Request

Generate a Certificate Signing Request (CSR) to establish more security and trust than using a self-signed certificate.

1. Go to Settings > Security > Key Pairs.
2. Click Generate CSR for the certificate you want to generate a CSR for. PingAccess generates a CSR file and your

browser will download it.
3. Provide this file to a Certificate Authority (CA). The CA signs the file and provides a CSR Response that you

can upload and use to replace the self-signed certificate. If the CA is well known, its certificates are installed by
default in most browsers, and the user is not prompted to trust an unknown certificate.

4. When you receive the CSR response, follow the instructions at Import a Certificate Signing Request Response on
page 64.

Import a Certificate Signing Request Response

Import a CSR Response to replace the self-signed certificate in a key pair. Click CSR Response and fill out the
form.

Note: Before you import the CSR Response, import the signing CA certificate into PingAccess and add it to
a Trusted Certificate Group.

1. Navigate to Settings > Security > Key Pairs.
2. Click CSR Response for the key pair the CSR applies to.
3. Select the Trusted Certificate Group to use for validating that the certificate in the CSR Response is correctly

formed.
4. Choose the CSR Response file.
5. Click Save.

Add a certificate to a key pair

This topic describes the steps required to add a certificate to an existing key pair. You start with a leaf certificate, then
add the intermediate and root certificates as required.

Note: To modify the certificates included in a chain, remove the certificates from the key pair and add them
again or delete the certificate and recreate it by importing a new certificate file and adding certificates to the
key pair.

1. Navigate to Settings > Security > Key Pairs.
2. Expand an existing key pair.
3. At the bottom of the key pair chain certificate list, click Add Certificate.
4. Click Choose File to browse for and select the certificate file.
5. Click Add.

Remove a certificate from a key pair

This topic describes the steps required to remove a certificate from an existing key pair.

Note: This procedure removes the last certificate in the chain. Certificates can only be removed in reverse
order.

1. Navigate to Settings > Security > Key Pairs.

 | PingAccess user interface reference guide | 65

2. Expand an existing key pair.
3. To remove the last certificate in the chain, click .
4. Click Delete to confirm.

Download a Certificate

Download a certificate when you need to configure a peer to trust a certificate used by PingAccess. For example,
download the certificate for the key pair used by a Mutual TLS Site Authenticator and configure the target Site to
trust the certificate.

1. Navigate to Settings > Security > Key Pairs.
2. Click Download Certificate in the row for the certificate you want to download.
3. Your browser will download the certificate and save it in your local filesystem.

Delete a key pair

Info: If a key pair is currently in use, you cannot delete it.

1. Navigate to Settings > Security > Key Pairs.
2. Expand the key pair you want to delete.
3. Click .
4. When prompted, click Delete to confirm the deletion request.

System

Choose from one of the following sections:

• Admin Authentication on page 65
• Configuration Export/Import on page 68
• Clustering on page 69
• License on page 73
• Token Provider on page 73

Admin Authentication

This page controls the PingAccess administrator authentication method. The default PingAccess administrator
authentication method used to protect the administrative console is basic authentication (username and password).

Configure Basic Authentication

The authentication default for the PingAccess administrative console is HTTP Basic Authentication. Basic
Authentication uses the HTTP Authorization header to transmit the username and password credentials. The
PingAccess server response contains a PA_UI cookie, which is a signed JSON Web Token. Subsequent HTTP
requests send this cookie for authentication rather than the less secure HTTP Authorization header. Basic
Authentication supports one user – Administrator.

To change the Administrator password:

1. Navigate to Settings > System > Admin Authentication > Basic Authentication.
2. Enter the current administrator password.
3. Enter and confirm the new password.

Important: The new password must meet the configured password complexity rules defined in
pa.admin.user.password.regex in run.properties.

4. Click Save

 | PingAccess user interface reference guide | 66

Configure Admin UI SSO Authentication

Prerequisites:

There are several configuration steps required within the PingFederate Authorization Server (AS) as well
as PingAccess that you must complete to enable SSO. Expand a section to view those configurations. The
Administrative SSO option can be configured to require a specific authentication mechanism, leveraging the
PingFederate Requested AuthN Context Selector using the PingAccess authentication requirements options.

• The PingFederate Runtime configuration must be completed.
• The PingFederate server certificate must be imported into a trusted certificate group, and that trusted certificate

group must be associated with the PingFederate runtime.
• You must have a profile scope set up in PingFederate that includes the openid, profile, address, email, and phone

scope values (see PingFederate documentation for Configuring a Client).

Use the Single Sign-On (SSO) Authentication page in PingAccess to enter the Client ID for the OAuth Client you
created in the PingFederate Authorization Server.

Info: Be sure to complete the configuration for connecting to the PingFederate OAuth AS on the Configure
PingFederate for PingAccess SSO on page 76 page as well as completing the steps below.

1. Navigate to Settings > System > Admin Authentication > Admin UI.
2. Select the Authentication Method, either Basic Authentication or Single Sign-On.

Note: To select Basic Authentication, it must be enabled on the Basic Authentication tab. To select
Single Sign-On, the token provider must be configured.

Tip: To define a fall back administrator authentication method if PingFederate is unreachable, enable the
admin.auth=native property in run.properties. This overrides any configured administrative
authentication to Basic Authentication.

3. If you selected Basic Authentication, proceed to configuring session properties, else select the OpenID Connect
Login Type, either Code or Post.

4. Enter the Client ID assigned when you created the OAuth client for use with SSO (for more information, see
Configuring a Client in the PingFederate documentation).
When configuring the client in PingFederate, make sure you have the following options selected:

• The Client Authentication must be set to None
• The Allowed Grant Types must be set to Implicit
• The Redirect URIs must include https://<PA_Admin_Host>:<PA_Admin_Port>/*
• If you are not using administrative roles in PingAccess, the OpenID Connect Policy should be set to a policy

that uses issuance criteria to restrict access based on some additional criteria.

Warning: If the selected OpenID Connect Policy does not use issuance criteria to limit which users
can be granted an access token, ALL users in the associated identity store configured in PingFederate
will be able to authenticate to the PingAccess Admin console and make changes. See Identifying
Issuance Criteria for Policy Mapping in the PingFederate Administrator's Manual.

• If you are configuring administrative roles to enable the PingAccess auditor role, the issuance criteria defined
in PingFederate should be defined to allow either an administrator or an auditor to be issued an access token.
The attribute contract defined in the OpenID Connect Policy must include the additional attribute data that will
be used to define the user's role in PingAccess.

5. If you selected the Code login type, enter the Client Secret assigned when you created the OAuth client.
6. Select a defined Authentication Requirements list, if your environment requires it. Click Create to create an

authentication requirements list.
7. If you are enabling Admin SLO and/or using administrator/auditor roles, perform the following steps:

a) Click Show Advanced.
b) Configure the Scopes you want to request from the token provider when requesting the ID token. If you have

a token provider configured, published scopes are available to select from the list based on the selected Client
ID. You can specify unverified scopes by typing the scope and clicking Use unverified scope "[scopename]".

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PolicyManagementTasklet_PolicyIssuanceCriteriaState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PolicyManagementTasklet_PolicyIssuanceCriteriaState

 | PingAccess user interface reference guide | 67

Your token provider must be properly configured to handle all of the requested scopes you specify, including
any custom scope values.

Note: The user can access all attributes by examining browser traces. While they are integrity
protected to prevent changes, any sensitive or confidential attributes can be viewed should the user
decode the ID Token's value.

c) In the Validate Session field, select Yes to validate sessions with the configured PingFederate instance during
request processing.

d) In the Refresh User Attributes field, select Yes to periodically refresh user data from the OpenID Connect
Token Provider.

e) Specify the Refresh User Attributes Interval in seconds.
f) Select the Cache User Attributes checkbox to have PingAccess cache user attribute information for use in

policy decisions. When disabled, this data is encoded and stored in the session cookie.
g) Click to select the Use Single Logout checkbox to enable the use of Single Logout if it is configured for the

OIDC Provider.

Note: To prevent session replay with SLO enabled, Check For Valid Authentication Session must
be enabled in PingFederate Access Token Management configuration.

h) Select Enable Roles to enable roles
i) Click Add Required Attribute to define a new attribute that is required for Administrator access

Note: More than one attribute may be defined here; if more than one is defined, all attribute values
must match in order to grant access for the role.

j) Enter the attribute name returned in the access token and the attribute value that defines the user as an
administrator

Note: The attribute name used here is defined in PingFederate under OAuth Settings > OpenID
Connect Policy Management > Your_Policy > Attribute Contact as an extension to the contract.
The value to use depends on the configuration of the Contract Fulfillment tab for the policy.

The attribute named group in your attribute contract may be mapped to an LDAP server attribute source that
contains a groupMembership attribute. A valid group membership for the administrator might be the group
cn=pingaccess-admins,o=myorg. In this example, you would use group as the Attribute Name and
cn=pingaccess-admins,o=myorg as the Attribute Value.

k) If you want to define criteria for an auditor, select Enable Auditor Role
l) Define criteria for the auditor in the same way you did for the administrator role
m) Click Add Required Attribute to add an additional attribute.

8. Click Save when you finish.
Configure Session Properties
9. Specify the Cookie Type, Encrypted JWT or Signed JWT.
10. Specify the unique Audience name the token is applicable to.
11. Specify an Idle Timeout in minutes. This sets the length of time you want the PA Token to remain active when no

activity is detected. When the idle expiration is reached, the session automatically terminates.
12. Specify a Max Timeout in minutes. This sets the length of time you want the PA Token to remain active. Once the

PA Token expires, an authenticated user must re-authenticate.
13. Specify an Expiration Warning in minutes. This specifies the point at which a user will be warned of upcoming

session expiry.
14. Specify the Session Poll Interval in seconds. This sets the length of time between user info poll requests for the

admin UI.

Configure API Authentication

Info: For more information on the PingAccess Administrative API, see Administrative API Endpoints.
If API authentication is not enabled, access is provided using the built-in Administrator account and the
password defined in the Basic Authentication tab.

 | PingAccess user interface reference guide | 68

1. Naviate to Settings > System > Admin Authentication > Admin API OAuth.
2. Select Enable to enable API OAuth authentication.
3. Enter the Client ID assigned when you created the OAuth client for validating OAuth access tokens (for more

information, see Configuring a Client in the PingFederate documentation).
4. Enter the Client Secret assigned when you created the OAuth client in PingFederate.
5. Select the Scope required to successfully access the API. For more information, see Authorization Server Settings

for defining scopes.
6. Enter the Subject Attribute Name you want to use from the OAuth access token as the subject for auditing

purposes. At runtime, the attribute's value is used as the Subject field in audit log entries for the Admin API.
7. If you are using administrator/auditor roles, perform the following steps:

a) Select Enable Roles to enable role based authentication.
b) Click Add Required Attribute to define a new attribute that is required for Administrator access.

Note: More than one attribute may be defined here; if more than one is defined, all attribute values
must match in order to grant access for the role.

c) Enter the Attribute Name returned in the access token and the Attribute Value that defines the user as an
administrator.

Note: The attribute name used here is defined in PingFederate under OAuth Settings > OpenID
Connect Policy Management > Your_Policy > Attribute Contact as an extension to the contract.
The value to use depends on the configuration of the Contract Fulfillment tab for the policy.

The attribute named group in your attribute contract may be mapped to an LDAP server attribute source that
contains a groupMembership attribute. A valid group membership for the administrator might be the group
cn=pingaccess-admins,o=myorg. In this example, you would use group as the Attribute Name and
cn=pingaccess-admins,o=myorg as the Attribute Value.

d) If you want to define criteria for an auditor, select Enable Auditor Role.
e) Define criteria for the auditor in the same way you did for the administrator role.
f) Click Add Required Attribute to add an additional attribute.

8. Click Save to activate API Authentication.

Configuration Export/Import

The Configuration Export/Import options create and restore a full PingAccess configuration, allowing it to be backed
up and restored into a test environment for testing, or to be used for disaster recovery. The configuration backup is
stored as a json file, and contains the entire PingAccess configuration.

CAUTION: As the exported json file contains your complete PingAccess configuration, ensure the file is
stored somewhere with appropriate security controls in place.

Export PingAccess configuration

To Export the PingAccess Configuration

1. Navigate to Settings > System > Configuration Export/Import.
2. Click the Download button under Export Configuration. The downloaded file name is pa-

data-<timestamp>.json.

Note: The <timestamp> value is formatted MM-DD-YYYY.hh.mm.ss - so a date and time of January
31, 2015 1:35 PM would be encoded as 01-31-2015.13.35.00 in the filename.

Import PingAccess configuration

The Import Configuration option is a version-specific tool used to import a previously exported configuration.
PingAccess checks the exported json file to ensure that the file came from the same version of PingAccess that it is
being imported into.

To import a PingAccess configuration:

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AuthorizationServerSettingsTasklet_OAuthAuthorizationServerSettingsState

 | PingAccess user interface reference guide | 69

1. Navigate to Settings > System > Configuration Export/Import.
2. Under the Import Configuration heading, click Choose File.
3. Select the json export file containing the configuration to import.
4. Click Import to start the import process.
5. When prompted for confirmation, click Confirm.

Important: This operation is destructive, and overwrites your entire PingAccess configuration.
Passwords in the system will revert to what they were when the backup was created. Unless you perform
a backup prior to restoring a different configuration, the configuration prior to clicking OK will not be
recoverable.

6. Conditional: If the Agent or Admin listener key pairs change as a result of the import operation, restart
PingAccess.

7. Conditional: If the environment is clustered, ensure that the engines are using the proper engine keys. If they are
not, re-save the engine to generate a new public key, and reconfigure the engine to use the newly generated key.

Clustering

PingAccess can be configured in a clustered environment to provide higher scalability and availability for critical
services. While it is important to understand that there may be tradeoffs between availability and performance,
PingAccess is designed to operate efficiently in a clustered environment.

PingAccess clusters are made up of three types of nodes:

Administrative Console Provides the administrator with a configuration interface

Replica Administrative Console Provides the administrator with the ability to recover a
failed administrative console using a manual failover
procedure.

Clustered Engine Handles incoming client requests and evaluates policy
decisions based on the configuration replicated from the
administrative console

Any number of clustered engines can be configured in a cluster, but only one administrative console and one replica
administrative console can be configured in a cluster.

Configuration information is replicated to all of the clustered engine nodes and the replica administrative node from
the administrative console. State information replication is not part of a default cluster configuration, but some state
information can be replicated using PingAccess subclusters.

PingAccess Subclusters

Subclusters are a method to provide better scaling of very large PingAccess deployments by allowing multiple engine
nodes in the configuration to share certain information. A load balancer is placed in front of each subcluster in order
to distribute connections to the nodes in the subcluster.

Subclusters serve three purposes:

• Providing fault-tolerance for mediated tokens if a cluster node is taken offline.
• Reducing the number of STS transactions with PingFederate when the front-end load balancer does not provide a

sticky session.
• Ensure rate limits are enforced properly if the front-end load balancer does not provide a sticky session.

If token mediation and rate limiting are not used in your environment, subclustering is not necessary.

Info: This cache can be tuned using the EHCache Configuration Properties listed in the Configuration
Properties documentation.

 | PingAccess user interface reference guide | 70

PingAccess provides clustering features that allow a group of PingAccess servers to appear as a single system. When
deployed appropriately, server clustering can facilitate high availability of critical services. Clustering can also
increase performance and overall system throughput. It is important to understand, however, that availability and
performance are often at opposite ends of the deployment spectrum. Thus, you may need to make some configuration
tradeoffs that balance availability with performance to accommodate specific deployment goals.

In a cluster, you can configure each PingAccess engine, or node, as an administrative console, a replica administrative
console, or a runtime engine in the run.properties file. Runtime engines service client requests, while the
console server administers policy and configuration for the entire cluster (via the administrative console). The replica
administrative console provides a backup copy of the information on the administrative node in the event of a non-
recoverable failure of the administrative console node. A cluster may contain one or more runtime nodes, but only
one console node and only one replica console node. Server-specific configuration data is stored in the PingAccess
administrative console server in the run.properties file. Information needed to bootstrap an engine is stored in the
bootstrap.properties file on each engine.

At startup, a PingAccess engine node in a cluster checks its local configuration and then makes a call to the
administrative console to check for changes. How often each engine in a cluster checks the console for changes is
configurable in the engine run.properties file.

Configuration information is replicated to all engine nodes. By default, engines do not share runtime state. For
increased performance, you can configure engines to share runtime state by configuring cluster interprocess
communication using the run.properties file.

Info: Runtime state clustering consists solely of a shared cache of security tokens acquired from the
PingFederate STS for Token Mediation use cases using the Token Mediator Site Authenticator.

Engine nodes include a status indicator that indicates the health of the node and a Last Updated field that indicates
the date and time of the last update. The status indicator can be green (good status), yellow (degraded status), or red
(failed status).

The status is determined by using the value for admin.polling.delay as an interval to measure health:

Green (good status): The replica administrative node contacted the primary
administrative node on the last pull request.

Yellow (degraded status): The replica administrative node contacted the primary
administrative node between 2 and 10 intervals.

 | PingAccess user interface reference guide | 71

Red (failed status): The replica administrative node has either never
contacted the primary administrative node, or it has been
more than 10 intervals since the nodes communicated.

Engines
Configure an engine

For each engine:

1. Click Settings > System > Clustering
2. Click Add Engine to configure a new engine.
3. Enter a Name for the engine. Special characters and spaces are allowed.
4. Enter a Description of the engine.
5. If applicable, specify an HTTP Proxy for the engine. Click Create to create an HTTP proxy.
6. If applicable, specify an HTTPS Proxy for the engine. Click Create to create an HTTPS proxy.
7. Specify the Engine Trusted Certificate to use for cases where a TLS-terminating network appliance, such as a

load balancer, is placed between the engines and the admin node.
8. Click Save & Download to generate and download a public and private key pair into the

<enginename>_data.zip file for the engine. This file is prepended with the name you give the engine.
Depending on your browser configuration, you may be prompted to save the file.

9. Copy the zip file to the PA_HOME directory of the corresponding engine in the cluster and unzip it. The engine
uses these files to authenticate and communicate with the administrative console.

Info: Generate a new key for an engine at any time by clicking Save & Download and unzipping the
<enginename>_data.zip archive on the engine to replace the files with a new set of configuration
files. When that engine starts up and begins using the new files, PingAccess deletes the old key.

10. Conditional: On Linux systems running the PingAccess engine, change the permissions on the extracted pa.jwk
to mode 400 by executing the command chmod 400 conf/pa.jwk after extracting the zip file.

11. Start each engine.

Info: For information on configuring engine to share information with each other in a cluster, see
Configure a PingAccess Cluster.

Edit an engine

1. Navigate to Settings > System > Clustering.
2. Expand the engine you want to edit, then click .
3. Edit the engine Name or Description, as appropriate.
4. If a new public key is needed, click Save & Download
5. If a new public key is not needed, click Save.

Remove an engine

1. Navigate to Settings > System > Clustering.
2. Expand the engine you want to delete and click to permanently remove all references to the engine from the

cluster.
3. Click Delete in the confirmation window.

Administrative nodes
Configure the primary administrative node

Define the PingAccess server you want to use as the administrative node.

Warning: If you are promoting a replica admin node to primary, remove the bootstrap properties file from
the replica admin node.

https://docs.pingidentity.com/bundle/pa_m_ClusteringReferenceGuide_pa51/page/pa_t_Configuring_PingAccess_Clustering.html

 | PingAccess user interface reference guide | 72

Note: This procedure allows you to specify an HTTP or HTTPS proxy. If proxy configuration is defined in a
properties file (bootstrap.properties or run.properties), it will take precedence over UI or API
configuration.

Note: If a proxy is configured on an replica administrative node, when failing over and before removing the
bootstrap.properties file, the administrative node should have the same proxy configuration.

1. Enter the host and port for the administrative console. The default is localhost:9000.
2. If applicable, specify an HTTP Proxy for the engine. Click Create to create an HTTP proxy.
3. If applicable, specify an HTTPS Proxy for the engine. Click Create to create an HTTPS proxy.
4. Click Save.

Configure the Replica Administrative Node

When using a replica administrative node, it is necessary to define a key pair to use for the CONFIG QUERY listener
that includes both the primary administrative node and the replica administrative node. This can be accomplished
either by using a wildcard certificate or by defining subject alternative names in the key pair that include the replica
administrative node's DNS name. If a replica administrative node is used in your configuration, configure the replica
administrative node before defining the engine nodes, or the bootstrap.properties files generated for the
engine nodes will not include information about the replica administrative node.

In addition to the configuration below, the Replica Administrative node includes a status indicator that indicates the
health of the node and a read-only Last Updated field that indicates the date and time of the last update. The status
indicator can be green (good status), yellow (degraded status), or red (failed status).

The status is determined by using the value for admin.polling.delay as an interval to measure health:

Green (good status): The replica administrative node contacted the primary
administrative node on the last pull request.

Yellow (degraded status): The replica administrative node contacted the primary
administrative node between 2 and 10 intervals.

Red (failed status): The replica administrative node has either never
contacted the primary administrative node, or it has been
more than 10 intervals since the nodes communicated.

Note: If a Replica Administrative Node is being configured in the environment, that must be done prior to
configuring the engines.

1. Go to Settings > System > Clustering > Administrative Nodes.
2. Configure the Host value. This name and port pair must match either a subject alternative name in the key pair or

be considered a match for the wildcard specified if the key pair uses a wildcard in the common name.
3. If applicable, specify an HTTP Proxy for the engine. Click Create to create an HTTP proxy.
4. If applicable, specify an HTTPS Proxy for the engine. Click Create to create an HTTPS proxy.
5. Specify the Replica Administrative Node Trusted Certificate to use for cases where a TLS-terminating network

appliance, such as a load balancer, is placed between the engines and the admin node.
6. Click Save & Download to download the <replicaname>_data.zip file for the replica administrative

node. PingAccess automatically generates and downloads a public and private key pair into the
bootstrap.properties file for the node. The Public Key is indicated on this screen.

7. Copy the downloaded file to the replica administrative node's PA_HOME directory and unzip it.
8. Conditional: If the Replica Administrative Node is running on a Linux host, execute the command chmod 400

conf/pa.jwk.
9. Edit PA_HOME/conf/run.properties on the replica administrative node and change the

pa.operational.mode value to CLUSTERED_CONSOLE_REPLICA .
10. Start the replica node.
11. You can verify replication has completed by monitoring the PA_HOME/log/pingaccess.log file and

looking for the message "Configuration successfully synchronized with administrative node".

 | PingAccess user interface reference guide | 73

License

View the details of your PingAccess license or upload a new license.

Upload or view a PingAccess license

The Settings > System > License page displays the current license attribute list. If an admin wants to update an
existing license, it may be done via this page. An admin can preview a new license's attributes here, and compare
them with the current license before installing it. The UI will display a warning ribbon on the page in certain cases.
For example, if the expiration date of the uploaded license is sooner than the current license, the UI will flag that as a
warning. If the new license is acceptable, the admin may commit it, and the new license will replace the old.

1. Navigate to Settings > System > License to view the attributes of the installed license.

Note: If the installation has a running configuration, and the admin shuts down the server, removes the
license file from the filesystem, and restarts the server, the existing runtime configuration will continue to
work. However, the admin will have to install a new license file on the filesystem, or upload one via the
UI, to enable accessing and applying changes via the UI.

2. To upload a license:
a) Scroll down to the Import License section.
b) Click Choose a File to select a license file.

Warning: The UI will display a warning ribbon for the following cases:

• Expiration date: The new license is set to expire on a date earlier
than that of your current license.

• Expired: The new license is already expired.

• License version: The UI will check and alert when the major
version of the license doesn't match the current
version of PingAccess.

• Max Applications: The new license is limited to support fewer
applications than your current license.

c) Click Import to import the selected license.

Note: If you selected the wrong license, you can either click Remove to remove the selected license
from the Import License section of the page, or you can click Choose File to select a different license
file.

d) Click Confirm to install the selected license.

Token Provider

PingAccess can be configured to use PingFederate as the token provider or may be configured to use a common
provider via the OpenID Connect protocol.

Manage Token Provider

This document contains the steps required to configure the token provider. You can choose between PingFederate or
another common provider via the OpenID Connect protocol. The following tasks are available:

PingFederate

• Configure PingFederate runtime on page 74
• Configure PingFederate Administration on page 75
• Configure the OAuth Resource Server on page 75
• Configure PingFederate for PingAccess SSO on page 76

Common Token Provider

• Configure OpenID Connect on page 77

 | PingAccess user interface reference guide | 74

• Configure OAuth Authorization Server on page 78

PingFederate
Configure PingFederate runtime

Before configuring a secure connection to the PingFederate Runtime, it is necessary to export the PingFederate
certificate and import it into a trusted certificate group in PingAccess. Perform the following steps:

1. In PingFederate, export the certificate active for the Runtime Server. See SSL Server Certificates in the
PingFederate Administrator's Manual for more information.

2. Import the Certificate into PingAccess.
3. (Optional) Create a Trusted Certificate Group if one does not already exist.
4. Add the Certificate to a Trusted Certificate Group.

Info: For information on setting PingFederate up as an OAuth Authorization Server, see Enabling the OAuth
AS and Authorization Server Settings in the PingFederate documentation.

Once the PingFederate Runtime connection is saved, PingAccess will test the connection to PingFederate. If
the connection cannot be made, a warning will be displayed in the admin interface.

Configure the connection to the PingFederate Runtime
1. Navigate to Settings > System > Token Provider
2. Select the PingFederate radio option.
3. Select the Runtime tab.
4. Enter the Host name or IP address for the PingFederate Runtime.
5. Enter the Port number for PingFederate Runtime.
6. Enter the Base Path, if needed, for PingFederate Runtime. This field is optional. It must start with a slash - for

example: /federation.
7. Select Audit Level to log information about the transaction to the audit store. PingAccess audit logs record

a selected subset of transaction log information at runtime and are located in the /logs directory of your
PingAccess installation.

8. Select Secure if PingFederate is expecting HTTPS connections.
9. From the Trusted Certificate Group list, select the certificate group the PingFederate certificate is in. This field

is available only if you select Secure.
10. To configure advanced settings, click Show Advanced.
11. Click Add Back Channel Server.
12. Enter one or more hostname:port pairs in the Back Channel Servers list.
13. Conditional: If the back channel uses HTTPS, enable the Back Channel Secure option. This option becomes

available when at least one Back Channel Server is defined.
14. Conditional: If the back channel uses an alternate base path, enter the path in the Back Chanel Base Path field.
15. Conditional: If hostname verification for secure connections is not required for either the Runtime or the Back

Channel Servers, enable the Skip Hostname Verification option.
16. Conditional: If hostname verification is required, enter the hostname PingAccess should expect in the Expected

Hostname field.
17. To use a configured proxy for back channel requests, select the Use Proxy checkbox.

Note: If the node is not configured with a proxy, requests are made directly to PingFederate.

18. Select Use Single-Logout to enable single logout. To use this feature, SLO must be configured on the OIDC
provider.

19. Click Save.

Info: Once you save this configuration and Configure the OAuth Resource Server on page 75, a
PingFederate Access Validator is available for selection when you define OAuth-type rules in Policy
Manager.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_CertManagementTasklet_SslServerCerts_CertManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_enablingTheOauthAs
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_enablingTheOauthAs
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AuthorizationServerSettingsTasklet_OAuthAuthorizationServerSettingsState

 | PingAccess user interface reference guide | 75

Configure PingFederate Administration

For information on the PingFederate Administration API see PingFederate Administrative API in the PingFederate
documentation.

Once the PingFederate Administration configuration is saved, PingAccess will test the connection to PingFederate.
If the connection cannot be made, an error will be displayed in the admin interface, and the configuration will not be
saved.

1. Navigate to Settings > System > Token Provider > Administration.
2. Enter the Host name or IP address for access to the PingFederate Administrative API.
3. Enter the Port number for access to the PingFederate Administrative API.
4. Optional: Optional: Enter the Base Path for the PingFederate Administrative API.

The Base Path must start with a slash (/).

For example: /path
5. Enter the Admin Username.

This username only requires Auditor (read only) permissions in PingFederate.
6. Enter the Admin Password.
7. Select Audit Level to log information about the transaction to the audit store. PingAccess audit logs record

a selected subset of transaction log information at runtime and are located in the /logs directory of your
PingAccess installation.

8. Enable Secure if PingFederate is expecting HTTPS connections.
9. From the Trusted Certificate Group list, select the group of certificates to use when authenticating to

PingFederate. PingAccess requires that the certificate in use by PingFederate anchor to a certificate in the
associated Trusted Certificate Group. This field is available only if you enable Secure.

10. To configure advanced settings, click Show Advanced.
11. To use a configured proxy for API requests, select the Use Proxy checkbox.

Note: If the node is not configured with a proxy, requests are made directly to PingFederate.

12. Click Save to save your changes.

Configure the OAuth Resource Server

Prior to configuring this option, PingFederate Administration Configuration must be completed.

When receiving OAuth-protected API calls, PingAccess acts as an OAuth Resource Server, checking with the
PingFederate OAuth Authorization Server on the validity of the bearer access token it receives from a client. In order
to validate the token, a valid OAuth client must exist within the PingFederate OAuth Authorization Server.

Note: This configuration is optional and needed only if you plan to validate PingFederate OAuth access
tokens.

1. Navigate to Settings > System > Token Provider > OAuth Resource Server
2. Enter the OAuth Client ID you defined when creating the PingAccess OAuth client in PingFederate.

Info: When you configure an OAuth client in PingFederate, be sure to select Access Token Validation
as the allowed grant type. For more information, see Configuring a Client in the PingFederate
Administrator's Manual.

3. Enter the Client Secret you defined when creating the PingAccess OAuth client within PingFederate.
4. Select Cache Tokens to retain token details for subsequent requests. This option reduces the communication

between PingAccess and PingFederate.
5. If Cache Tokens is enabled, specify the Token Time To Live by entering the number of seconds to cache the

access token. The default value of -1 means no limit. This value can be -1 or above and must be less than the
PingFederate Token Lifetime.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_pingFederateAdministrativeApi
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientManagementTasklet_OAuthClientManagementState

 | PingAccess user interface reference guide | 76

6. In the Subject Attribute Name field, enter the attribute you want to use from the OAuth access token as the
subject for auditing purposes. For example, username. At runtime, the attribute’s value is used as the Subject
field in audit log entries for API Resources with policies that validate access tokens. The attribute must align with
an attribute in the OAuth access token attribute contract defined within PingFederate.

7. If multiple Access Token Managers are configured in PingFederate, select the Send Audience option to send the
URI the user requested as the aud OAuth parameter to select an Access Token Manager.

Note: Use of this option requires that the Access Token Management instances be configured with
appropriate Resource URIs. Matching of the Resource URI is performed on a most-specific match basis.

8. To enable the use of OAuth 2.0 token introspection select the Use Token Introspection Endpoint option.

Note: This option is only supported with PingFederate 8.2 or later.

9. Click Save to save your changes.

Configure PingFederate for PingAccess SSO

To enable administrator SSO to PingAccess, configure the following settings within the PingFederate AS. Click the

icon () next to each section heading to access additional configuration information. For example, click next
to Roles and Protocols to open a new window and view the Choosing Roles and Protocols page of the PingFederate
documentation.

Note: The information below is an example configuration and does not cover all required steps for each
PingFederate OAuth Settings page discussed, only fields necessary for successful SSO to the PingAccess
administrative console. Fields not mentioned are not necessary for this configuration (see Using OAuth Menu
Selections for configuration details of the PingFederate OAuth Settings pages).

Note: You must complete the configuration for connecting to the PingFederate OAuth AS instance you plan
to use (see Configure PingFederate Administration on page 75).

Roles and Protocols

• Enable the OAuth 2.0 AS role and the OpenID Connect protocol.
• Enable the IdP Provider role and a protocol.

Password Credential Validator (PCV)

• Create a PCV for authenticating administrative users.

Adapters

• Create an HTML Form IdP Adapter and specify the PCV you configured.

Authorization Server Settings

• Select Implicit in the Reuse Existing Persistent Access Grants for Grant Types section.

Access Token Management

• Select Internally Managed Reference Tokens as the Access Token Management Type.
• Extend the contract by adding the Username attribute on the Access Token Attribute Contract page.

OpenID Connect Policy Management

Info: We recommend creating an OpenID Connect Policy to use specifically for PingAccess administrative
console authentication.

• Delete all of the attributes that appear in the Extend the Contract section of the Attribute Contract page. The only
required attribute is sub.

• Select Access Token as the Source and Username as the Value on the Contract Fulfillment page.

Client Management

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_BearerAccessTokenMgmtPluginTasklet_CreateAdapterContractState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_usingOauthMenuSelections
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_usingOauthMenuSelections
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_LocalSettingsTasklet_RolesAndProtocolsState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PasswordCredentialValidatorTasklet_PasswordCredentialValidatorMgmtState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_htmlFormAdapterConfiguration
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AuthorizationServerSettingsTasklet_OAuthAuthorizationServerSettingsState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_accessTokenManagement
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthClientsManagementTasklet_OAuthClientsManagementState

 | PingAccess user interface reference guide | 77

Info: We recommend creating a Client to use specifically for PingAccess administrative console
authentication.

• Select None for Client Authentication.
• Add the location of the PingAccess host as a Redirect URI. For example: https://localhost:9000/*
• Select Implicit as an Allowed Grant Type.
• Select one of the elliptic curve (ECDSA) algorithms as the OpenID Connect ID Token Signing Algorithm and

select the OpenID Connect Policy to use for PingAccess administrative console authentication.

IdP Adapter Mapping

• Map the HTML Form IdP Adapter Username value to the USER_KEY and the USER_NAME contract attributes
for the persistent grant and the user's display name on the authorization page, respectively.

Access Token Mapping

• Map values into the token attribute contract by selecting Persistent Grant as the Source and USER_KEY as the
value for the Username attribute. These are the attributes included or referenced in the access token.

PingOne
Configure PingOne

Use the steps in this procedure to configure PingOne as the token provider.

1. Navigate to Settings > System > Token Provider
2. Select the PingOne radio option.
3. Enter the PingOne Issuer ID. This information is available in the PingOne console.
4. Optionally, enter a description for the connection.
5. Select a Trusted Certificate Group that PingAccess will use when authenticating to PingOne.
6. To configure the connection to use a configured proxy, click Show Advanced and select the option to Use Proxy.

Common
Configure OpenID Connect

The following steps allow you to configure OpenID Connect token provider settings.

1. Navigate to Settings > System > Token Provider.
2. Click Change Token Provider Type.
3. When prompted to confirm the change, click Confirm.
4. Select OpenID Connect.
5. In the Issuer field, enter the OpenID Connect provider’s issuer identifier.
6. In the Description field, enter a description for the token provider.
7. Select the Audit Level checkbox to record requests to OpenID Connect provider to the audit store.
8. In the Trusted Certificate Group list, select the group of certificates to use when authenticating to OpenID Connect

provider. PingAccess requires that the certificate in use by OpenID Connect provider anchor to a certificate in the
associated Trusted Certificate Group.

9. If required, click Add Query Parameter and enter custom query parameter name and value pairs used by the
OpenID Connect provider in the Query Parameters section.

10. To configure advanced settings, click Show Advanced.
11. To use a configured proxy, select the Use Proxy checkbox.

Note: If the node is not configured with a proxy, requests are made directly to the token provider.

12. Select Use Single-Logout to enable single logout. To use this feature, SLO must be configured on the OIDC
provider.

13. Optionally, configure token provider specific options.
14. Click Save.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_OAuthSource2TargetMappingTasklet_OAuthIdpAdapter2TargetMappingsState
http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_AccessTokenMappingTasklet_OAuthUserKey2AccessTokenMappingState

 | PingAccess user interface reference guide | 78

Configure token provider specific options

Token provider specific options are plugins that perform particular functions for the selected token provider type. In
the case of the PingAccess for Azure AD solution, the plugin addresses the following problems:

• Transform data - The format of data returned from the OIDC UserInfo endpoint results in some unexpected
JSON formatting. This data is transformed into a format that PingAccess can easily digest.

• Use the Azure AD Graph API - If the groups attribute contains more than 200 groups, the id_token contains a
level of indirection that points to a URL in the Azure AD Graph API. Through the creation of a simple purpose-
driven application, you can communicate with the Azure ID Graph API to retrieve the complete list of groups.

• Retrieve group display names - The groups attribute is a list of GUIDs. The groups for a user are only provided
as GUIDs since User-friendly names for AAD groups are not globally unique. Configure the Graph API call to
include the group names along with the GUID for creation of more robust policies.

1. First, Create the Azure AD Graph API application
2. Next, Configure token provider specific options

Prerequisite: Create the Azure AD Graph API application

To use the Azure AD Graph API, an application must exist whose purpose is to provide an Application ID and Key
that PingAccess will use as the Client ID and Client Secret for communication with the Graph API. Create the
application in Azure AD via the App Registrations blade using the following criteria:

• Name - Enter a unique name for the application, for example: Graph API app
• Application Type - Web app / API
• Sign-on URL - This field is not relevant for this particular use case, but is required by Azure AD. Enter the

PingAccess host.

1. When the application has been created, navigate to the application in the list.
2. Select Required permissions and click Add.
3. Choose the Windows Azure Active Directory API, select the following permission, and click Save.

• Application Permissions - Read directory data
4. Copy the Application ID.
5. Generate and copy a Key.

Configure token provider specific options

1. Navigate to Settings > System > Token Provider. Scroll to the Token Provider Specific Options section.
2. From the Type list, select Azure Active Directory.
3. Select the Use Azure AD Graph API checkbox.
4. In the Client ID field, enter the Application ID you copied from the Azure AD API application you created.
5. In the Client Secret field, paste the Key you copied.
6. Select Retrieve Group Display Names.

Important: To retrieve groups data for a particular application in the token, the manifest for that
application must be modified to include a Group Membership Claim. In the App Registrations blade,
select the application and click the Manifest button. Locate the "groupMembershipClaims" entry
and specify a group type, for example "SecurityGroup".

7. Click Save.

Configure OAuth Authorization Server

The following steps allow you to configure the OAuth Authorization Server.

1. Navigate to Settings > System > Token Provider.
2. Select OAuth Authorization Server.
3. In the Description field, enter a description for the authorization server.

 | PingAccess user interface reference guide | 79

4. In the Targets field, enter one or more hostname:port pairs for the OAuth Authorization Server. Click Add
Target to add additional targets.

5. In the Introspection Endpoints field, specify the OAuth endpoint through which the token introspection
operation is accomplished.

6. Optional: Select the Audit Level checkbox to record requests to OAuth Authorization server to the audit store.
7. Select the Secure checkbox if OAuth Authorization server is expecting HTTPS connections. When selected,

use the Trusted Certificate Group list to select the group of certificates to use when authenticating to OAuth
Authorization Server. PingAccess requires that the certificate in use by OAuth Authorization Server anchor to a
certificate in the associated Trusted Certificate Group.

8. In the Client ID field, enter the unique identifier assigned when you created the PingAccess OAuth client within
your OAuth Authorization Server.

9. In the Client Secret field, enter the Client Secret associated with the Client ID.
10. Optional: Select the Cache Tokens to retain token details for subsequent requests. This option reduces the

communication between PingAccess and OAuth Authorization Server. When selected, use the Token Time To
Live checkbox to enter the number of seconds to cache the access token. A value of -1 means there is no limit.
This value should be less than the OAuth Authorization Server Token Lifetime.

11. In the Subject Attribute Name field, enter the attribute you want to use from the OAuth access token as the
subject for auditing purposes. At runtime, the attribute's value is used as the Subject field in audit log entries for
API Resources with policies that validate access tokens.

12. Select the Send Audience checkbox to send the URI the user requested as the aud OAuth parameter for
PingAccess to the OAuth 2.0 Authorization Server.

13. To configure advanced settings, click Show Advanced.
14. To use a configured proxy, select the Use Proxy checkbox.

Note: If the node is not configured with a proxy, requests are made directly to the token provider.

15. Click Save.

Token Validation

API and Web + API applications can be configured to use Access Token Validators to locally verify signed and/
or encrypted access tokens. This feature works in conjunction with token providers that support JWS and/or JWE
validation.

Tip: When using PingFederate as the token provider for this feature, export the Generated: ENGINE
keypair located at Settings > Security > Key Pairs from PingAccess and import to PingFederate Trusted
CAs.

Manage Access Token Validators

This document contains the steps required to:

• Add an Access Token Validator on page 79
• Edit an Access Token Validator on page 80
• Delete an Access Token Validator on page 80

Add an Access Token Validator

1. Navigate to Settings > System > Token Validation.
2. Click Add Access Token Validator.
3. Specify a Name for the token validator.
4. In the Type list, select the type of key you want to validate. The type of key is specified in token provider

configuration.

Note: For information related to PingFederate configuration, see Configure JSON token management for
information about the configuration of PingFederate.

https://documentation.pingidentity.com/pingfederate/pf91/index.shtml#concept_configuringJsonTokenManagement.html

 | Install PingAccess | 80

5. Enter a Description for the token validator.
6. In the Path field, specify the endpoint path used to verify the signature. This entry must start with a slash (/), and

must not end with a slash (/). Host and port are derived from PingFederate token provider configuration. A query
string is permitted in the path.

7. In the Subject Attribute Name field, enter the attribute expected as the subject. If the specified SAN is not
present in the token, validation will fail. This is a required field.

8. In the Issuer field, enter the expected value of the issuer that is to be included in the access token. If configured,
and the value is not present in the token, validation will fail.

9. In the Audience field, specify the audience value that is to be included in the access token. If configured, and the
value is not present in the token, validation will fail.

10. Click either Save.

Edit an Access Token Validator

1. Navigate to Settings > System > Token Validation.
2. Expand the application on the Properties tab and click .
3. Make the required changes.
4. Click Save.

Delete an Access Token Validator

1. Navigate to Settings > System > Token Validation.
2. Expand the Access Token Validator you want to delete and click .
3. Click Delete to confirm.

Configure OAuth Key Management

This document contains the steps required to configure OAuth Key Management.

1. Navigate to Settings > System > Token Validation.
2. Select the Key Roll Enabled checkbox to enable key rolling. Deselect to disable key rolling.
3. Specify the interval at which you want to roll keys by entering a value, in hours, in the Key Roll Enabled field.
4. Click Save.

Install PingAccess

Install PingAccess

This document provides instructions to install PingAccess. PingAccess can be installed on:

• Linux
• Red Hat Enterprise Linux
• Windows

After you install PingAccess, you:

• Start PingAccess on page 86
• Access the admin console for the first time on page 87
• Change configuration database passwords on page 88

You can also:

• Stop PingAccess on page 88
• Run PingAccess as a service on page 88

 | Install PingAccess | 81

• Uninstall PingAccess on page 90

Installation requirements

The following sections detail system, hardware, and port requirements for installing PingAccess:

• System requirements on page 81
• Hardware Requirements on page 82
• Port requirements on page 82

System requirements

PingAccess is certified as compatible for deployment and configuration with the minimum system specifications
defined below.

Software requirements

Ping Identity has qualified the following configurations and certified that they are compatible with the product.
Variations of these platforms (for example, differences in operating system version or service pack) are supported up
until the point at which an issue is suspected as being caused by the platform or other required software.

Note: PingAccess supports IPv4 addressing. There is currently no support for IPv6 addressing.

Operating systems

Note: PingAccess has been tested with default configurations of operating system components. If your
organization has customized implementations or has installed third-party plug-ins, deployment of the
PingAccess server may be affected.

• Microsoft Windows Server 2012 R2 Datacenter
• Microsoft Windows Server 2016
• Red Hat Enterprise Linux ES 6.9
• Red Hat Enterprise Linux ES 7.5
• SUSE Linux Enterprise 11 SP4
• SUSE Linux Enterprise Server 12.3

Docker support

• Version: Docker 18.09.0 CE
• Host operating system: Canonical Ubuntu 16.04 LTS

Virtual systems

Although Ping Identity does not qualify or recommend any specific virtual-machine (VM) products, PingAccess has
been shown to run well on several, including VMWare, Xen, and Windows Hyper-V.

Info: This list of products is provided for example purposes only. We view all products in this category
equally. Ping Identity accepts no responsibility for the performance of any specific virtualization software and
in no way guarantees the performance and/or interoperability of any VM software with its products.

Java runtime environment

• Oracle Java SE Runtime Environment (Server JRE) 8 (64-bit)
• Oracle Java SE Development Kit (JDK) 11 (64-bit)
• OpenJDK 11 (64-bit)

Supported PingFederate

• PingFederate 8.4
• PingFederate 9.2

Supported browsers for end users

• Chrome

 | Install PingAccess | 82

• Firefox
• Safari
• Edge
• Internet Explorer 9 and higher
• Android
• iOS

Supported browsers for admin console

• Chrome
• Firefox
• Internet Explorer 11 and higher

Audit event storage (external database)

• Oracle 11g R2
• Oracle 12c
• MS SQL Server 2012
• MS SQL Server 2016
• PostgresSQL 9.6.1

Hardware Requirements

Info: Although it is possible to run PingAccess on less powerful hardware, the following guidelines
accommodate disk space for default logging and auditing profiles and CPU resources for a moderate level of
concurrent request processing.

Minimum hardware requirements

• 4 CPU/Cores
• 2 GB of RAM
• 2.1 GB of available hard drive space

Minimum hardware recommendations

• Multi-CPU/Cores (8 or more)
• 4 GB of RAM
• 2.1 GB of available hard drive space

Port requirements

The following table summarizes the ports and protocols that PingAccess uses to communicate with external
components. This information provides guidance for firewall administrators to ensure the correct ports are available
across network segments.

Info: Direction refers to the direction of requests relative to PingAccess. Inbound requests are requests
received by PingAccess from external components. Outbound requests are requests sent by PingAccess to
external components.

 | Install PingAccess | 83

Service Port details Source Description

PingAccess Administrative
Console

Protocol: HTTPS

Transport: TCP

Default port: 9000

Destination: PingAccess
Administrative Engine

Direction: Inbound

PingAccess Administrator
browser, PingAccess
administrative API REST
calls, PingAccess Replica
Admin and clustered
Engine nodes

Used for incoming
requests to the PingAccess
administrative console.
Configurable using the
admin.port property in
the run.properties
file. See the Configuration
file reference guide for
more information. This
port is also used by
clustered engine nodes and
the replica admin node
to pull configuration data
using the admin REST
API.

PingAccess Cluster
Communications Port

Protocol: HTTPS

Transport: TCP

Default port: 9090

Destination: PingAccess
Administrative Engine

Direction: Inbound

PingAccess Administrator
browser, PingAccess
administrative API REST
calls, PingAccess Replica
Admin and clustered
Engine nodes

Used for incoming requests
where the clustered
engines request their
configuration data.
Configurable using the
clusterconfig.port
property in the
run.properties file.
See the Configuration file
reference guide for more
information. This port
is also used by clustered
engine nodes and the
replica admin node to pull
configuration data using
the admin REST API.

PingAccess Engine Protocol: HTTP/HTTPS

Transport: TCP

Default port: 3000*

Destination: PingAccess
Engine

Direction: Inbound

Client Browser, Mobile
Devices, PingFederate
Engine

Used for incoming requests
to the PingAccess runtime
engine. Configurable
using the Listeners
configuration page. See the
PingAccess user interface
reference guide for more
information.

PingAccess Agent Protocol: HTTP/HTTPS

Transport: TCP

Default port: 3030

Destination: PingAccess
Engine

Direction: Inbound

PingAccess Agent Used for incoming
Agent requests to the
PingAccess runtime
engine. Configurable using
the agent.http.port
property of the
run.properties file.
See the Configuration file
reference guide for more
information.

https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_PingAccessUserInterfaceReferenceGuide_pa42/page/pa_c_ReferenceIntroduction.html
https://docs.pingidentity.com/bundle/pa_m_PingAccessUserInterfaceReferenceGuide_pa42/page/pa_c_ReferenceIntroduction.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html

 | Install PingAccess | 84

Service Port details Source Description

PingFederate Traffic Protocol: HTTPS

Transport: TCP

Default port: 9031

Destination:PingFederate

Direction: Outbound

PingAccess Engine Used to validate OAuth
Access Tokens, ID Tokens,
make STS calls for Identity
Mediation, and return
authorized information
about a user. Configurable
using the PingFederate
Settings page within
PingAccess. See the
PingAccess user interface
reference guide for more
information.

PingAccess Cluster Traffic Protocol: JGroups

Transport: TCP

Default port: 7610

Destination: PingAccess
Engine

Direction:Inbound

PingAccess Engine Used for communications
between engine nodes in a
cluster. Configurable using
the run.properties
file. See the Configuration
file reference guide for
more information.

PingAccess Cluster Traffic Protocol: JGroups

Transport: TCP

Default port: 7710

Destination: PingAccess
Engine

Direction:Inbound

PingAccess Engine Used by other nodes
in the cluster as part
of the cluster's failure-
detection mechanism.
Configurable using the
run.properties file.
See the Configuration file
reference guide for more
information.

PingAccess Cluster Traffic Protocol: JGroups

Transport: UDP

Default port: 7500

Destination: PingAccess
Engine

Direction: Inbound

PingAccess Engine Used by other nodes
in the same cluster
to share information.
Configurable using the
run.properties file.
See the Configuration file
reference guide for more
information.

*In addition to port 3000, additional engine listener ports defined in the configuration need to be open as well.

Install PingAccess on Linux

Prior to starting the installation, the following prerequisites must be satisfied:

• Ensure the installation requirements are met.
• Ensure you are logged on to your system with appropriate privileges to install and run an application.

Note: On Linux, we recommend that you install and run PingAccess as a non-root user.

• The 64-bit Oracle JRE must be installed.
• The System or User Environment Variable JAVA_HOME must exist and be set to a value that represents the

location of your Java installation (ie; usr/java/jdk 1.8.0_74).

https://docs.pingidentity.com/bundle/pa_m_PingAccessUserInterfaceReferenceGuide_pa42/page/pa_c_ReferenceIntroduction.html
https://docs.pingidentity.com/bundle/pa_m_PingAccessUserInterfaceReferenceGuide_pa42/page/pa_c_ReferenceIntroduction.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html
https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa42/page/pa_c_Reference_Information.html

 | Install PingAccess | 85

• The JRE /bin directory (ie; usr/lib64/jvm/jre/bin) path must be added to the PATH variable so it is available for
scripts that depend on it.

• You must have a pingaccess.lic license file. If you do not have one, you can request an evaluation key at
the Request a License Key page (www.pingidentity.com/content/pic/en/products/request-
license-key.html).

1. Download the distribution ZIP file.
2. Extract the distribution ZIP file into your installation directory.

Tip: If you are deploying PingAccess in a cluster configuration, see PingAccess cluster configuration
documentation.

Install PingAccess on Red Hat Enterprise Linux

Prior to starting the installation, the following prerequisites must be satisfied:

• Ensure the installation requirements are met.
• Ensure you are logged on to your system with appropriate privileges to install and run an application.

Note: On RHEL, we recommend that you install and run PingAccess as a non-root user.

• The 64-bit Oracle JRE must be installed.
• The System or User Environment Variable JAVA_HOME must exist and be set to a value that represents the

location of your Java installation (ie; usr/java/jdk 1.8.0_74).
• The JRE /bin directory (ie; usr/lib64/jvm/jre/bin) path must be added to the PATH variable so it is available for

scripts that depend on it.
• You must have a pingaccess.lic license file.

Note: If you do not have one, you can request an evaluation key at the Request a License Key page
(www.pingidentity.com/content/pic/en/products/request-license-key.html).
During the first run of PingAccess, you will be prompted to upload the license file via the UI.

1. Download the installation script.
2. Optional: Download the distribution tar file into your installation directory.

Note: Downloading the distribution file before running the script may save time. If you do not download
the distribution file, the installer downloads the required files during the installation process.

3. Launch the installation script: sudo -E ./pa-install-<version>.sh

Note: On supported RHEL versions, the newer systemd scripting service is used during installation. On
earlier versions, the installation is performed using the older systemv scripting service.

4. Follow the prompts on the screen, enter your preferred options, or accept the default values.
The installation completes by starting up PingAccess according to the parameter values you supplied. Wait until
you see the "Starting" and "Started" messages.

5. Open a browser and enter the machine and PingAccess admin port in the URL, for example:
https://yourhost:9000

6. Finalize your setup.

Tip: If you are deploying PingAccess in a cluster configuration, see PingAccess cluster configuration
documentation.

Install PingAccess for Windows

Prior to starting the installation, the following prerequisites must be satisfied:

• Ensure the installation requirements are met.
• Ensure that you are logged on to your system with appropriate privileges to install and run an application.

Note: The Windows installer will ask for admin privileges during installation.

• The 64-bit Oracle JRE must be installed.

https://www.pingidentity.com/en/products/request-license-key.html
https://www.pingidentity.com/en/products/request-license-key.html

 | Install PingAccess | 86

• The System Environment Variable JAVA_HOME must exist and be set to a value that represents the location of
your Java installation (ie; C:\Program Files\Java\jre 1.8.0_91).

• The javapath directory path (ie; C:\Program Files\Oracle\Java\javapath) must be added to the PATH variable.

1. Download the PingAccess Windows installer.
2. Double-click on the icon to launch the PingAccess Setup Wizard.
3. Click Next and follow the prompts to complete the installation using the following information for the

Operational Mode that you select.

Operational Mode Requirements

Standalone Ports

• PingAccess administrative console: TCP 9000
• PingAccess agent protocol: TCP 3030

Clustered Admin Node Ports

• PingAccess administrative console: TCP 9000
• Configuration query port: TCP 9090

Clustered Replica Admin
Node

Ports

• PingAccess administrative console: TCP 9000
• Configuration query port: TCP 9090

Prerequisites

• A Clustered Admin Node must be installed and configured.
• A configuration data archive file for the Replica Admin Node must be available.

Consult PingAccess clustering documentation for more information.

Note: We recommend that you install the Clustered Replica Admin Node
on a separate machine in the same network.

Clustered Engine Node Ports

• PingAccess agent protocol: TCP 3030

Prerequisites

• A Clustered Admin Node must be installed and configured.
• A configuration data archive file for the Clustered Engine Node must be

available. Consult PingAccess clustering documentation for more information.

4. To complete the Installation, copy the URL of the PingAccess admin console that is displayed on the final screen
of the PingAccess setup wizard and click Finish.

5. To customize and finalize the PingAccess setup, paste the URL you copied into your web browser and connect to
the admin console of the instance you have just installed.

Start PingAccess
Note: If you installed PingAccess using the Windows installer, the service is installed and started
automatically.

1. In a command prompt or terminal window, change to the PingAccess bin directory:

• On Linux: cd PA_HOME/bin
• On Windows: cd PA_HOME\bin

2. Start the run script for the platform:

 | Install PingAccess | 87

• On Linux: ./run.sh
• On Windows: run.bat

Wait for the script to execute. PingAccess is started when you see the message “PingAccess running...” in the
command window.

Access the admin console for the first time

1. Launch your browser and go to: https://<DNS_NAME>:9000
<DNS_NAME> is the fully-qualified name of the machine running PingAccess.

Info: If you have not yet installed a PingAccess license, the server will redirect you to the License
Upload screen outside of the main UI. See the PingAccess User Interface Reference Guide for more
information.

2. Sign in with the default username and password:

Username: Administrator

Password: 2Access
3. Read and accept the license agreement.
4. Change the default administrator password on the First Time Login page, then click Continue.

Info: The new password must conform to the rules specified by the
pa.admin.user.password.regex property in run.properties.

The PingAccess administrative console appears.

Upon a successful login, PingAccess creates a backup of the current configuration to allow the administrator to
revert any changes made. This backup is stored in PA_HOME/data/archive. The number of backup files can be
controlled using the pa.backup.filesToKeep property in run.properties.

CAUTION: As the backup file contains your complete PingAccess configuration, ensure the file is protected
with appropriate security controls in place.

Access the PingAccess administrative API
Use this task to access the PingAccess Administrative API.

Send HTTP request to URL https://<host>:<admin-port>/pa-admin-api/v3/<api-endpoint>.

Note: You must provide appropriate administrator credentials in the request.

For example, the following cURL command will return a list of all defined applications by sending a Get request to
the applications resource:

curl -k -u Administrator:Password1 -H "X-Xsrf-Header: PingAccess" https://
localhost:9000/pa-admin-api/v3/applications

• The -u Administrator:Password1 parameter sends Basic Authentication header with the username
Administrator and password Password1

• The -k parameter specifies to ignore HTTPS certificate issues
• The -H "X-Xsrf-Header: PingAccess" parameter sends an X-XSRF-Header with value

PingAccess

Access the interactive administrative API documentation

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_uploadLicenseUI.html

 | Install PingAccess | 88

1. Launch your browser and go to URL https://<host>:<admin-port>/pa-admin-api/v3/api-
docs/. For example, https://localhost:9000/pa-admin-api/v3/api-docs/.

2. The browser may prompt for credentials. Enter the administrator username and password.
3. Use the administrative API to perform a variety of administrative tasks, including those to gather information

as seen in the following example that uses the interactive Administrative API documentation to see all defined
applications:
a) Click on the /applications endpoint to expand it.
b) Click on the GET method (GET /applications) to expand it.
c) Enter parameters values or leave all blank.
d) Click Try It Out button.
e) The Request URL, Response Body, Response Code, and Response Headers appear.

Change configuration database passwords
The PingAccess configuration database is protected by two passwords - a file password and a user password. These
passwords both default to 2Access, but should be changed for production environments.

Changing either password requires PingAccess be shut down.

1. Open a terminal window and change to the <PA_HOME>/bin directory.
2. Ensure that the JAVA_HOME environment variable is set correctly by executing the command echo

$JAVA_HOME.
3. Ensure that the proper Oracle Java executable is in your path. Enter the command java -version. If this

command returns a value indicating that the Java executable is not a supported version of Oracle Java, correct this
issue before continuing.

4. Shut down PingAccess.
5. Optional: (Optional) To change the database file password, use the following commands:

• On Windows: dbfilepasswd.bat old_password new_password
• On Linux: ./dbfilepasswd.sh old_password new_password

6. Optional: Conditional: If you changed the database file password, update the pa.jdbc.filepassword
property in PA_HOME/conf/run.properties with the obfuscated password output from the command used
in the preceding step.

7. Optional: (Optional) To change the database user password, use the following commands:

• On Windows: dbuserpasswd.bat file_password old_password new_password
• On Linux: ./dbuserpasswd.sh file_password old_password new_password

8. Optional: Conditional: If you changed the database user password, update the pa.jdbc.password property
in PA_HOME/conf/run.properties with the obfuscated password output from the command used in the
preceding step.

Stop PingAccess

1. Press Ctrl+C in the command-prompt or terminal window.
2. Conditional: If PingAccess is running on Windows, press y when prompted to terminate the script.

Run PingAccess as a service
PingAccess can run as a service on Linux and Windows 64-bit operating systems. This enables PingAccess to start
automatically when the operating system is started. The service runs as the root (Linux) and System (Windows) user
by default.

 | Install PingAccess | 89

The following tasks allow you to manage PingAccess as a service:

• Configure PingAccess to run as a Linux systemv service on page 89
• Configure Multiple Instances of PingAccess as Linux services on page 90
• Remove the PingAccess Linux service on page 90
• Configure PingAccess to run as a Windows service on page 90
• Remove the PingAccess Windows service on page 90

Tip: Before performing the following procedures, ensure that PingAccess runs normally by manually starting
the server. See Run PingAccess for the First Time for more infomation.

Configure PingAccess to run as a Linux systemv service

Note: The service script will only start if JAVA_HOME and PA_HOME are set and the PingAccess license
file is found.

1. Copy the PingAccess script file from PA_HOME/sbin/linux/pingaccess to /etc/init.d.
2. (Optional) Create a new user to run PingAccess.
3. Create the folder /var/run/pingaccess and ensure that the user who will run the service has read and write

permission to the folder.
4. Edit the script file /etc/init.d/pingaccess and set the values of following variables at the beginning of

the script:

• export JAVA_HOME= specify the Java install folder
• export PA_HOME= specify the PingAccess install folder
• export USER= (optional) specify user name to run the service, or leave empty for default

5. Register the service by running the command "chkconfig --add pingaccess" from the /etc/init.d
folder.

6. Make the service script executable by running the command "chmod +x pingaccess"

Once registered, you can use the service command to control the pingaccess service. The available commands are:

start Start the PingAccess Service

stop Stop the PingAccess Service

restart Restart the PingAccess Service

status Show the status of the PingAccess service and the service
PID

The command service pingaccess status displays the current status of the running PingAccess service.

Configure PingAccess to run as a Linux systemd service

Note: The service script will only start if JAVA_HOME and PA_HOME are set and the PingAccess license
file is found.

1. Copy the configuration file from PA_HOME/sbin/linux/pingaccess.service to /etc/systemd/
system/pingaccess.service.

2. In the pingaccess.service file, replace the following variables:

• PA_HOME
• PA_USER
• JAVA_HOME

3. Allow read/write activity on the service using the command chmod 644 /etc/systemd/system/
pingaccess.service.

4. Load the systemd service using the command systemctl daemon-reload.
5. Enable the service using the command systemctl enable pingaccess.service.

 | Install PingAccess | 90

6. Start the service using the command systemctl start pingaccess.service.

Configure Multiple Instances of PingAccess as Linux services

For hosts running multiple instances of PingAccess that need to be started as a service, follow the procedure used for
Configuring PingAccess as a Linux Service, but make the following modifications to the script for each service:

• Use a unique script name for each instance
• Use a separate directory structure for each instance in the filesystem
• Configure the following settings in the script file for each instance:

• APPNAME: A unique value for each instance
• PA_HOME: The path to the PingAccess instance
• JAVA_HOME: The path to the Java installation folder
• USER: Optional value for the user name used to run the service

Remove the PingAccess Linux service

Note: The following commands must be run as the root user.

1. Stop the service by running /etc/init.d/pingaccess stop.
2. Run chkconfig --delete pingaccess.
3. (Optional) Delete the /etc/init.d/pingaccess script

Configure PingAccess to run as a Windows service

Info: Before performing this procedure, ensure that PingAccess runs normally by manually starting the
server (see Run PingAccess for the First Time).

Note: If you installed PingAccess using the Windows installer, the service is installed and started
automatically.

This configuration allows you to start PingAccess automatically when Windows starts.

1. Install PingAccess.

Info: Ensure JAVA_HOME is set as a system variable.

2. Ensure you are logged in with full Administrator privileges.
3. Start a Command Prompt as an Administrator.
4. In the Command Prompt, run install-service.bat. This script is located in PA_HOME\sbin

\windows.
5. Open the Windows Control Panel > Administrative Tools > Services.
6. Right-click PingAccess Service from the list of available services and select Start. The service starts immediately

and restarts automatically on reboot. (You can change the default Start type setting in the Properties dialog.)

Remove the PingAccess Windows service

To remove the PingAccess Windows Service, perform the following steps as an Administrator:

1. Open a Command Prompt
2. Change the current directory to PA_HOME\sbin\windows
3. Run uninstall-service.bat
4. When the script has finished, remove the PA_HOME environment variable from the system.

Uninstall PingAccess

 | Upgrade PingAccess | 91

1. Stop PingAccess on page 88.
2. Delete the PingAccess installation directory.

Upgrade PingAccess

Upgrade a PingAccess standalone version
Important: In release 5.0, there are potentially breaking changes to the SDK for Java, Groovy scripts, and
the Administrative API. For information on these changes and the actions administrators may need to take,
review the PingAccess Release Notes for release 5.0, in addition to any release notes for releases between
your current version and the target version.

This document provides instructions for upgrading a standalone instance of PingAccess.

To run the upgrade utility, you will need the following:

• The PingAccess Upgrade Utility archive
• The PingAccess distribution zip file
• Your PingAccess license file
• Login access to the PingAccess host, as the utility is run on the host
• Basic Authentication needs to be configured and enabled for the running PingAccess instance. Administrator

Single Sign-On must be disabled for the upgrade.
• The version of PingAccess you are upgrading from must be running
• Administrator credentials for the running PingAccess instance

Important:

If your installation uses custom plugins, they will need to be rebuilt against the new (5.0) SDK. You will then
run the Upgrade Utility manually with the new "-i" command-line option to include their plugin directory. To
migrate your custom plugins, see the PingAccess Addon SDK for Java Migration Guide.

Copy these files to the system being upgraded, and unpack the PingAccess Upgrade Utility archive.

Important: If you have set security.overridePropertiesFile=false in $JAVA_HOME/jre/
lib/java.security, the upgrade utility may fail, as the PingAccess Upgrade Utility uses an override to
enable deprecated ciphers and protocols during the upgrade process.

The upgrade utility starts an instance of PingAccess with an administrative listener on port 9001. This port number
can be changed using the run.bat/run.sh -p parameter. This port configuration is only used for the upgrade - the
default port is used by the upgraded server when the upgrade is complete.

Any warnings or errors encountered are recorded in log/upgrade.log, as well as on the screen while the utility is
being run.

Info: During the upgrade, it is important to not make any changes to the running PingAccess environment.

Use the PingAccess Upgrade Utility to upgrade from PingAccess 2.1 or later to the most recent version.

Important: Before you upgrade, create a backup of your existing PingAccess configuration. In the event of
an upgrade failure, you can restore the backup configuration.

1. Unpack the upgrade utility zip file.
2. Change to the upgrade utility's bin directory.
3. Run the PingAccess Upgrade Utility:

• On Windows: run.bat [-p <admin_port>] [-i <directory>]
<sourcePingAccessRootDir> <outputDir> <pingaccessZip>
<newPingAccessLicense>

https://docs.pingidentity.com/bundle/pa_sm_releaseNotes_pa51/page/pa_c_50.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa51/page/pa_c_AddonSDKJavaMigrationGuide.html

 | Upgrade PingAccess | 92

• On Linux: ./run.sh [-p <admin_port>] [-i <directory>]
<sourcePingAccessRootDir> <outputDir> <pingaccessZip>
<newPingAccessLicense>

For example: ./run.sh -p 9002 -i MyJARDir pingaccess-4.3 pingaccess-5.0
pingaccess-5.0.zip pingaccess50.lic

Parameter Definitions

The command-line parameters are the same regardless of the platform, and are defined as follows:

Parameter Value description

<admin_port> Optional port to be used by the temporary PingAccess
instance run during the upgrade. The default is 9001.

<directory> A directory containing additional library JAR files
(e.g. plugins, JDBC drivers) to be copied into the target
installation

<sourcePingAccessRootDir> The PA_HOME for the source PingAccess version

<outputDir> The target directory which will contain the unpacked
PingAccess distribution

<pingaccessZip> The PingAccess distribution for the target version

<newPingAccessLicense> The path to the PingAccess license file to use for the
target version

Note: In the context of an upgrade, "source" refers to the old version of PingAccess, and "target" refers to
the new version.

Upgrade a PingAccess cluster
Important: In release 5.0, there are potentially breaking changes to the SDK for Java, Groovy scripts, and
the Administrative API. For information on these changes and the actions administrators may need to take,
review the PingAccess Release Notes for release 5.0, in addition to any release notes for releases between
your current version and the target version.

Important: It is important that all nodes in a clustered PingAccess be running the same software release.

To upgrade a cluster, perform the following steps:

Important: Before you upgrade, create a backup of your existing PingAccess configuration. In the event of
an upgrade failure, you can restore the backup configuration.

1. Run the upgrade utility on the administrative console
2. Change the upgraded administrative console's admin.port and clusterconfig.port values to a

temporary value.
3. Start the upgraded administrative console
4. Perform any manual post-upgrade tasks recorded in the upgrade log
5. Shut down the upgraded administrative console
6. Change the upgraded administrative console's admin.port value back to the original value.
7. Run the upgrade utility on each engine node
8. Shut down the entire cluster
9. Start the upgraded administrative node
10. Start each upgraded engine node

https://docs.pingidentity.com/bundle/pa_sm_releaseNotes_pa51/page/pa_c_50.html

 | Upgrade PingAccess | 93

Upgrade Windows using the installer

You can upgrade your Windows PingAccess installation using the installer.

Important: If additional JAR files (such as custom plugins and JDBC drivers) have been added to the
existing PingAccess /lib directory, the 5.0-Beta installer cannot be used to perform the upgrade. Instead, the
Upgrade Utility should be run manually, using the "-i" command-line option to specify the JAR files to be
included.

1. Download the installer.
2. Start the installer. The existing installation is detected.
3. Choose Yes to upgrade the installation.
4. Choose a license file and specify a temporary admin port. Click Next.

Note: The temporary admin port is not required when upgrading a cluster node.

5. Specify the administrator credentials. Click Next.

Note: Administrator credentials are not required when upgrading a cluster node.

6. Click Finish.
7. Complete required post-upgrade tasks.

Upgrade RHEL using the installer

You can upgrade your RHEL PingAccess installation using the installer.

Note: On supported systems, you are given the option to upgrade your existing systemv scripting service to
the newer systemd service. Upgrading the service will replace the existing service.

Important: If additional JAR files (such as custom plugins and JDBC drivers) have been added to the
existing PingAccess /lib directory, the 5.0-Beta installer cannot be used to perform the upgrade. Instead, the
Upgrade Utility should be run manually, using the "-i" command-line option to specify the JAR files to be
included.

1. Download the installer script.
2. Launch the script using the command sudo -E ./pa-install-<version>.sh.
3. Specify the instance you want to upgrade.

Important: If you are upgrading a PingAccess cluster, always upgrade the console first.

4. Confirm the selection.
5. Specify a license file.
6. Specify the temporary admin port.

Note: The temporary admin port is not required when upgrading a cluster node.

7. Specify whether you have additional plugin or JDBC driver JAR files to include during upgrade.

Note: This step is required when plugin JARs are present and you are upgrading to a version that is not
SDK backward-compatible. For more information, see Upgrade a PingAccess standalone version on page
91 and the PingAccess Addon SDK for Java Migration Guide.

8. Optional: If you selected yes to include additional JAR files, enter the path to the include directory. The JAR
files in this directory will be copied into the new PingAccess installation instead of migrating additional library
JARs from the existing installation.

9. Provide the administrator credentials.

https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa51/page/pa_c_AddonSDKJavaMigrationGuide.html

 | Upgrade PingAccess | 94

Note: Administrator credentials are not required when upgrading a cluster node.

10. Allow the upgrade to complete and perform any required post-upgrade tasks.

Complete the upgrade
At the end of an upgrade, the PingAccess Upgrade Utility will record any manual steps that require user intervention
both on-screen and in log/upgrade.log. When the upgrade is complete, the source PingAccess installation is left
running. Collect any information needed to complete these manual steps from the running instance, then shut down
the source PingAccess server and start the new PingAccess server to complete the manual portion of the upgrade. To
see details about the migrated configuration data, examine log/audit.log.

After the upgrade has completed, perform the following steps:

1. Review any warnings returned by the upgrade utility and take the actions indicated in the table below.
2. Generate new obfuscated passwords for the pa.jdbc.password, pa.jdbc.filepassword, and

pa.keystore.pw parameters in conf/run.properties:

a. Conditional: If you are on a Linux host, run obfuscate.sh password .
b. Conditional: If you are on a Windows host, run obfuscate.bat password .
c. Copy the obfuscated password and paste it into the parameter in run.properties that corresponds to the

password being re-obfuscated.
3. Review the HTTP Requests configuration to ensure the use of the IP Source settings is appropriate for the

environment. During the upgrade process, the List Value Location setting is changed from the default of Last to
First to match the behavior from earlier releases.

Warning text Steps to take

Resource 'ResourceName' contains an
invalid path prefix and cannot be
migrated to the target version. Manual
intervention is required.

This occurs when the 2.1 path prefix contains
functionality supported via a Java regex, but not by
the wild card support in 3.1. The user must manually
migrate the regex to 1 or more path prefixes in 3.1. For
example, consider the 2.1 prefix, /(app1|app2). This
can be translated to a single resource in 3.1.1 with path
prefixes of /app1 and /app2.

Resource 'ResourceName' requires a
case-sensitive path. This conflicts
with its containing Application, which
requires a case-insensitive path.
Manual intervention may be required.

The upgrade utility identifies path prefixes in 2.1 that
start with /(?i) as path prefixes that are case-insensitive,
and sets the case-sensitivity flag on the Application
appropriately. However, if multiple resources in a new
application use inconsistent case-sensitivity settings, the
utility cannot determine what the case-sensitivity should
be. 2.1 resources are case-sensitive by default.

Resource 'ResourceName' requires a
case-insensitive path. This conflicts
with its containing Application, which
requires a case-sensitive path. Manual
intervention may be required.

This is the same as the previous setting, but with the
requirement being for a case-insensitive path rather than
a case-sensitive one.

Resource 'ResourceName' is disabled
in the source version. Resources can
no longer be individually disabled.
Application 'ApplicationName' has been
disabled due to this constraint.

In 2.1, individual resources can be disabled. In 3.1,
only applications can be enabled/disabled. The upgrade
utility takes the approach of disabling the application
if any related resources are disabled. Check the final
configuration and make sure this is the desired outcome.
 If it is not, the disabled resources need to be deleted, and
the application needs to be enabled.

 | Upgrade PingAccess | 95

Path prefix for Resource
'ResourceName' contains a '.'
character. This will be treated as a
literal '.' in the target version.

In a 2.1 setup, it is likely that there will be resource
names that accidentally contain a '.', assuming it is a
literal '.' rather than part of a regex. For example, any file
extension type resources will probably not be escaping
the '.'. This message is intended to bring this change in
semantics to the user's attention. This action item will not
show up if the user has correctly escaped the '.' character
with the '\.' sequence.

Resource 'ResourceName' could not be
migrated to the target version due to
Application context root conflicts.
Manual intervention is required.

This message indicates that multiple resources that use
the same virtual host, but a different Web Session or Site
must be mapped under the same context root in the same
application to preserve semantics. For example, consider
the following configuration:

• Resource A:

• Path Prefix: /hr
• Virtual Host: internal.example.com
• Web Session: W
• Site: Z

• Resource B:

• Path Prefix: /sales
• Virtual host: internal.example.com
• Web Session: W
• Site: Z

• Resource C:

• Path Prefix: /payroll
• Virtual Host: internal.example.com
• Web Session: V
• Site: Z

This configuration triggers this action item because these
resources cannot be grouped in the same application, but
they would need to be in order to preserve the semantics
in the internal.example.com address space. This issue
could be fixed by using rewrite rules to place Resource C
or Resources A and B under a different namespace. For
example, use /intranet/sales and /intranet/hr on the front-
end and rewrite out the /intranet on the backend.

Application 'ApplicationName' contains
OAuth rules, but authenticates users
with a web session. Unexpected results
may occur.

2.1 allows OAuth rules to be attached Resources that
use a Web Session. While this configuration is likely
invalid in the first place, it would be possible to include
both a PA cookie and OAuth token in requests and PA
would apply policy to the requests as configured. In 3.1,
however, an API application and web application are
mutually exclusive so the semantics of this particular
configuration cannot be preserved.

 | Upgrade PingAccess | 96

The resource order for Virtual Host
'VirtualHostName' has changed in the
target version.

The upgrade utility checks that the resource order is
consistent before and after the upgrade. This message
indicates that the resource order from 2.1 does not
match 3.1. This is likely due to how context roots in
applications are ordered in 3.1. For 3.1, applications are
ordered based on their context root, where the longest
context root is checked first during resource matching.

One way to address this is to review and potentially
change the Application context root values associated
with the Virtual Host to avoid URL overlaps between
applications.

Application 'ApplicationName'
is no longer associated with an
Identity Mapping. A Web Session or an
Authorization Server is required to
use Identity Mappings.

Indicates a misconfiguration in the source version. Check
whether you intended to use an Identity Mapping for the
Application and associate an appropriate Web Session or
Authorization Server if necessary.

OAuth Rule with id 'RuleId' is no
longer associated with Application
'ApplicationName' because Application
'ApplicationName' is not an OAuth
Application. Manual intervention may
be required.

Indicates a misconfiguration in the source version. Check
whether the OAuth Rule is necessary to implement the
desired Access Control policy.

OAuth RuleSet with id 'RuleSetId' is
no longer associated with Application
'ApplicationName' because Application
'ApplicationName' is not an OAuth
Application. Manual intervention may
be required.

Indicates a misconfiguration in the source version. Check
whether the OAuth RuleSet is necessary to implement
the desired Access Control policy.

Resource 'ResourceName' from
Application with id 'ApplicationId'
was not migrated because the
Application is a Web Application while
the Resource has OAuth Rules. Manual
intervention may be required.

Indicates a Resource associated with the Application
is associated with OAuth Rules. This is likely a
misconfiguration, and it is necessary to evaluate whether
this was intended or not.

Upgrade created 'Availability
Profile for Site 'SiteName''. A more
descriptive name may be required.

Indicates that an Availability Profile was created for
the Site during the upgrade. You may want to give the
Availability Profile a more descriptive name.

Application 'ApplicationName'
and associated Resources were not
migrated. The context root of /pa is
reserved. Manual intervention may be
required.

The /pa context root was allowed as a valid context root
in PingAccess 3.0 and is no longer allowed.

Resource 'ResourceName' from
Application with id 'ApplicationId'
was not migrated because the /
pa prefix is reserved when the
Application context root is /. Manual
intervention may be required.

The /pa path prefix was allowed as a valid path prefix
in PingAccess 3.0 and is no longer allowed.

 | Upgrade PingAccess | 97

The OAuth Groovy Script Rule no
longer controls the realm in the
response sent for an unauthorized
OAuth request.

With PingAccess 3.2, Realms have been moved to
the Application. The Realm can still be set using the
PingAccess Admin API interface. With the change in
context for how realms are applied, it is necessary to
check existing OAuth Groovy Rules to ensure that they
behave as expected. This message is shown if any OAuth
Groovy Rules exist in the migrated configuration.

The property 'PropertyName' was
set to a blank value to maintain
compatibility. However, it is
recommended that this be set to
'PropertyName=PropertyValue

New Security Headers properties values are not set
during an upgrade in order to preserve the behavior from
the source release in the upgrade. If there is no reason not
to in your environment, update run.properties with
the recommended setting.

As a security enhancement, the
default value of 'CipherList'
has changed with this version of
PingAccess. Your existing ciphers
remain unchanged. However, it is
recommended to use the default value:
'PropertyName=CipherList'.

This message applies to the admin.ssl.ciphers,
engine.ssl.ciphers, and
agent.ssl.ciphers lists. This message is
displayed if the upgrade source version cipher lists are
changed from the defaults. We recommend updating the
configuration with the new default value if possible.

The property 'PropertyName' was
set to a blank value to maintain
compatibility. However, it is
recommended that this be set to
'PropertyName=CipherList

This message applies to the site.ssl.protocols,
site.ssl.ciphers, pf.ssl.protocols,
and pf.ssl.ciphers settings. The upgrade utility
sets these values as empty values in order to maintain
backwards compatibility, but the recommended value
should be used if possible.

The host for VirtualHost
VirtualHost:Port already has a KeyPair
associated with it. The KeyPair
previously associated with this
VirtualHost was removed. Only one
KeyPair can be associated with a given
host.

If a Virtual Host has more than one key pair associated
with it, only one key pair will be associated with it after
the upgrade completes. This message is displayed to
indicate which key pair was used.

Application with name
'ApplicationName' not migrated as the
context root 'Path' was a reserved
path.

If an Application's context root is a reserved PingAccess
path, the application will not be migrated. The indicated
application will need to be created with a context root
that does not conflict with the reserved path.

Resource with name 'ResourceName' not
migrated as the path 'Path' was a
reserved path.

If an Resource path is a reserved PingAccess path,
the application will not be migrated. The indicated
application will need to be created with a context root
that does not conflict with the reserved path.

The CIDR Rule with name 'RuleName' is
associated with an Agent Application
named 'ApplicationName' and overrides
the IP source configuration. A new
Agent rule should be created that does
not override the IP source.

With changes in IP Source header handling, additional
options are available to override the headers used to
identify the source address. When an Agent is involved,
the changes in IP source handling may cause the
specified rule to not behave as expected.

Require HTTPS option on Application
'ApplicationName' was set to Setting
as Virtual Host had port Port. Please
verify this setting is correct.

The upgrade utility attempts to set the Require HTTPS
option based on the virtual host associated with an
application during an upgrade. This message is an
advisory to just verify that the setting was properly
detected.

 | Upgrade PingAccess | 98

VirtualHost 'VirtualHost' was not
migrated. An existing VirtualHost
existed with the same logical name
'VirtualHost'.

Virtual Host names are now case-insensitive. During
the upgrade, after making the names case-insensitive, a
duplicate Virtual Host was identified. It will be necessary
to either recreate the virtual host with a new name, or to
modify the configuration so the proper Virtual Host is
migrated to the upgraded system.

Renamed Virtual Host's Hostname from
'VirtualHost' to 'NewVirtualHost' due
to virtual host spec compliance issue

If a Virtual Host name contains an underscore (_)
character, that does not conform to host naming
requirements. In this instance, the underscore will be
renamed to the string a-z. For example, if a Virtual Host
named my_virtual_host is migrated, the new name
will be mya-zvirtuala-zhost.

Removed Http Request Rule with
name 'RuleName', this Rule must be
converted to a groovy script rule.
Manual intervention may be required.

When an HTTP Request Rule is migrated from an earlier
release of PingAccess, rules that specify a source of
Body are not migrated. A Groovy script rule can be
used to perform a similar match, but the details of such a
Groovy script require administrator intervention.

A simple Groovy script rule that would perform a similar
function might be:

requestBodyContains('value')

We advise, however, that a script be constructed that
performs additional validation in order to ensure the rule
passes only when desired; a generic match like this could
lead to unexpected results depending on what content
might be in the request body.

The property 'PropertyName' uses
a customized value. "Your original
value has not been modified. You
may encounter startup or connection
problems if this value is not
supported by the JVM.

When migrating SSL settings between versions of
PingAccess that use different JVM or JDK versions,
custom settings may not be compatible. If the protocols
or ciphers used are not compatible with the target JVM
or JDK, this message indicates which settings need to be
manually updated.

The PropertyName value can be any of the following
values:

• site.ssl.protocols
• site.ssl.ciphers
• pf.ssl.protocols
• pf.ssl.ciphers
• admin.ssl.protocols
• admin.ssl.ciphers
• engine.ssl.protocols
• engine.ssl.ciphers
• agent.ssl.protocols
• agent.ssl.ciphers

 | Upgrade PingAccess | 99

Rule with ID RuleId and name
'RuleName' was not migrated as matcher
was invalid for the Groovy rule type.

Invalid rules were removed from
RuleSet 'RuleSetName' which resulted
in an empty set.

The RuleSet was removed. Please check
your policy configuration.

Invalid rules were removed from
RuleSet 'RuleSetName'. Please check
your policy configuration.

Invalid Rules were removed from
Application 'ApplicationName'. Please
check your policy configuration.

Invalid RuleSets were removed from
Application 'ApplicationName'. Please
check your policy configuration.

Invalid Rules were removed from
Resource 'resource name' on
Application 'ApplicationName'. Please
check your policy configuration.

Invalid RuleSets were removed
from Resource 'resource name' on
Application 'ApplicationName'. Please
check your policy configuration.

These messages may be displayed if the source
PingAccess installation has misconfigured Groovy
Rules.

This indicates that you are not permitted to add an OAuth
rule to an Application of type Web, by editing an existing
Rule Set.

Groovy or OAuth Groovy rules will not be migrated for
the following reasons:

• The OAuth Groovy rule was applied to a Web
application.

• The Groovy or OAuth Groovy uses a matcher that is
not appropriate for the application type.

Check the policy configuration.

Rule with name 'RuleName' has been
removed from RuleSet with name
'RuleSetName'. Multiple Rate Limiting
Rules with the same Policy Granularity
cannot be included in a RuleSet."

Rule with name 'RuleName' has been
removed from RuleSet with name
'RuleSetName'. Multiple Cross-Origin
Request Rules cannot be included in a
RuleSet."

The upgrade utility supports migrating a RuleSet
containing multiple CORS or Rate Limiting rules with
the same Policy Granularity. The upgrade utility will
generate new action items, indicating that rules were
removed from a RuleSet.

These messages indicate that if both rules exist, there is a
restriction to a single Rate Limiting or CORS rule. Please
check to confirm that you have applied the correct rule to
the policy.

One or more notifications were issued
while migrating from version SOURCE to
version TARGET

Setting clusterconfig.enabled to false

The new configuration query port
feature has been disabled for backward
compatibility. Please refer to the
PingAccess clustering documentation
before enabling this feature.

The new cluster config query port is enabled
by default for new PingAccess 4.0 installations
when running in CLUSTERED_CONSOLE or
CLUSTERED_CONSOLE_REPLICA mode.

During the upgrade process to version 4.0, the new
cluster config query port is disabled. Messages are
written to upgrade.log and audit.log to indicate
this cluster configuration change was made.

Please refer to the PingAccess clustering documentation
before enabling this feature.

 | Upgrade PingAccess | 100

One or more notifications were issued
while migrating from version SOURCE to
version TARGET

For backward compatibility, when
connecting to a protected, TLS SNI-
enabled Site, PingAccess will set
the SNI server_name to the configured
target host and not the HTTP request
Host header value. Please refer to
PingAccess' upgrade documentation for
more information.

During upgrades to release 4.0 and higher,
the Upgrade Utility sets the value of
pa.site.tls.sni.legacyMode to true to
maintain compatibility with existing configurations. This
property is controlled in the run.properties file and
is not enabled on new installs.

Localization property '{property
name}' was added to pa-
messages.properties. Any customized
localization files should be updated.

This message will appear if new language properties are
added between the source and target PA versions and you
have added additional language files or modified the en
or en_US files. Update any customized files as required.

Localization property '{property
name}' in pa-messages.properties was
modified. Any customized localization
files should be updated.

This message will appear if the language properties have
changed between the source and target PA versions and
you have added additional language files or modified
the en or en_US files. Update any customized files as
required.

Localization property '{property
name}' was removed from pa-
messages.properties. This property
can be removed from any customized
localization files.

This message will appear if the language properties have
been removed between the source and target PA versions
and you have added additional language files or modified
the en or en_US files. Update any customized files as
required.

WebSessionManagement contained
an invalid cookie name. Replaced
'{old cookie name}' with '{new
cookie name}'. Please validate your
configuration.

This message will appear if the WebSessionManagement
has an invalid cookie name. Invalid characters are
replaced with an underscore. Update any references as
required.

Legacy authentication requirements
policy evaluation has been enabled
to maintain backward compatibility
with earlier versions of PingAccess.
To disable this setting, remove the
pa.policy.eval.acr.v42 property from
run.properties.

This message will appear on upgrade to release 4.3
or higher if you have one or more authentication
requirements rules. You can make adjustments to
configured rules so you can remove this property or
you can maintain the property to leave existing rules
unaffected.

 | Configure session management | 101

Property
pa.audit.log.applicationResourceIdsAsIntegers
was set to true in run.properties to
maintain existing behavior. In order
to log the ID of Global Unprotected
Resources, this property should be
removed or should be set to false
(default). However, a value of false
(default) will result in resourceId
and applicationId audit logging
fields being logged as strings, not
integers, which may require audit
logging database schema changes if
these values are currently being used.

This message will appear on upgrade to release 5.1
or higher to support the existing logging behavior
of application resource IDs as integers. The default
behavior of release 5.1 and higher is to log these IDs
as strings. You can choose to log application resource
IDs as strings after the upgrade by removing, or setting
to false, the applicable property in run.properties. This
change may require a modification to the audit logging
database schema.

Restore a PingAccess configuration backup
PingAccess automatically creates a backup zip file each time an Administrative user authenticates to the
administrative console. These backups are stored in PA_HOME/data/archive, with a maximum number of
backups configurable using the pa.backup.filesToKeep configuration parameter in run.properties.

CAUTION: This operation will replace your current configuration settings.

To Restore a PingAccess Configuration Backup:

1. Stop PingAccess.
2. Unzip the backup file to PA_HOME.
3. Restart PingAccess.

Your PingAccess configuration will now be reverted to the state in the backup archive that was restored.

Configure session management

Configure session management
This document provides information regarding session management using PingAccess. Use this document to learn
about the concepts involved and to configure PingAccess for server-side session management using PingFederate.

Web Sessions

Web Sessions define the policy for Web application session creation, lifetime, timeouts, and their scope. Multiple
Web Sessions may be configured to scope the session to meet the needs of a target set of applications. This improves
the security model of the session by preventing unrelated applications from impersonating the end user. Use the
following tasks to configure secure Web Sessions for use with specific applications and to configure global Web
Session settings.

Application scoped Web Sessions

PingAccess Tokens can be configured to have their Web Sessions scoped to a specific application. This improves the
security model of the session by preventing unrelated applications from impersonating the end user.

Several controls exist to scope the PA Token to an application:

 | Configure session management | 102

Audience Attribute The audience attribute defines who the token is
applicable to and is represented as a short, unique
identifier. Requests are rejected that contain a PA Token
with an audience that differs from what is configured in
the Web Session associated with the target Resource.

Audience Suffix The audience attribute is also used as a suffix of the
cookie name to ensure uniqueness. For example,
PA.businessAppAudience.

Cookie Domain The cookie domain can also optionally be set to limit
where the PA Token is sent.

Info: In addition to these controls, parameters such as session timeout can be adjusted to match the policy
requirements of each application.

Corresponding OAuth clients must be defined in PingFederate for each Web Session. Redirect URL whitelists
defined in PingFederate dictate from which servers and domains the session can originate. Controlling this within
PingFederate enables flexibility of the attribute contract (and its fulfillment) for that particular application. This
ensures that each application and its associated policies only deal with attributes related to it.

Configure server-side session management
There are two ways Server-Side Session Management can be implemented:

• PingAccess can reject a PingAccess cookie associated with a PingFederate session that has been invalidated as a
result of an end-user driven logout.

• The end user can initiate a logout from all PingAccess issued web sessions using a centralized logout.

The first of these scenarios provides increases both scalability and security, ensuring the PingFederate session is
terminated and that subsequent session validation requests are rejected. This scenario implies a user logout from
PingAccess protected resources through the invalidation of the related PingFederate session.

The second scenario provides improved performance and end user experience. When the user explicitly logs
out of the PingAccess issued session, all related PingAccess cookies are deleted, ensuring the client is no longer
authenticated to resources protected by PingAccess. In this scenario, the user has explicitly logged out from all of
those protected services.

PingAccess needs to be configured only for the first of these two scenarios. These options are not mutually exclusive,
and can be combined to provide comprehensive session management at the server.

Configure PingFederate for session management

To configure PingFederate to be able to revoke PingAccess session cookies:

1. Log in to the PingFederate Administrative Console
2. Navigate to Server Configuration > Server Settings > Roles & Protocols
3. Ensure that Enable OAuth 2.0 Authorization Server (AS) role and OpenID Connect are enabled. Create or

modify an existing client.
4. From the main administration page, navigate to OAuth Settings > Authorization Server Settings and configure

the authorization server settings.
5. Return to the main administration page, then go to OAuth Settings > Client Management
6. Create or modify an existing client.
7. Ensure that Client Secret is enabled, then enter a client secret to be used by PingAccess for authentication.
8. In the OpenID Connect section of the client's configuration page, enable Grant Access to Session Revocation

API.

 | Configure logging | 103

Note: This setting is the main setting that enables the server-side session management feature in
PingFederate.

9. Click Save to save your changes.

Configure PingFederate for user-initiated single logout

1. Log in to the PingFederate administrative console
2. Navigate to OAuth Settings > Authorization Server Settings
3. Select Track User Sessions for Logout under OpenID Connect Settings
4. Click Save to save this change
5. Navigate to OAuth Settings > OpenID Connect Policy Management and click an existing policy
6. Click Manage Policy, then enable Include Session Identifier in ID Token. (For more information about

configuring an OpenID Connect Policy, see Configuring OpenID Connect Policies in the PingFederate
Administrator's Manual.)

7. Click Save to save this change
8. Navigate to OAuth Settings > Client Management and select the client to be used by PingAccess
9. In the OpenID Connect section of the client's configuration page, enable PingAccess Logout Capable.

Tip: If this option is not available, ensure that the Track User Sessions for Logout setting change made
in step 3 was saved.

10. Click Save to save this change

PingFederate is now configured to provide PingAccess with access to the PingFederate-managed session.

Configure PingAccess for server-side session management

To configure PingAccess:

1. Log in to the PingAccess administrative console.
2. Click Settings > Access > Web Sessions.
3. Either create a new web session or edit an existing web session.
4. In the Client ID field, enter the client name defined in PingFederate.
5. Enter the client secret associated with the specified Client ID.
6. Click the Advanced tab.
7. Select Validate Session to enable the server-side session management feature.
8. Click Save.

Configure logging

Configure logging

This document describes the types of logging performed by PingAccess and provides instructions for configuring
PingAccess logging.

http://documentation.pingidentity.com/pingfederate/pf/?contextId=help_PoliciesManagementTasklet_PoliciesManagementState
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Web_Session.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Edit_a_Web_Session.html

 | Configure logging | 104

Security audit logging
The PingAccess audit logs record a selected subset of transaction log information at runtime plus additional details,
intended to facilitate security auditing and regulatory compliance. The logs are located in PA_HOME/log/. Elements
recorded in these logs are described in the table below, and are configured in conf/log4j2.xml.

Important: Log files can be viewed or modified using a variety of common applications. As such, it is
possible for log files to be manipulated to include untrusted or malicious data. Administrators should take
appropriate steps to secure these files. Furthermore, these files should not be opened in applications that could
allow for data execution, such as internet browsers or Microsoft Office products. It is highly recommended
that administrators open these files in a common, lightweight text editor.

PingAccess generates these audit logs:

pingaccess_engine_audit.log Records transactions of configured Resources.
Additionally, the log records transaction details when
PingAccess sends requests to PingFederate (for example,
STS, OAuth2, JWS).

pingaccess_api_audit.log Records PingAccess administrative API transactions.
These transactions represent activity in the PingAccess
administrative console. This log also records transaction
activity if you are using scripts to configure PingAccess.

pingaccess_agent_audit.log Records transactions between PingAccess Agents and the
PingAccess Engine.

Audit log configuration

Item Description

%d Transaction time.

exchangeId Identifies the ID for a specific request/response pair.

AUDIT.applicationID Specifies the ID of the requested application. This field is
disabled by default.

AUDIT.applicationName Specifies the name of the requested application.

AUDIT.resourceID Specifies the ID of the requested resource. This field is
disabled by default.

AUDIT.resourceName Specifies the name of the requested resource.

AUDIT.pathPrefix Specifies the path prefix of the requested application or
resource.

AUDIT.pathPrefixType Indicates the pattern type of the path prefix, Wildcard
or Regex.

AUDIT.authMech Mechanism used for authentication. Engine Auditing -
Cookie (WAM session), OAuth, unknown (for example,
pass-through or static assets). Pass-through assets are
Resources with no policies or Web session configured.
Admin Auditing - Basic, OAuth, Cookie, unknown (
unknown displays only in an authentication failure).

AUDIT.client IP address of the requesting client.

AUDIT.failedRuleName Name of the Rule that failed. If no Rule failure occurred,
this field is blank. This element is applicable only to the
pingaccess_engine_audit.log.

 | Configure logging | 105

Item Description

AUDIT.failedRuleType Type of Rule that failed. If no Rule failure occurred,
this field is blank. This element is applicable only to the
pingaccess_engine_audit.log.

AUDIT.failedRuleClass The Java class of Rule that failed. If no Rule failure
occurred, this field is blank. This element is applicable
only to the pingaccess_engine_audit.log.

AUDIT.failedRuleSetName Name of the containing Rule Set that failed. If no Rule
failure occurred, this field is blank. This element is
applicable only to the pingaccess_engine_audit.log.

AUDIT.host PingAccess host name or IP address.

AUDIT.targetHost Backend target that processed the request and generated
a response to the PingAccess engine.

AUDIT.method HTTP method of the request. For example, GET.

AUDIT.resource Name of the Resource used to fulfill the
request. This element is applicable only to the
pingaccess_engine_audit.log.

AUDIT.responseCode HTTP status code of the response. For example, 200.

AUDIT.requestUri Request URI portion of the request (for example, /foo/
bar).

AUDIT.subject Subject of the transaction.

AUDIT.trackingId The PingFederate Tracking ID. This element can be used
to help correlate audit information in the PingAccess
audit log with information recorded in the PingFederate
audit log.

The value of this depends on whether the application
type is Web or API.

If the application type is Web, the value is presented
as tid:<Session_Identifier>. The
<Session_Identifier> can be used by the PingFederate
Session Revocation API to revoke the session without
disabling the user in the identity store.

If the application type is API, the value is presented as
atid:<Hash>. The <Hash> value is derived from the
OAuth Access token for the session, and only serves as
an identifier; it cannot be used for session revocation.

AUDIT.reqReceivedMillisec Time in milliseconds (since 1970) that a client request
was first received

AUDIT.reqSentMillisec Time in milliseconds (since 1970) that the agent or
engine sent a backchannel or proxy request

AUDIT.respReceivedMillisec Time in milliseconds (since 1970) that the agent or
engine received a response from a backchannel call or
proxy request

AUDIT.respSentMillisec Time in milliseconds (since 1970) that a response was
sent back to the client

http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_sessionRevocationApi
http://documentation.pingidentity.com/pingfederate/pf/?contextId=concept_sessionRevocationApi

 | Configure logging | 106

Item Description

AUDIT.roundTripMS The respSentMillisec time minus the
reqReceivedMillisec time. This represents the total
number of milliseconds it took PingAccess to respond to
a client’s request (including the proxyRoundTripMS).

AUDIT.proxyRoundTripMS The respReceivedMillisec time minus the
reqSentMillisec time. This represents the total number of
milliseconds PingAccess was waiting for another entity
to respond to a backchannel call or proxy request.

AUDIT.userInfoReqSentMillisec The time in milliseconds (since 1970) that the engine
sent a request to the token provider's OIDC UserInfo
endpoint.

AUDIT.userInfoRespReceivedMillisec The time in milliseconds (since 1970) that the engine
received a response from the token provider's OIDC
UserInfo endpoint.

AUDIT.userInfoRoundTripMS The userInfoRespReceivedMillisec minus the
userInfoReqSentMillisec time. This represents the total
number of milliseconds it took PingAccess to receive a
response from the token provider's UserInfo endpoint.

Logging
PingAccess logging is handled by the log4j2 asynchronous logging library, configured using conf/log4j2.xml.

Info: Audit logs are also configurable in conf/log4j2.xml. These logs record a selected subset of
transaction log information at runtime plus additional details (see Security Audit Logging).

By default, logging information is output to PA_HOME/logs/pingaccess.log, and file logging uses the rolling
file appender. PingAccess keeps a maximum of 10 log files, each with a maximum size of 100 MB. Once 10 files
accumulate, PingAccess deletes the oldest. These defaults can be changed by locating and modifying the following
properties in the <Appenders> section of log4j2.xml:

• Changing the log file name:

<RollingFile name="File"
 fileName="${sys:pa.home}/log/pingaccess.log"
 filePattern="${sys:pa.home}/log/pingaccess.log.%i"
 ignoreExceptions="false">

• Setting the maximum log size:

<SizeBasedTriggeringPolicy size="100000 KB"/>

• Setting the maximum number of log files:

<DefaultRolloverStrategy max="10"/>

Tip: The default log level is DEBUG. We recommend that once PingAccess is configured and is in use in a
production environment, logging be configured to use the lowest, most appropriate level for your needs.

In addition to the standard log4j2 items, PingAccess adds the following custom item that can be used in the
log4j2.xml <PatternLayout> configuration:

Item Description

exchangeId Identifies the ID for a specific request/response pair.

 | Configure logging | 107

For example, the following line from log4j2.xml incorporates the exchangeId in the output:

<pattern>%d{ISO8601} %5p [%X{exchangeId}] %c:%L - %m%n</pattern>

Note: The %X conversion character is required for the exchangeId to be displayed properly.

Configure log levels
Define log levels for specific package or class names in order to get more (or less) logging from a class or group of
classes. If the log level is not specified for a particular package or class, the settings for the root logger are inherited.

1. Open conf/log4j2.xml in an editor.
2. Locate the <AsyncLogger> element for the package or class you wish to adjust the logging level for.

<AsyncLogger name="com.pingidentity" level="DEBUG" additivity="false"
 includeLocation="false">

3. Modify the level attribute to set the desired log level.
Valid values are OFF, FATAL, ERROR, WARN, INFO, DEBUG, and TRACE.

4. Save the modified file. PingAccess will automatically make the changes effective within 30 seconds.

Configure a class or package log level

1. Open conf/log4j2.xml in an editor. Class or package loggers are defined in the <AsyncLogger> name
attribute. For example, cookie logging is enabled using the line:

<AsyncLogger
 name="com.pingidentity.pa.core.interceptor.CookieLoggingInterceptor"
 level="TRACE" additivity="false" includeLocation="false">
 <AppenderRef ref="File"/>
</AsyncLogger>

2. Set the level value in the <AsyncLogger> element to one of the following values:
OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE.
For example, to apply TRACE level logging for the com.pingidentity package, locate the following line:

<AsyncLogger name="com.pingidentity" level="DEBUG" additivity="false"
 includeLocation="false">

and change it to:

<AsyncLogger name="com.pingidentity" level="TRACE" additivity="false"
 includeLocation="false">

3. Save the file.

Enable cookie logging
Cookie logging is an optional feature in the TRACE log level.

 | Configure logging | 108

1. Edit conf/log4j2.xml and uncomment the following section:

<AsyncLogger
 name="com.pingidentity.pa.core.interceptor.CookieLoggingInterceptor"
 level="TRACE" additivity="false" includeLocation="false">
 <AppenderRef ref="File"/>
</AsyncLogger>

2. Save the file.

Append log messages to syslog and the console
Additional output destinations (called appenders) are available. Console and syslog appenders are pre-configured in
log4j2.xml, but are disabled by default.

To enable additional appenders, perform the following steps:

1. Open conf/log4j2.xml in an editor.
2. Locate the following lines in the <Loggers> element:

<AsyncLogger name="com.pingidentity" level="DEBUG" additivity="false"
 includeLocation="false">
 <AppenderRef ref="File"/>
 <!--<AppenderRef ref="CONSOLE" />-->
 <!--<AppenderRef ref="SYSLOG" />-->
</AsyncLogger>

Note: If you have customized logging to enable logging for additional classes, locate the
<AsyncLogger> element that is relevant to the class in question. This class is defined in the
<AsyncLogger> name attribute.

3. Uncomment the <AppenderRef> element that applies to the appender you wish to enable.

Note: PingAccess will rescan the logging configuration within 30 seconds and make the change active
automatically.

4. Save the file.

Write logs to other formats
PingAccess provides the option of writing the audit logs to an Oracle or SQL Server database.

You may also configure PingAccess to write the audit logs to a differently formatted log file that can easily be
digested by Splunk.

Write logs to databases

You can enable database logging for the API, engine, and agent audit logs in conf/log4j2.db.properties.
Scripts are provided in conf/log4j/sql-scripts to create the necessary tables. PingAccess supports logging
to Oracle, SQL Server, and PostgreSQL databases.

1. Ensure that your database driver JAR file is installed in the PA_HOME/lib directory. Restart PingAccess after
installing the driver.

2. In conf/log4j2.xml, uncomment one or more of the preset appender configurations listed below:

• Oracle

• For Administrative API audit logging: Uncomment the <JDBC> element with the
name="ApiAuditLog-Database" attribute specified, along with the following <RollingFile>
and <PingAccessFailover> elements.

 | Configure logging | 109

• For Engine audit logging: Uncomment the <JDBC> element with the name="EngineAuditLog-
Database" attribute specified, along with the following <RollingFile> and
<PingAccessFailover> elements.

• For Agent audit logging: Uncomment the <JDBC> element with the name="AgentAuditLog-
Database" attribute specified, along with the following <RollingFile> and
<PingAccessFailover> elements.

• SQL Server

• For Administrative API audit logging: Uncomment the <JDBC> element with the
name="ApiAuditLog-SQLServer-Database" attribute specified, along with the following
<RollingFile> and <PingAccessFailover> elements.

• For Engine audit logging: Uncomment the <JDBC> element with the name="EngineAuditLog-
SQLServer-Database" attribute specified, along with the following <RollingFile> and
<PingAccessFailover> elements.

• For Agent audit logging: Uncomment the <JDBC> element with the name="AgentAuditLog-
SQLServer-Database" attribute specified, along with the following <RollingFile> and
<PingAccessFailover> elements.

• PostgreSQL

• For Administrative API audit logging: Uncomment the <JDBC> element with the
name="ApiAuditLog-PostgreSQL-Database" attribute specified, along with the following
<RollingFile> and <PingAccessFailover> elements.

• For Engine audit logging: Uncomment the <JDBC> element with the name="EngineAuditLog-
PostgreSQL-Database" attribute specified, along with the following <RollingFile> and
<PingAccessFailover> elements.

• For Agent audit logging: Uncomment the <JDBC> element with the name="AgentAuditLog-
PostgreSQL-Database" attribute specified, along with the following <RollingFile> and
<PingAccessFailover> elements.

Note: The <PingAccessFailover> element is used to define how PingAccess logging fails over if
a connection to the primary database is not accessible. Use the retryIntervalSeconds attribute to
specify the number of seconds that must pass before retrying the primary JDBC appender.

3. In conf/log4j2.db.properties, replace the placeholder parameter values for each enabled appender with
valid values to provide access to the database.

Info: You can obfuscate the password used to access the database by running either obfuscate.sh
or obfuscate.bat, located in PA_HOME/bin. Use the database password as an argument, then
copy the output into the password configuration property for the appender in PA_HOME/conf/
log4j2.db.properties.

4. In conf/log4j2.xml, uncomment the <AppenderRef> elements in each respective <Logger> section as shown
in the following examples:

Oracle:

<!-- Audit Log Configuration-->
<Logger name="apiaudit" level="INFO" additivity="false">
 <AppenderRef ref="APIAuditLog-File"/>
 <AppenderRef ref="ApiAuditLog-Database-Failover"/>
 <!--<AppenderRef ref="ApiAuditLog-SQLServer-Database-Failover"/>-->
 <!--<AppenderRef ref="ApiAuditLog-PostgreSQL"/>-->
 <!--<AppenderRef ref="ApiAudit2Splunk"/>-->
</Logger>
<Logger name="engineaudit" level="INFO" additivity="false">
 <AppenderRef ref="EngineAuditLog-File"/>
 <AppenderRef ref="EngineAuditLog-Database-Failover"/>
 <!--<AppenderRef ref="EngineAuditLog-SQLServer-Database-Failover"/>-->
 <!--<AppenderRef ref="EngineAuditLog-PostgreSQL"/>-->
 <!--<AppenderRef ref="EngineAudit2Splunk"/>-->
</Logger>

 | Configure logging | 110

<Logger name="agentaudit" level="INFO" additivity="false">
 <AppenderRef ref="AgentAuditLog-File"/>
 <AppenderRef ref="AgentAuditLog-Database-Failover"/>
 <!--<AppenderRef ref="AgentAuditLog-SQLServer-Database-Failover"/>-->
 <!--<AppenderRef ref="AgentAuditLog-PostgreSQL"/>-->
 <!--<AppenderRef ref="AgentAudit2Splunk"/>-->
</Logger>

SQL Server

<!-- Audit Log Configuration-->
<Logger name="apiaudit" level="INFO" additivity="false">
 <AppenderRef ref="APIAuditLog-File"/>
 <!--<AppenderRef ref="ApiAuditLog-Database-Failover"/>-->
 <AppenderRef ref="ApiAuditLog-SQLServer-Database-Failover"/>
 <!--<AppenderRef ref="ApiAuditLog-PostgreSQL"/>-->
 <!--<AppenderRef ref="ApiAudit2Splunk"/>-->
</Logger>
<Logger name="engineaudit" level="INFO" additivity="false">
 <AppenderRef ref="EngineAuditLog-File"/>
 <!--<AppenderRef ref="EngineAuditLog-Database-Failover"/>-->
 <AppenderRef ref="EngineAuditLog-SQLServer-Database-Failover"/>
 <!--<AppenderRef ref="EngineAuditLog-PostgreSQL"/>-->
 <!--<AppenderRef ref="EngineAudit2Splunk"/>-->
</Logger>
<Logger name="agentaudit" level="INFO" additivity="false">
 <AppenderRef ref="AgentAuditLog-File"/>
 <!--<AppenderRef ref="AgentAuditLog-Database-Failover"/>-->
 <AppenderRef ref="AgentAuditLog-SQLServer-Database-Failover"/>
 <!--<AppenderRef ref="AgentAuditLog-PostgreSQL"/>-->
 <!--<AppenderRef ref="AgentAudit2Splunk"/>-->
</Logger>

PostgreSQL

<!-- Audit Log Configuration-->
<Logger name="apiaudit" level="INFO" additivity="false">
 <AppenderRef ref="APIAuditLog-File"/>
 <!--<AppenderRef ref="ApiAuditLog-Database-Failover"/>-->
 <!--<AppenderRef ref="ApiAuditLog-SQLServer-Database-Failover"/>-->
 <AppenderRef ref="ApiAuditLog-PostgreSQL"/>
 <!--<AppenderRef ref="ApiAudit2Splunk"/>-->
</Logger>
<Logger name="engineaudit" level="INFO" additivity="false">
 <AppenderRef ref="EngineAuditLog-File"/>
 <!--<AppenderRef ref="EngineAuditLog-Database-Failover"/>-->
 <!--<AppenderRef ref="EngineAuditLog-SQLServer-Database-Failover"/>-->
 <AppenderRef ref="EngineAuditLog-PostgreSQL"/>
 <!--<AppenderRef ref="EngineAudit2Splunk"/>-->
</Logger>
<Logger name="agentaudit" level="INFO" additivity="false">
 <AppenderRef ref="AgentAuditLog-File"/>
 <!--<AppenderRef ref="AgentAuditLog-Database-Failover"/>-->
 <!--<AppenderRef ref="AgentAuditLog-SQLServer-Database-Failover"/>-->
 <AppenderRef ref="AgentAuditLog-PostgreSQL"/>
 <!--<AppenderRef ref="AgentAudit2Splunk"/>-->
</Logger>

5. Create the database tables. Scripts to create database tables are located in conf/log4j/sql-scripts.

Note: The scripts are written to handle the default list of elements for the relevant database log appender.
Any changes to the list require corresponding changes to the SQL table creation script, or to the table itself

 | Configure logging | 111

if it already exists. For more information on working with these scripts, see Oracle, PostgreSQL, or MS
SQL Server documentation.

Important: For PostgreSQL database scripts, use of the default public schema is not recommended. To
run the scripts against a different schema, choose one of the following options:

• Prepend the schema before the table name. For example, api_audit_log would become
my_schema.api_audit_log

• Run the script via psql and specify an options parameter to define the schema. For example:

psql postgresql://<user>@<db_hostname>:5432/<db_name>?options=--
search_path=<schema> -f api-audit-log-postgresql.sql

Write audit logs for Splunk

Splunk is enterprise software that allows for monitoring, reporting, and analyzing consolidated log files. Splunk
captures and indexes real-time data into a single searchable repository from which reports, graphs, and other data
visualization can be generated. To configure PingAccess to write audit logs to a format for Splunk:

1. In conf/log4j2.xml, uncomment the <RollingFile> and <AppenderRef> elements for the Splunk
appenders you wish to enable:

<!--
<RollingFile name="ApiAudit2Splunk"
 fileName="${sys:pa.home}/log/pingaccess_api_audit_splunk.log"
 filePattern="${sys:pa.home}/log/pingaccess_api_audit_splunk.
%d{yyyy-MM-dd}.log"
 ignoreExceptions="false">
 <PatternLayout>
 <pattern>%d{ISO8601} exchangeId="%X{exchangeId}"
 trackingId="%X{AUDIT.trackingId}" subject="%X{AUDIT.subject}"
 authMech="%X{AUDIT.auth
Mech}" client="%X{AUDIT.client}" method="%X{AUDIT.method}"
 requestUri="%X{AUDIT.requestUri}" responseCode="%X{AUDIT.responseCode}"
 %n</pattern>
 </PatternLayout>
 <Policies>
 <TimeBasedTriggeringPolicy />
 </Policies>
</RollingFile>
-->

Note: <RollingFile> elements are also present for EngineAudit2Splunk and
AgentAudit2Splunk. They are structured similarly to the ApiAudit2Splunk example shown
above.

<Logger name="apiaudit" level="INFO" additivity="false">
 <AppenderRef ref="APIAuditLog-File"/>
 <!--<AppenderRef ref="ApiAuditLog-Database-Failover"/>-->
 <!--<AppenderRef ref="ApiAudit2Splunk"/>-->
</Logger>
<Logger name="engineaudit" level="INFO" additivity="false">
 <AppenderRef ref="EngineAuditLog-File"/>
 <!--<AppenderRef ref="EngineAuditLog-Database-Failover"/>-->
 <!--<AppenderRef ref="EngineAudit2Splunk"/>-->
</Logger>
<Logger name="agentaudit" level="INFO" additivity="false">
 <AppenderRef ref="AgentAuditLog-File"/>
 <!--<AppenderRef ref="AgentAuditLog-Database-Failover"/>-->
 <!--<AppenderRef ref="AgentAudit2Splunk"/>-->
</Logger>

 | Manage APIs | 112

2. Save the file.

Note: PingAccess automatically updates its configuration within 30 seconds; a restart is not required for
this change to be effective.

3. Download and install the Splunk Universal Forwarder on the machine running PingAccess.
4. Configure the Universal Forwarder to monitor logs/pingaccess_api_audit_splunk.log, logs/

pingaccess_agent_audit_splunk.log, or logs/pingaccess_engine_audit_splunk.log.

Info: For detailed installation and configuration instructions, consult the Splunk documentation
accompanying the Universal Forwarder.

Manage APIs

PingAccess endpoints
The following endpoints provide a means by which external applications can communicate with the PingAccess
server and provide complete administrative capabilities of the product.

Important: Some endpoint examples in this document include the /pa reserved path. This document
assumes the default application reserved path has not been modified. You can modify the reserved path using
the PingAccess Admin API. If the reserved path has been modified, update endpoint and other applicable
application URLs appropriately.

Heartbeat Endpoint A maintenance endpoint is provided for administrators to
verify that the server is running.

OpenID Connect Endpoints Endpoints needed for PingFederate to interface with
PingAccess using the OpenID Connect (OIDC) protocol
are also included.

Auth Token Management endpoint on page 114 Endpoints used for Authentication Token Management.

Administrative API Endpoints The Administrative API endpoints are used by the
PingAccess administrative console. These are REST
APIs that can be called from custom applications or
using command line tools such as curl.

Note: The endpoint examples in this document

Heartbeat endpoint

You can use an HTTPS call at any time to verify that the PingAccess server is running. This call can be made to any
active PingAccess listener and on any node in a PingAccess cluster. For example, with default port configurations, a
CLUSTERED_CONSOLE_REPLICA will respond to this endpoint on port 9000, and a CLUSTERED_ENGINE will
respond to it on port 3000.

/pa/heartbeat.ping

This endpoint is configured using the enable.detailed.heartbeat.response parameter in run.properties. If this option is
set to false, then an HTTP 200 status and the text OK is returned.

If the enable.detailed.heartbeat.response parameter is set to true (the default setting), then a configurable status with
more detail is returned. PingAccess must be restarted if this value is changed.

If an error is returned, then the PingAccess instance associated with the endpoint is down. Load balancers can use this
endpoint to determine the status of PingAccess, independent of any other system status checks.

 | Manage APIs | 113

Info: Begin the URL with the server name and the PingAccess runtime port number. For example:
https://hostname:3000/pa/heartbeat.ping.

The detailed response output format is an Apache Velocity template defined in PA_HOME/conf/template/
heartbeat.page.json. The following values are available:

Value Description

$monitor.getTotalJvmMemory('bytes'|'KB'|'MB'|'GB') Returns the total memory in the JVM. Specify 'bytes',
'KB', "MB', or 'GB' to specify the units. 'bytes' is the
default if not specified.

$monitor.getUsedJvmMemory('bytes'|'KB'|'MB'|'GB') Returns the used memory in the JVM. Specify 'bytes',
'KB', "MB', or 'GB' to specify the units. 'bytes' is the
default if not specified.

$monitor.getFreeJvmMemory('bytes'|'KB'|'MB'|'GB') Returns the free memory in the JVM. Specify 'bytes',
'KB', "MB', or 'GB' to specify the units. 'bytes' is the
default if not specified.

$monitor.getTotalPhysicalSystemMemory('bytes'|'KB'|'MB'|'GB')Returns the total system memory. Specify 'bytes', 'KB',
"MB', or 'GB' to specify the units. 'bytes' is the default if
not specified.

$monitor.getTotalUsedPhysicalSystemMemory('bytes'|'KB'|'MB'|'GB')Returns the used system memory. Specify 'bytes', 'KB',
"MB', or 'GB' to specify the units. 'bytes' is the default if
not specified.

$monitor.getTotalFreePhysicalSystemMemory('bytes'|'KB'|'MB'|'GB')Returns the free system memory. Specify 'bytes', 'KB',
"MB', or 'GB' to specify the units. 'bytes' is the default if
not specified.

$monitor.getHostname() Returns the hostname for the system running
PingAccess.

$monitor.getNumberOfCpus() Returns the number of CPU cores in the system.

$monitor.getCpuLoad('###.##') Returns the current CPU utilization. The parameter
contains an optional format value. If the format is
specified, the value returned is returned as a percentage
value from 0%-100%, formatted using the Java
DecimalFormat specification. If no format value is
specified, then the value returned is a real number from 0
to 1 which represents the CPU utilization percentage. For
example, a format value of "###.##" will return a value
similar to "56.12", but no specified format would result
in the value being returned as "0.5612".

$monitor.getOpenClientConnections() Returns the current number of clients connected to
PingAccess.

$monitor.getNumberOfVirtualHosts() Returns the current number of configured virtual hosts in
PingAccess.

$monitor.getNumberOfApplications() Returns the current number of configured applications in
PingAccess.

http://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/DecimalFormat.html

 | Manage APIs | 114

Value Description

$monitor.getNumberOfSites() Returns the current number of configured sites in the
PingAccess configuration database. In a clustered
environment, on the engine nodes, this number will
reflect the number of sites associated with applications
rather than the number of configured sites that show
on the admin node. For more information, see Server
Clustering documentation. This value is not included
in the default template, but can be added by the system
administrator if desired.

$monitor.getLastRefreshTime('yyyy/MM/dd HH:mm:ss') Returns the time the PingAccess configuration was last
refreshed. The parameter specifies the date format to use;
if no value is specified, the ISO 8601 date format is used.
If the parameter is specified, the format used comes from
the Joda DateTimeFormat specification.

The template can be modified in any way to suit your needs.

The default content type is application/json, however this can be overridden by modifying the
$monitor.setContentType() line in the template to specify the desired content-type header.

OpenID Connect endpoints

This page describes the endpoints needed for PingFederate to interface with PingAccess using the OpenID Connect
(OIDC) protocol. These endpoints are available on the engine.http.port and agent.http.port ports
defined in PA_HOME/conf/run.properties.

/pa/oidc/logout

Clears the cookie containing the PA Token. This endpoint enables end users to trigger the removal of their own PA
Cookie from the browser they are using. The Logged Out page is a template that can be modified.

Info: This endpoint simply clears the PA Token from the browser cookie. It does not retain any server-side
state to denote log off. Additionally, this endpoint clears the cookie only from the requested host/domain and
may still exist in requests bound for other hosts/domains.

Note: If logout is being performed across multiple domains, use the PingFederate /idp/startSLO.ping
endpoint instead. See PingFederate documentation for more information about this endpoint.

/pa/oidc/cb

The OIDC callback endpoint that receives the ID Token from PingFederate.

/pa/oidc/JWKS

The JSON Web Key endpoint used by the PingFederate JWT Token Processor for signature verification. This
endpoint must be used in conjunction with the configuration of a JWT token processor instance in PingFederate. For
more information on configuring a JWT, see PingFederate documentation.

/pa/oidc/logout.png

Used by PingFederate to initiate a logout from PingAccess in conjunction with the single logout functionality. This
endpoint terminates the PA tokens across domains.

Auth Token Management endpoint

This page describes endpoints used for Authentication Token Management.

 | Perform a zero downtime upgrade | 115

/pa/authtoken/JWKS

This endpoint is used by backend sites to validate the signature of a JWT. For more information on the use of JWT,
see the OpenID Connect 1.0 Developers Guide.

Administrative API endpoints

PingAccess ships with interactive documentation for both developers and non-developers to explore the PingAccess
API endpoints, view a reference of the metadata for each API, and experiment with API calls. PingAccess APIs
are REST APIs that provide complete administrative capabilities of the product. They can be called from custom
applications or from command line tools such as cURL. This endpoint is only available on the admin.port
defined in PA_HOME/conf/run.properties at path /pa-admin-api/v3/api-docs/ (https://
<PA_HOME>:<PORT>/pa-admin-api/v3/api-docs/).

Note: For enhanced API security, you must include X-XSRF-Header: PingAccess in all requests and
use the application/json content type for PUT/POST requests.

Perform a zero downtime upgrade

Introduction

This document describes the steps required to perform a zero downtime upgrade of a PingAccess cluster to version
5.0 or higher. A zero downtime upgrade allows you to upgrade your environment with no impact to resource
availability or existing user sessions.

Though this procedure is applicable to any PingAccess cluster upgrade to version 5.0 or higher, there are minor
variations depending on your PingAccess source version. Those variations are clearly described where applicable.

Note that there are some steps, particularly those related to working with a load balancer, that are dependent on your
environment. It is expected that you are familiar with the tasks required by these steps and, accordingly, this document
does not attempt to offer detailed instruction on performing these tasks.

Important: In order to achieve a successful upgrade, perform the steps in this document in the order that
they are presented. Deviation from these steps may result in a failed upgrade and/or system downtime.

To begin the upgrade process, Disable key rolling to prevent active sessions from being invalidated.

Step 1: Disable key rolling

In this step, you will disable key rolling to prevent active sessions from being invalidated during the upgrade process.
This is a temporary modification that you will address when the upgrade is complete. Note that there are different
procedures at this stage depending if your source version is PingAccess 5.0 or an earlier version of PingAccess.

https://developer.pingidentity.com/en/resources/openid-connect-developers-guide.html

 | Perform a zero downtime upgrade | 116

Source version of PingAccess 5.0 and higher

If the source is PingAccess 5.0 or higher, you can disable key rolling.

1. Navigate to Settings > Access > Identity Mappings.
2. In the Auth Token Management section, deselect Key Roll Enabled.
3. Click Save.
4. Navigate to Settings > Access > Web Sessions.
5. In the Web Session Management section, deselect Key Roll Enabled.
6. Click Save.

Source is an earlier version of PingAccess

If the source is a version of PingAccess earlier than 5.0, you can set the key rolling interval to a value that allows
enough time for the upgrade to be completed successfully.

1. Navigate to Settings > Access > Identity Mappings.
2. In the Auth Token Management section, specify a Key Roll Interval of 240 (10 days).
3. Click Save.
4. Navigate to Settings > Access > Web Sessions.
5. In the Web Session Management section, specify a Key Roll interval of 240 (10 days).
6. Click Save.

Next, you will upgrade the Admin node.

Step 2: Upgrade the Admin node

In this step, you will upgrade the PingAccess administration node using the PingAccess Upgrade Utility. As part of
this step, you will use the -r switch to disable configuration replication on the target version.

For more information on upgrading PingAccess, see Upgrade PingAccess.

https://docs.pingidentity.com/bundle/pa_sm_UpgradePA_pa51/page/pa_t_Upgrading_PingAccess.html

 | Perform a zero downtime upgrade | 117

Prerequisites

Prior to beginning the upgrade process, make sure you have:

• Ensured PingAccess is running
• Downloaded and unpacked the PingAccess Upgrade Utility
• Downloaded the PingAccess distribution ZIP file
• The PingAccess license
• Administrator credentials
• Basic Authentication enabled

Warning: Failure to enable basic authentication can result in losing access to the Administration console.

Upgrade the PingAccess administrative node

1. To run the Upgrade Utility, use a command line to change to the Upgrade Utility's /bin directory. For example:

cd /pa-upgrade-5.0.1/bin

2. Run the Upgrade Utility:

• Linux: ./run.sh -r <sourcePingAccessRootDir> <outputDir> <pingaccessZip>
<newPingAccessLicense>

For example:

./run.sh -r ../pingaccess-4.3.0 ../pingaccess-5.0.1 ../
pingaccess-5.0.1.zip ../pingaccess.lic

• Windows: run.bat -r <sourcePingAccessRootDir> <outputDir> <pingaccessZip>
<newPingAccessLicense>

For example:

run.bat -r ../pingaccess-4.3.0 ../pingaccess-5.0.1 ../
pingaccess-5.0.1.zip ../pingaccess.lic

Important: The -r switch will disable configuration replication on the Admin node. You will re-enable
configuration replication after the Admin and all engine nodes have been upgraded.

3. Stop the existing PingAccess admin instance.
4. Start the new PingAccess admin instance.
5. Upgrade the Admin Replica node using the same steps, but omitting the -r switch.

Important: If PingAccess is running as a service:

• In Linux, update PA_HOME in /etc/systemd/system/pingaccess.service to point to the
new installation.

https://www.pingidentity.com/en/resources/downloads/pingaccess/upgrade.html
https://www.pingidentity.com/en/resources/downloads/pingaccess.html

 | Perform a zero downtime upgrade | 118

• In Windows, remove the existing PingAccess service (<OLD_PA_HOME>\sbin\Windows
\uninstall-service.bat) and add the new service (<NEW_PA_HOME>\sbin\Windows
\install-service.bat).

After you have upgraded the Admin and Replica Admin nodes, you can begin upgrading the engines.

Step 3: Upgrade engines

This phase of the zero downtime upgrade focuses on upgrading each engine in the cluster. To maintain resource
availability, you perform this set of steps on one engine at a time until all engines are successfully upgraded.

Important: It is imperative that you perform these steps on one engine at a time to maintain availability.
Engines are identified by the engine name. Ensure that the engine that you remove from the load balancer
aligns with the engine definition you import.

This phase requires that the following steps take place for each engine in the cluster, one at a time:

• Remove the engine from the load balancer
• Upgrade the engine
• Resume configuration replication on page 120
• Add the engine to the load balancer

Important: Do not begin the upgrade of an additional engine until the active engine upgrade is completed
and the engine is reporting to the PingAccess administrative node.

Remove the engine from the load balancer configuration

This step requires you to remove the engine from the load balancer configuration. Since this step is dependent on your
environment, no specific instruction will be provided. It is assumed that you are familiar with the steps required to
temporarily remove the engine from your load balancer configuration.

Important: To maintain resource availability, you should remove only the engine you are upgrading.
After the upgrade is complete, you will add the engine back to the load balancer configuration. Only after
you confirm that the engine has been successfully added to the load balancer and is reporting properly to
PingAccess should you begin the upgrade process on additional engines.

Remove the engine from the load balancer configuration

1. Identify and note the engine you want to upgrade. Ensure you have the engine definition for this engine available.
2. Locate the entry for this engine in your load balancer configuration.
3. Depending on your environment, you may be removing this entry or you may be commenting the entry to remove

it. Ensure that you make note of any entries you remove or modify so that you can reverse this operation later in
Add the engine to the load balancer configuration on page 121.

4. Remove the engine entry from the load balancer.
5. Restart the load balancer.

 | Perform a zero downtime upgrade | 119

Upgrade the engine

In this step, you will use the PingAccess Upgrade Utility to upgrade the engine.

For more information on upgrading PingAccess, see Upgrade PingAccess.

Prerequisites

Prior to beginning the upgrade process, make sure you have:

• Ensured the PingAccess engine is running
• Downloaded and unpacked the PingAccess Upgrade Utility
• Downloaded the PingAccess distribution ZIP file
• The PingAccess license

Upgrade the PingAccess engine

1. To run the Upgrade Utility, use a command line to change to the Upgrade Utility's /bin directory. For example:

cd /pa-upgrade-5.0.1/bin

2. Run the Upgrade Utility:

• Linux: ./run.sh <sourcePingAccessRootDir> <outputDir> <pingaccessZip>
<newPingAccessLicense>

For example:

/run.sh ../pingaccess-4.3.0 ../pingaccess-5.0.1 ../
pingaccess-5.0.1.zip ../pingaccess.lic

• Windows: run.bat <sourcePingAccessRootDir> <outputDir> <pingaccessZip>
<newPingAccessLicense>

For example:

run.bat ../pingaccess-4.3.0 ../pingaccess-5.0.1 ../
pingaccess-5.0.1.zip ../pingaccess.lic

3. Stop the existing PingAccess instance. Do not start the new instance.

Important: If PingAccess is running as a service:

• In Linux, update PA_HOME in /etc/systemd/system/pingaccess.service to point to the
new installation.

• In Windows, remove the existing PingAccess service (<OLD_PA_HOME>\sbin\Windows
\uninstall-service.bat) and add the new service (<NEW_PA_HOME>\sbin\Windows
\install-service.bat).

https://docs.pingidentity.com/bundle/pa_sm_UpgradePA_pa51/page/pa_t_Upgrading_PingAccess.html
https://www.pingidentity.com/en/resources/downloads/pingaccess/upgrade.html
https://www.pingidentity.com/en/resources/downloads/pingaccess.html

 | Perform a zero downtime upgrade | 120

Resume configuration replication

In this step, you will resume configuration replication that was disabled by the Upgrade Utility. You will perform this
step for the Admin replica and all engines in the cluster. You will use the PingAccess Admin API to GET and PUT
the relevant configuration data for each of these items.

To resume configuration replication:

Note: Perform the following steps for the Replica Admin node and for each engine in the cluster.

1. In a browser, navigate to https://<PingAccessHost>:9000/pa-admin-api/v3/api-docs/.
2. For engines, expand the /engines endpoint.
3. Click the GET /engines operation.
4. Click Try it out! and note the engine id for each engine.
5. Click the GET /engines/{id} operation.
6. Enter the id of the engine you want to update and click Try it out!
7. Copy the Response Body.
8. Click the PUT /engines/{id} operation and enter the id of the engine you want to update.
9. Paste the Response Body you copied and change "configReplicationEnabled" to true.
10. Click Try it out!

If the operation is successful, you will receive a Response Code of 200.
11. Repeat the previous steps for each engine.
12. In the PingAccess administration console, navigate to Settings > System > Clustering.
13. Ensure the engines are displayed and reporting. A healthy engine shows a green status indicator.

Note: There may be a delay in bringing the engine to a running status. If the engine does not immediately
show as reporting, refresh the page until the engine status indicator is green (running).

14. Expand the /adminConfig/replicaAdmins endpoint.
15. Click the GET /adminConfig/replicaAdmins operation.

 | Perform a zero downtime upgrade | 121

16. Click Try it out! and note the id for the replica admin.
17. Click the GET /adminConfig/replicaAdmins/{id} operation.
18. Enter the id of the replica admin you want to update and click Try it out!
19. Copy the Response Body.
20. Click the PUT /adminConfig/replicaAdmins/{id} operation and enter the id of the replica admin you want to

update.
21. Paste the Response Body you copied and change "configReplicationEnabled" to true.
22. Click Try it out!

If the operation is successful, you will receive a Response Code of 200.
23. In the PingAccess administration console, navigate to Settings > System > Clustering.
24. Ensure the Replica Administrative Node displayed and reporting on the Administrative Nodes screen. A

healthy node shows a green status indicator.

Add the engine to the load balancer configuration

This step requires you to add the engine back to the load balancer configuration. Since this step is dependent on your
environment, no specific instruction will be provided. It is assumed that you are familiar with the steps required to
add the engine back to the load balancer configuration.

After you confirm that the engine has been successfully added to the load balancer and is reporting properly to
PingAccess, you can begin the upgrade process on additional engines.

Add the engine to the load balancer configuration

1. To add the engine to the load balancer configuration, simply reverse the steps you took in Remove the engine from
the load balancer configuration on page 118 to remove the engine.

2. Restart the load balancer.

Repeat the Step 3: Upgrade engines on page 118 process until each engine has been upgraded. When all engines
have been upgraded, added to the load balancer configuration, and are reporting to PingAccess, you can move on to
the final step, Enable key rolling, to complete the zero downtime upgrade process.

Step 4: Enable key rolling

In this step, you will resume key rolling. Note that there are different procedures at this stage depending if your source
version is PingAccess 5.0 or an earlier version of PingAccess.

 | Perform a zero downtime upgrade | 122

Source version of PingAccess 5.0 and higher

1. Navigate to Settings > Access > Identity Mappings.
2. In the Auth Token Management section, select Key Roll Enabled.
3. Click Save.
4. Navigate to Settings > Access > Web Sessions.
5. In the Web Session Management section, select Key Roll Enabled.
6. Click Save.

Source is an earlier version of PingAccess

1. Navigate to Settings > Access > Identity Mappings.
2. In the Auth Token Management section, specify a Key Roll Interval of your choosing. The default value is 24

(1 day).
3. Click Save.
4. Navigate to Settings > Access > Web Sessions.
5. In the Web Session Management section, specify a Key Roll interval of your choosing. The default value is 24

(1 day).
6. Click Save.

Recovering from a failed upgrade

The Zero Downtime Upgrade process creates a set of new folders for the upgraded installation. The pre-upgrade
source installation is not affected.

To recover your PingAccess cluster in the event of a failure, you would utilize the former installation by:

1. Stopping any upgraded PingAccess instances.
2. Start the original PingAccess instance on the Admin node.
3. Import the engine definitions back into the original PingAccess instance.
4. Start the original PingAccess instances on the Engine nodes.
5. Ensure all engines are added to the load balancer configuration.

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 123

Protect a web-based application using PingFederate and
PingAccess in a proxy deployment

Protect a web-based application in a proxy deployment
This document describes the basic steps necessary to protect a web-based application using the combination of
PingAccess as the access manager and PingFederate as the token provider.

Along with a description of the configuration steps that are required, this document includes a functioning example
using the PingAccess QuickStart application. You can perform the example configuration to achieve a working
result and become familiar with this solution, or you can substitute your own data.

Note that this is a basic configuration featuring:

• a PingFederate HTML Form Adapter with an instance of a Simple Password Credential Validator
• the PingFederate Access Token Manager (ATM) using the Internally Managed Reference Token data model

Your configuration may call for additional settings and components to satisfy network and/or security requirements.
Links to additional resources that explain these additional settings and components are offered throughout this
document.

This document does not detail the usage of identity mappings or authentication requirements that are common
components of a typical configuration. As these components are simple to configure and beyond the scope of this
document, you can read more about them and other features in the PingAccess User Interface Reference Guide.

Prerequisites

To complete the example configuration, the following prerequisites should be satisfied:

1. You have downloaded and performed a basic installation of PingAccess 5.1 and PingFederate 9.1.
2. You have downloaded the PingAccess QuickStart (Login required) application, unzipped the file, and copied

the \pingaccess-quickstart-5.1.0\pf-dist\PingAccessQuickStart.war file to \Program
Files\Ping Identity\pingfederate-9.1.0\pingfederate\server\default\deploy.

3. The PingAccess QuickStart application is hosted and available at https://mypingfedserver:9031/
PingAccessQuickStart.

To begin, Configure PingFederate for PingAccess connectivity on page 123.

Configure PingFederate for PingAccess connectivity

This document provides the sequence of steps for configuring PingFederate components for PingAccess connectivity
as required for this solution. In this configuration procedure, you will:

1. Enable PingFederate roles and protocols on page 124
2. Create a password credential validator on page 124
3. Configure an IdP adapter on page 124
4. Define the scope on page 125
5. Create an access token manager on page 125
6. Configure an IdP adapter mapping on page 125
7. Configure an access token mapping on page 126
8. Create an OpenID Connect policy on page 126
9. Create a resource server client on page 126
10. Create a web session client on page 127
11. Create and export a certificate on page 127

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ReferenceIntroduction.html
https://www.pingidentity.com/en/products/downloads/pingaccess.html
https://www.pingidentity.com/en/products/downloads/pingfederate.html
https://www.pingidentity.com/content/dam/pic/downloads/software/demo-apps/pingaccess-quickstart-5.0.0.zip

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 124

Important:

1. These steps assume you have installed PingFederate. The example assumes that your PingFederate
instance is available at https://mypingfedserver, using ports 9031 and 9999 respectively for
the runtime and administration functions.

2. These steps assume you have installed PingAccess. This example assumes that your PingAccess instance
is available at https://mypingaccessserver and that 3000 is the default listening port.

Enable PingFederate roles and protocols

Ensure that PingFederate is configured to respond to OAuth and OIDC requests using the following steps. For more
information on PingFederate Roles and Protocols, see Choose roles and protocols.

1. Navigate to Server Configuration > System Settings > Server Settings.
2. Click Roles & Protocolsand ensure the following items are selected:

• OAuth (role) and OpenID Connect (protocol)
• IdP (role) and SAML 2.0 (protocol)

3. On the Federation Info screen, enter the URL of your PingFederate environment and your SAML 2.0 entity ID.
For example:

• My Base URL: https://mypingfedserver:9031
• SAML 2.0 Entity ID: https://mypingfedserver/idp

4. Click Save.

Create a password credential validator

Create a password credential validator, then create a username and password to authenticate with. For more
information on Password Credential Validators, see Manage password credential validators.

1. Navigate to Settings > Server Configuration > Authentication > Password Credential Validators.
2. Click Create New Instance.
3. Specify an Instance Name and Instance ID of your choosing. For example:

Instance Name: My_PCV
Instance ID: mypcv

4. In the Type list, select Simple Username Password Credential Validator.
5. On the Instance Configuration page, click Add a new row to 'Users'.
6. Create a Username, then create and confirm a Password.
7. Click Update.
8. On the Summary page, click Done.
9. Click Save.

Configure an IdP adapter

Configure an IdP adapter to look up session information and provide user identification to PingFederate. This
example uses an instance of the HTML Form Adapter with an instance of the Simple Password Credential Validator.
For more information, see Manage IdP adapters.

1. Navigate to Identity Provider > Application Integration > Adapters.
2. Click Create New Instance.
3. Specify an Instance Name and Instance ID of your choosing. For example:

Instance Name: My_IdP
Instance ID: myidp

4. In the Type list, select HTML Form IdP Adapter.
5. On the IdP Adapter page, click Add a new row to 'Credential Validators'.

https://documentation.pingidentity.com/pingfederate/pf90/task_choosingRolesAndProtocols.html
https://documentation.pingidentity.com/pingfederate/pf90/adminGuide/concept/validatingPasswordCredentials.html
https://documentation.pingidentity.com/pingfederate/pf90/task_configuringIdpAdapters.html

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 125

6. In the Password Credential Validator Instance list, select the password credential validator you created
(Example: My_PCV) and click Update.

7. On the Adapter Attributes page, next to the username attribute, click to select the Pseudonym checkbox
8. On the Summary page, click Done.
9. Click Save.

Define the scope

Use the Scope Management screen to define the default scope. For more information, see Define scopes.

1. Navigate to OAuth Server > Authorization Server > Scope Management.
2. On the Common Scopes page, enter the following scope values and their descriptions one at a time, clicking Add

with each entry:

Scope Value Scope Description

address address

email email

openid openid

phone phone

profile profile

3. On the Default Scope page, enter a description, for example: default scope.
4. Click Save.

Create an access token manager

Create an access token that is used to grant access and control access parameters. This sample configuration uses an
instance of the Access Token Manager (ATM) using the Internally Managed Reference Tokens data model. For more
information, see OAuth access token management.

1. Navigate to OAuth Server > Token Mapping > Access Token Management.
2. Click Create New Instance.
3. Specify an Instance Name and Instance ID of your choosing. For example:

Instance Name: General Access Token
Instance ID: GeneralAccessToken

4. In the Type list, select Internally Managed Reference Tokens.
5. On the Access Token Attribute Contract page, in the Extend the Contract field, enter UserName and click

Add.
6. On the Summary page, click Save.

Configure an IdP adapter mapping

Configure an IdP adapter mapping to map attributes. For more information, see Manage IdP adapter mappings for
OAuth.

1. Navigate to OAuth Server > Grant Mapping > IdP Adapter Mapping.
2. In the Source Adapter Instance list, select the adapter you created.
3. Click Add Mapping.
4. On the Contract Fulfillment page, in the Source lists, select Adapter for both USER_KEY and USER_NAME.
5. In the Value lists, select username for both items.
6. On the Summary page, click Save.

https://documentation.pingidentity.com/pingfederate/pf90/pf_t_defineScopes.html
https://documentation.pingidentity.com/pingfederate/pf90/concept_accessTokenManagement.html
https://documentation.pingidentity.com/pingfederate/pf90/concept_idpAdapterMappingForOauth.html
https://documentation.pingidentity.com/pingfederate/pf90/concept_idpAdapterMappingForOauth.html

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 126

Configure an access token mapping

Configure an access token mapping to map attributes to be requested from the OAuth resource server with the access
token. For more information, see Manage access token mappings.

1. Navigate to OAuth Server > Token Mapping > Access Token Mapping.
2. In the Context list, select Default or select your IdP adapter instance.
3. In the Access Token Manager list, select the access token you created. For example:

GeneralAccessToken

4. Click Add Mapping.
5. On the Contract Fulfillment page, in the Source list, select Persistent Grant.
6. In the Value list, select USER_KEY.
7. On the Summary page, click Save.

Create an OpenID Connect policy

Configure an OpenID Connect policy so you can define OpenID Connect policies for client access to attributes
mapped according to OpenID specifications. For more information, see Configure OpenID Connect policies.

1. Navigate to OAuth Server > Token Mapping > OpenID Connect Policy Management.
2. Click Add Policy.
3. Specify a Policy ID, for example: OIDC
4. Specify a Name, for example: OIDC
5. In the Access Token Manager list, select the access token you created. For example:

GeneralAccessToken

6. On the Attribute Contract page, delete all items beneath Extend the Contract.
7. On the Contract Fulfillment page, in the Source list, select Access Token.
8. In the Value list, select UserName.
9. On the Summary page, click Done.
10. Click Save.
11. Beside the policy you created, click Set as Default.
12. Click Save.

Create a resource server client

Configure an OAuth client for use with PingFederate token provider resource server configuration in PingAccess. For
more information, see Manage OAuth clients.

1. Navigate to OAuth Server > Clients > Manage All.
2. Click Add Client.
3. Specify a Client ID. For example:

pa_rs

4. Specify a Name. For example:

PingAccessResourceServer

5. Select Client Secret.
6. Generate a secret by clicking Generate Secret. Copy this secret to a secure location so that you can use it in

PingAccess configuration.
7. In the Redirect URIs field, add the OIDC callback redirect to the PingAccess server. For example:

https://mypingaccessserver:3000/pa/oidc/cb

https://documentation.pingidentity.com/pingfederate/pf90/concept_accessTokenMapping.html
https://documentation.pingidentity.com/pingfederate/pf90/concept_configuringOpenIdConnectPolicies.html
https://documentation.pingidentity.com/pingfederate/pf90/concept_clientManagement.html

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 127

8. Click Add.
9. For the Allowed Grant Type setting, select the Access Token Validation (Client is a Resource Server) check

box.
10. Click Save.
11. Click Save.

Create a web session client

Configure an OAuth client for use with web session configuration in PingAccess. For more information, see Manage
OAuth clients.

1. Navigate to OAuth Server > Clients > Manage All.
2. Click Add Client.
3. Specify a Client ID, for example:

pa_wam

4. Specify a Name. For example:

PingAccessWebAccessManagement

5. Select Client Secret.
6. Generate a secret by clicking Generate Secret. Copy this secret to a secure location so that you can use it in

PingAccess configuration.
7. In the Redirect URIs field, add the OIDC callback redirect to the PingAccess server, for example:

https://mypingaccessserver:3000/pa/oidc/cb

8. Click Add.
9. Select the Bypass Authorization Approval check box.
10. For the Allowed Grant Type setting, select the Authorization Code check box.
11. Click Save.
12. Click Save.

Create and export a certificate

Create and export a certificate for the PingFederate server that you will import to PingAccess to establish trust. For
more information, see Manage SSL server certificates.

1. Navigate to Server Configuration > Certificate Management > SSL Server Certificates
2. Click Create New.
3. In the Common Name field, enter the PingFederate server address. For example:

mypingfedserver

4. Complete the remaining fields as required.
5. Click Next
6. Click Done.
7. Under the Action heading, click Activate for Runtime Server.
8. Export the certificate only.
9. Click Save.

Next, Connect to PingFederate and configure an application in PingAccess on page 128.

https://documentation.pingidentity.com/pingfederate/pf90/concept_clientManagement.html
https://documentation.pingidentity.com/pingfederate/pf90/concept_clientManagement.html
https://documentation.pingidentity.com/pingfederate/pf90/concept_sslServerCertificates.html

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 128

Connect to PingFederate and configure an application in PingAccess

This document provides the sequence of steps for configuring the PingAccess components required for this solution.
In this configuration procedure, you will:

1. Import certificates and create a trusted certificate group on page 128
2. Configure the token provider on page 128
3. Create a web session on page 129
4. Create a virtual host on page 129
5. Create a site on page 130
6. Create an application on page 130

Important: The examples in this procedure assume that the PingAccess QuickStart application is available at
the following address:

https://mypingfedserver:9031/PingAccessQuickStart

Import certificates and create a trusted certificate group

Import a certificate for the PingFederate server to establish trust. For more information, see Certificates.

1. Navigate to Settings > Security > Certificates.
2. Click + to the right of the Certificates subheading.
3. Enter an Alias for the certificate. For example:

PingFed

4. Click Choose File to select the certificate.
5. Click Add to import the certificate. A new certificate row appears on the Certificates page.
6. Click + to the right of the Trusted Certificate Groups heading.
7. Drag a certificate onto the box that appears.
8. Enter a Name for the group in the box that appears. For example:

PingFed

9. Click Add.

Configure the token provider

Establish communication with the token provider, PingFederate. For more information, see Manage Token Provider.

1. Navigate to Settings > System > Token Provider > Runtime.
2. Enter the Host name or IP address for the PingFederate Runtime. For example:

mypingfedserver

3. Enter the Port number for PingFederate Runtime. For example:

9031

4. Select Secure.
5. From the Trusted Certificate Group list, select the PingFed certificate group.
6. Click Save.
7. Navigate to Settings > System > Token Provider > Administration.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_Certificates.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ManageTokenProvider.html

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 129

8. Enter the Host name or IP address for access to the PingFederate Administrative API. For example:

mypingfedserver

9. Enter the Port number for access to the PingFederate Administrative API. For example:

9999

10. Enter the PingFederate Admin Username.
11. Enter the Admin Password.
12. Select Secure.
13. From the Trusted Certificate Group list, select the PingFed certificate group.
14. Click Save.
15. Navigate to Settings > System > Token Provider > OAuth Resource Server
16. Enter the OAuth Client ID you defined when creating the PingAccess OAuth client in PingFederate. For example:

pa_rs

17. Enter the Client Secret you defined when creating the PingAccess OAuth client within PingFederate.
18. In the Subject Attribute Name field, enter the attribute you want to use from the OAuth access token as the

subject for auditing purposes. For example:

username

19. Click Save.

Create a web session

Create a web session to control access. For more information, see Web Sessions.

1. Navigate to Settings > Access > Web Sessions
2. On the Web Session page, click Add Web Session.
3. Enter a unique Name for the web session, up to 64 characters, including special characters and spaces. For

example:

PF_WAM

4. Select Encrypted JWT for Cookie Type.
5. Specify the Audience that the PA Token is applicable to, represented as a short, unique identifier between 1 and

32 characters. For example:

global

6. Specify the OpenID Connect Login Type CODE.
7. Specify the Client ID. For example:

pa_wam

8. Specify the Client Secret
9. Click Save.

Create a virtual host

Create a virtual host that PingAccess will respond to. For more information, see Virtual Hosts.

1. Navigate to Settings > Access > Virtual Hosts.
2. Click Add Virtual Host.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_WebSessions.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_VirtualHosts.html

 | Protect a web-based application using PingFederate and PingAccess in a proxy deployment | 130

3. Enter the Host name for the Virtual Host. For example:

mypingaccessserver

4. Enter the Port number for the Virtual Host. For example:

3000

5. Click Save.

Create a site

Create a site to define the location of the application that PingAccess is protecting. For more information, see Sites.

1. Navigate to Main > Sites > Sites.
2. Click Add Site.
3. Specify a Name. For example:

QuickStart

4. Specify the Target. The format for this is hostname:port. For example:

mypingfedserver:9031

5. Select Secure and choose the PingFed Trusted Certificate Group.
6. Click Save.

Note: If the target site cannot be contacted, the site is saved and a warning is displayed indicating the
reason the site was not reachable.

Create an application

Create an application to define the resource that PingAccess is protecting. For more information, see Applications.

1. Navigate to Main > Applications.
2. Click Add Application.
3. Provide a unique name for the application. For example:

QuickStart

4. Specify the context at which the application is accessed at the site. For example:

/PingAccessQuickStart

5. Specify the virtual host for the application. For example:

mypingaccessserver:3000

6. Specify the application type Web and select the Web Session for the application. For example:

PF_WAM

7. Specify the application destination type Site and select the Site requests are sent to when access is granted. For
example:

PingAccessQuickStart

8. Select the Require HTTPS option.
9. Select the Enabled checkbox.
10. Click Save.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_Sites2.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_Applications.html

 | Customize and localize PingAccess | 131

Test the configuration

To test the solution after configuration is complete:

1. Open your browser.
2. Navigate to the application using a combination of the Virtual Host and Context Root that you defined in

PingAccess. For example:

https://mypingaccessserver:3000/PingAccessQuickStart

3. Login using the credentials you created for the PingFederate password credential validator.

Customize and localize PingAccess

Customization of user-facing pages
PingAccess supplies templates to provide information to the end user. These template pages use the Velocity template
engine, an open-source Apache project, and are located in the PA_HOME/conf/template directory.

You can modify most of these pages in a text editor to suit the particular branding and informational needs of your
PingAccess installation. (Cascading style sheets and images for these pages are included in the PA_HOME/conf/
static/pa/assets subdirectory.) Each page contains both Velocity constructs and standard HTML. The Velocity
engine interprets the commands embedded in the template page before the HTML is rendered in the user’s browser.
At runtime, the PingAccess server supplies values for the Velocity variables used in the template.

Important: If you have modified the reserved application context root using the PingAccess Admin API,
file system requests to the configured reserved application context root will be translated to /pa. This allows
the file system behavior for PingAccess resources to remain unchanged. Thus, if the reserved context root is
set to /ping, templates and other resources would still be stored on the file system in the /pa directory, as
indicated by this document.

For information about Velocity, refer to the Velocity project documentation on the Apache Web site. Changing
Velocity or JavaScript code is not recommended. The following variables are the only variables that can be used for
rendering the associated Web-browser page.

Variable Description

title The browser tab title for the message. For example, Not
Found.

header The header for the message. For example, Not Found.

info The information for the message. For example, No
Resource configured for request.

exchangeId A value that identifies the request/response pair. This can
be used to locate messages in the PingAccess logs.

trackingId A value that identifies either the tracking ID (identified
with a tid: prefix) or an Access Token ID (identified
with a atid: prefix). This can be used to identify the
session in the PingAccess and PingFederate logs.

At runtime, the user's browser is directed to the appropriate page, depending on the operation being performed and
where the related condition occurs (see the table below). For example, if Rule evaluation fails, the user's browser is
directed to the Policy error-handling page. The following table describes each template.

http://velocity.apache.org/

 | Customize and localize PingAccess | 132

Template File Name Purpose Type Action

admin.error.page.template.htmlIndicates an error occurred
while the admin console
was processing a request

Error Consult PA_HOME/log/
pingaccess.log to
determine the underlying
cause of the issue.

general.error.page.template.htmlIndicates that an unknown
error has occurred and
provides an error message.

Error Consult PA_HOME/log/
pingaccess.log to
determine the underlying
cause of the issue.

general.loggedout.page.template.htmlDisplayed when a user logs
out of PingAccess.

Normal User should close the
browser.

oauth.error.json Indicates that Rule
evaluation has failed and
provides an optional error
message. To customize
this information, see Error-
Handling Fields for OAuth
Rules documentation.

Normal If necessary, consult the
audit logs in PA_HOME/
log for details about
why the policy denied the
request.

policy.error.page.template.htmlIndicates that Rule
evaluation has failed and
provides an optional error
message. To customize
this information, see Error-
Handling Fields for Rules
documentation.

Normal If necessary, consult the
audit logs in PA_HOME/
log for details about
why the policy denied the
request.

Note: The templates stored in PA_HOME/conf/template/system are system templates, and should
not be modified.

Localization of user-facing pages
In addition to the use of Velocity templates to change the look and feel of user-facing pages, administrators can
provide localized versions of user-facing status messages generated by PingAccess.

In PA_HOME/conf/localization/, properties files contain the messages to be returned to the client
in various languages; by default, only English language messages are provided, using the default pa-
messages.properties file. This file serves as a fallback for any message not found in other files in the
directory.

The selection of a messages file is determined based on several different factors:

• The browser's Accept-Langauge header, based on a best-match first check against the pa-messages files
• The value of a cookie named ping-accept-language, which can be defined by the protected application
• A custom-developed PingAccess add-on that can customize the order of localization resolution

The default behavior allows the ping-accept-language cookie to override the browser preferences, and if that
cookie is not set, then to use the Accept-Language header preference order, starting with the highest priority
preference and trying to match the locale exactly. If none of the specified locales cannot be matched exactly, a more
generic locale will be used, starting with the highest priority value.

If no matches are found, then the value in the pa-messages.properties file is used.

 | Groovy development guide | 133

For example, suppose your browser had the following Accept-Language header:

Accept-Language: fr-CA;q=0.9, en-US;q=0.8

and PingAccess attempted to display a localized version of the message for:

pa.response.status.service.unavailable

The order in which PingAccess searches for the string to display is:

1. pa-messages_fr_CA.properties
2. pa-messages_en_US.properties
3. pa-messages_fr.properties
4. pa-messages_en.properties
5. pa-messages.properties

If the ping-accept-language cookie is set by the protected application to the value en-US, then the above list
would be ignored, and PingAccess would search for the string in:

1. pa-messages_en_US.properties
2. pa-messages_en.properties
3. pa-messages.properties

Important: Most browsers support the use of an ordered list of languages, however, Safari is an exception to
this. Even though the system supports an ordered list of languages, only the preferred language is sent with its
requests.

Groovy development guide

Groovy
PingAccess provides the Groovy Script and OAuth Groovy Script Rule types that enable the use of Groovy, a
dynamic programming language for the Java Virtual Machine (see the Groovy documentation). Groovy scripts
provide advanced rule logic that extends PingAccess rule development beyond the capabilities of the packaged rules.
Groovy scripts have access to important PingAccess runtime objects such as the Exchange and PolicyContext objects,
which the scripts can interrogate and modify. Groovy Script Rules are invoked during the request processing phase
of an exchange, allowing the script to modify the request before it is sent to the server. Groovy Script Rules are also
invoked during the response, allowing the script to modify the response before it is returned to the client. The diagram
below highlights the flow of Rule processing.

http://groovy-lang.org/documentation.html

 | Groovy development guide | 134

• During request processing, Rules associated with the application are evaluated.
• The request passes through each of the Rules sequentially until it is sent to the site.
• When the response from the site returns to PingAccess, the Groovy Rules are evaluated.

Groovy scripts
Groovy scripts provide advanced Rule logic that extends PingAccess Rule development beyond the capabilities of
the packaged rules. Groovy scripts have access to important PingAccess runtime objects such as the Exchange and
PolicyContext objects, which the scripts can interrogate and modify. Groovy Script Rules are invoked during the
request processing phase of an exchange, allowing the script to modify the request before it is sent to the server.
Groovy Script Rules are also invoked during the response, allowing the script to modify the response before it is
returned to the client. See Groovy for more info about Groovy.

Note: Through Groovy scripts, PingAccess administrators can perform sensitive operations that could affect
system behavior and security.

Matchers

Groovy scripts must end execution with a Matcher instance. Matchers provide a framework for establishing
declarative Rule matching objects. You can use a Matcher from the list of PingAccess matchers or from the Hamcrest
library.

The following are Hamcrest method examples for constructing access control policies with the Web Session Attribute
Rule using evaluations such as an OR group membership evaluation.

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html
http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html

 | Groovy development guide | 135

allOf - Matches if the examined object matches ALL of the specified matchers. In this example, the user needs to be
in both the sales and managers groups for this rule to pass.

allOf(containsWebSessionAttribute("group","sales"),
 containsWebSessionAttribute("group","managers"))

anyOf - Matches any of the specified matchers. In this example, the rule passes if the user is in any of the specified
groups.

anyOf(containsWebSessionAttribute("group","sales"),
 containsWebSessionAttribute("group","managers"),
 containsWebSessionAttribute("group","execs"))

not - Inverts the logic of a matcher to not match. In this example, the rule fails if the user is in both the sales and the
managers groups.

not(allOf(containsWebSessionAttribute("group", "sales"),
 containsWebSessionAttribute("group", "managers")))

See Matchers for more information.

Objects

The following objects are available in Groovy. Click a link for more information on that object.

Exchange Object Contains the HTTP request and the HTTP response for
the transaction processed by PingAccess.

PolicyContext Object Contains a map of objects needed to perform policy
decisions. The contents of the map vary based on the
context of the current user flow.

Request Object Contains all information related to the HTTP request
made to a Application.

Response Object Contains all information related to the site HTTP
response.

Method Object Contains the HTTP method name from the request made
to a Application.

Header Object Contains the HTTP header information from the request
made to a Application or the HTTP header from a Site
response.

Body Object Contains the HTTP body from the Application request or
the HTTP body from the Site response.

OAuthToken Object Contains the OAuth access token and related identity
attributes.

Logger Object Configure and view the state of logging.

MediaType Object Contains information related to the media type.

Debugging/troubleshooting
Groovy Script Rules are evaluated when saved to ensure that they are syntactically valid. If a Groovy Script Rule fails
to save, check the log for output with the exception javax.script.ScriptException. For example, if you

 | Groovy development guide | 136

are trying to save a Groovy Script Rule that references the missing method foo(), the following output would be
logged:

DEBUG com.pingidentity.synapse.adminui.AdminAPIInterceptor:1585 -
 javax.script.ScriptException:
javax.script.ScriptException: groovy.lang.MissingMethodException: No
 signature of method:
org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.foo() is applicable for
 argument types: () values: []
Possible solutions: find(), any(), get(java.lang.String),
 use([Ljava.lang.Object;), is(java.lang.Object), find(groovy.lang.Closure)
DEBUG com.pingidentity.synapse.adminui.AdminAPIInterceptor:1399 - Returning
 error to UI: [[Error occurred validating policy.], {}]

Info: These error messages are only logged if the DEBUG level output is enabled for the
com.pingidentity logger.

Body object

Purpose

Accesses the Body object in Groovy exc?.request?.body or exc?.response?.body

The Body object contains the HTTP body from the application request or the HTTP body from the site response. The
request HTTP body is sent on to the site after the rules are evaluated. The response HTTP body is sent on to the User-
Agent after the response rules are evaluated.

Groovy sample

//Checks the actual length of the body content and set the Content-Length
 response header
def body = exc?.response?.body;
def header = exc?.response?.header;
header?.setContentLength(body?.getLength());
anything("Content-Length header set");

Method summary

Method Description

byte[] getContent() Returns the body content of the request or response.

int getLength() Returns the length of the body content.

Exchange object

Purpose

Accesses the Exchange object in Groovy - exc

The Exchange object is available to both the OAuth Groovy Script Rule and the regular Groovy Script Rule.
PingAccess makes the Exchange object available to Groovy Script developers to provide request and response
information for custom Groovy Rules.

The Exchange object contains both the HTTP request and the HTTP response for the transaction processed by
PingAccess. You can use this object to manipulate the request prior to it being sent to the site. You can also use this
object to manipulate the response from the site before it is sent to the client.

 | Groovy development guide | 137

An instance of the Exchange object lasts for the lifetime of a single Application request. The Exchange object can be
used to store additional information determined by the developer.

Some fields and methods for the Response Object are not available in scripts used with an Agent. See the Field
Summary and Method Summary tables below for more information.

Groovy sample

//Evaluate if the content length of the request is empty
if (exc?.request?.header?.contentLength > -1)
{
 //Set a custom header in the request object
 exc?.request?.header?.add("X-PINGACCESS-SAMPLE", "SUCCESS")
 anything("Custom header added to request")
}
else
{
 println("Request content is empty") //Debugging statement
 not(anything("Request has no content"))
}

Method summary

Method Description

Identity getIdentity() Obtains the PingAccess representation of the identity
associated with the request. This object will be null
for requests to an unprotected application or an
unauthenticated request to an anonymous resource.

Request getRequest() Obtains the PingAccess representation of the request.
This request is sent to the site with any changes that
might be made in a Groovy script.

Response getResponse() Obtains the PingAccess representation of the response.
If the site has not been called, the response is null. This
field is not available in scripts used with an Agent.

long getTimeReqSent() Obtains the time, in milliseconds, when the request was
sent to the site. This field is not available in scripts used
with an Agent.

long getTimeResReceived() Obtains the time, in milliseconds, when the response
was received from the site. This field is not available in
scripts used with an Agent.

String getRequestURI() Returns the PingAccess URI that received the request.

String getRequestScheme() Obtains the scheme used by the browser or other user
agent that made the request.

Object getProperty(String key) Returns the value of a custom property.

void setProperty(String key, Object value) Sets a custom property.

SslData getSslData() Obtains information established in the TLS handshake
made with PingAccess.

 | Groovy development guide | 138

Headers object

Purpose

Accesses the Headers object in Groovy exc?.request?.header or exc?.response?.header

The Headers object contains the HTTP Header information from the request made to an application or the HTTP
Header from a site response. The Request HTTP Header is sent on to the site after the Rules are evaluated. The
Response HTTP Header is returned to the client after the response Rules are evaluated.

Use the Headers object to add custom HTTP headers for site.

Groovy sample

//Set a custom header for the Service request
def header = exc?.request?.header;
header?.add("X-PINGACCESS-SAMPLE", "SUCCESS");
anything("Custom header set into request");

Method summary

Method Description

void add(String key, String val) Adds HTTP header fields for the request.

Info: Note that if Groovy Rules are used to
inject HTTP headers for the backend protected
application, the script must sanitize the same
headers from the original client request.

String getAccept() Returns the acceptable response Content-Types expected
by the User-Agent.

void setAccept(String value) Sets the acceptable response Content-Types expected by
the User-Agent.

String getAuthorization() Returns the authentication credentials for HTTP
Authentication.

void setAuthorization(String username, String password) Sets authentication credentials for HTTP Authentication.

String getConnection() Returns the connection type preferred by the User-Agent.

void setConnection(List<String> values) Sets the connection type preferred by the User-Agent.

int getContentLength() Returns the request body content length.

void setContentLength(int length) Sets the request body content length.

MediaType getContentType() Returns media type of Header with Content type

void setContentType(String) Sets the request body MIME type.

Map <String, String[]> getCookies() Returns all cookies sent with the request.

void setCookie(String) Sets a cookie.

String getFirstCookieValue(String) Returns the first cookie in the Cookie header.

String getFirstValue(String) Returns the first value of the HTTP header specified by
the name.

void setDate(Date date) Sets the date of the message in the Date HTTP header.

 | Groovy development guide | 139

Method Description

List<GroovyHeaderFields> getAllHeaderFields() Returns a list of GroovyHeaderFields.

String getHost() Returns the hostname specified in the request.

void setHost(String value) Sets the hostname for the request to the Site.

String getLocation() Gets the redirect location URL for the response.

void setLocation(String value) Sets the redirect location URL for the response.

String getProxyAuthorization() Returns the proxy credentials.

void setProxyAuthorization(String value) Sets the request proxy credentials.

void setServer(String value) Sets the server name for the response.

List<String> getValues(String name) Returns a list of string values for the supplied header
name.

String getXForwardedFor() Returns the originating IP address of the client and the
proxies, if set.

void setXForwardedFor(String value) Sets the IP Address for the client and the proxies.

boolean removeContentEncoding() Removes the Content-Encoding header value. Returns
true if the value has been removed.

boolean removeContentLength() Removes the Content-Length header value. Returns true
if the value has been removed.

boolean removeContentType() Removes the Content-Type header value. Returns true if
the value has been removed.

boolean removeExpect() Removes the Expect header value. Returns true if the
value has been removed.

boolean removeFields(String name) Removes the header value specified by the name
parameter. Returns true if the value has been removed.

boolean removeTransferEncoding() Removes the Transfer-Encoding header value. Returns
true if the value has been removed.

Identity object

Purpose

The Identity object contains information about the authenticated identity associated with the current HTTP request.

Groovy sample

// Only allow access for an identity with subject "user"
def subject = exc?.identity?.subject

if ("user".equals(subject)) {
 pass()
} else {
 fail()
}

 | Groovy development guide | 140

Method summary

Method Description

String getSubject() Returns the subject of the identity.

String getMappedSubject() Returns the subject set by the identity mapping. If there
is no identity mapping associated with the application,
the return value will be null. If there is an identity
mapping associated with the application, but the identity
mapping did not determine a subject to map, the returned
value may be the empty string.

String getTrackingId() Returns the tracking identifier used in PingAccess logs.
This value is not guaranteed to be globally unique and
should be used for diagnostic purposes only

String getTokenId() Returns the unique ID for the associated authentication
token. This value may change when new tokens are
issued for the same identity.

Date getTokenExpiration() Returns a Date object representing the time at which
the authentication token expires. This may be null if the
authentication provider did not indicate an expiry.

JsonNode getAttributes() Returns a JsonNode object representing the attributes of
the identity.

JsonNode object

Purpose

The JsonNode object represents the attributes of an identity.

Groovy sample

// Only allow access if the user is in the group "staff"
def groups = exc?.identity?.attributes?.get("groups")

foundGroup = falseif (groups) {
 for (group in groups) {
 if ("staff".equals(group.asText())) {
 foundGroup = truebreak
 }
 }
}

if (foundGroup) {
 pass()
} else {
 fail()
}

 | Groovy development guide | 141

Method summary

Method Description

JsonNode get(String fieldName) Gets the JsonNode representing a field of this JsonNode.
This method will return null if no field exists with the
specified name.

boolean has(String fieldName) Returns true if this JsonNode has a field with the
specified name.

java.util.Iterator<String> fieldNames() Returns an java.util.Iterator providing access to the
names of all the fields of this JsonNode.

boolean isTextual() Returns true if this JsonNode represents a string value.

String asText() Returns a string representation of this JsonNode. If this
JsonNode is an array or object, this will return an empty
string.

int intValue() Returns an integer representation of this JsonNode. If
this JsonNode does not represent a number, 0 is returned.

boolean isArray() Returns true if this JsonNode is an array.

boolean isObject() Returns true if this JsonNode is an object.

int size() For an array JsonNode, returns the number of elements
in the array. For an object JsonNode, returns the number
of fields in the object. 0 otherwise.

java.util.Iterator<JsonNode> iterator() Returns an java.util.Iterator over all JsonNode objects
contained in this JsonNode. For an array JsonNode,
the returned java.util.Iterator will iterate over all the
elements in the array. For an object JsonNode, the
returned java.util.Iterator will iterate over all field values
in the object.

Remarks

A JsonNode implements java.lang.Iterable<JsonNode> so a for loop can be used to iterate over all the elements in an
array JsonNode or the field values in an object JsonNode.

Logger object

Purpose

Accesses the Logger object.

Method summary

Method Description

void trace(String format, Object... arguments) Logs a TRACE level message based on the specified
format and arguments.

void debug(String format, Object... arguments) Logs a DEBUG level message based on the specified
format and arguments.

 | Groovy development guide | 142

Method Description

void info(String format, Object... arguments) Logs an INFO level message based on the specified
format and arguments.

void warn(String format, Object... arguments) Logs a WARN level message based on the specified
format and arguments.

void error(String format, Object... arguments) Logs an ERROR level message based on the specified
format and arguments.

boolean isTraceEnabled() Checks if the logger instance is enabled for the TRACE
level.

boolean isDebugEnabled() Checks if the logger instance is enabled for the DEBUG
level.

boolean isInfoEnabled() Checks if the logger instance is enabled for the INFO
level.

boolean isWarnEnabled() Checks if the logger instance is enabled for the WARN
level.

boolean isErrorEnabled() Checks if the logger instance is enabled for the ERROR
level.

MediaType object

Purpose

Accesses the MediaType object.

Method summary

Method Description

Map getParameters() Returns a list of parameters.

String getBaseType() Returns the media base type.

String getSubType() Returns the media sub type.

String getParameter(String) Returns a string containing the value of the request
parameter.

String getPrimaryType() Returns the primary media type.

Method object

Purpose

Accesses the Method object in Groovy exc?.request?.method

The Method object contains the HTTP Method name from the request made to an application. The HTTP Method is
sent on to the Site after the Rules are evaluated.

 | Groovy development guide | 143

Groovy sample

//Retrieve the HTTP Method name and make different decisions based on the
 method name
def method = exc?.request?.method?.methodName
switch (method) {
 case "GET":
 println("GET")
 break;
 case "POST":
 println("POST")
 break;
 case "PUT":
 println("PUT")
 break;
 case "DELETE":
 println("DELETE")
 break;
default:
 println("DEFAULT")
 pass()
}

Method summary

Method Description

String getMethodName() Returns the name of the HTTP Method (GET, PUT,
POST, DELETE, HEAD).

OAuth Token object

Purpose

Accesses the OAuth Token object in Groovy policyCtx?.context.get("oauth_token")

The OAuthToken object contains the OAuth access token and related identity attributes. The OAuthToken instance is
available only for OAuth Groovy Script Rules.

Groovy sample

def scopes = policyCtx?.context.get("oauth_token")?.scopes
def attr = policyCtx?.context.get("oauth_token")?.attributes
def username =
 policyCtx?.context.get("oauth_token")?.attributes?.get("username")?.get(0)
exc?.request?.header?.add("x-scopes", "$scopes")
exc?.request?.header?.add("x-attributes", "$attr")
exc?.request?.header?.add("x-username", "$username")
anything()

Method summary

Method Description

Instant getExpiresAt() Contains the expiration instant of the OAuth access
token.

 | Groovy development guide | 144

Method Description

Instant getRetrievedAt() Contains the instant that the OAuth access token was
retrieved from PingFederate.

String getTokenType() Contains the type of OAuth access token. (Bearer, JWT).

String getClientId() Contains the client ID associated with the OAuth access
token.

Set getScopes() Contains the set of scopes associated with the OAuth
access token.

Map<String, List<String>> getAttributes() Contains a map of identity attributes specific to the user.

PolicyContext object

Purpose

Accesses the Policy Context object in Groovy policyCtx

The PolicyContext object is a map of objects needed to perform policy decisions. The contents of the map vary based
on the context of the current user flow. A common example is OAuth token information stored in an OAuthToken
object contained within the context map. In this example, an OAuthToken object is retrieved from the policy context
by using the oauth_token key. The OAuthToken object is available only for the OAuth Groovy Script Rule.

Groovy sample

def oauthToken = policyCtx?.context.get("oauth_token")

Method summary

Method Description

Map<String, Object> getContext() Container for the OAuthToken object.

Exchange getExchange() Returns the exchange a message relates to.

Request object

Purpose

Accesses the Request object in Groovy exc?.request

The Request object contains all information related to the HTTP request made to an application. The request instance
is sent on to the site after the Rules are evaluated.

Some fields and methods for the Response Object are not available in scripts used with an Agent. See the Field
Summary and Method Summary tables below for more information.

Groovy sample

//Retrieve the request object from the exchange object
def request = exc?.request
def contentType = request?.headers?.getContentType()
def containsJson = contentType?.matchesBaseType("application/json")
//Check to make sure the request body contains JSON

 | Groovy development guide | 145

if (!containsJson) {
not(anything("The request requires a JSON body"))
} else {
 anything("The request contains JSON")
}

Field summary

Field Description

String uri Returns the PingAccess URI that received the request.

void setUri(String) Sets the PingAccess URI.

Method summary

Method Description

Method getMethod Contains the HTTP method information from the request
sent to the application.

Header getHeader Contains the HTTP header information from the request
sent to the application.

Warning: Warning: Previously executed
custom Rules can modify these values.

Body getBody Contains the HTTP body information from the request
sent to the application. This field is not available in
scripts used with an Agent.

Warning: Warning: Previously executed
custom Rules can modify these values.

Map<String, String[]> getQueryStringParams() Parses and returns the query string parameters from
the request. If the query string parameters cannot be
parsed due to formatting errors, this method will throw
a URISyntaxException. Groovy scripts that use this
method are not required to catch this exception. Scripts
that choose not to catch this exception will fail if the
query string parameters are invalid.

Map<String, String[]> getPostParams() Parse the form parameters from the body content of
the request, assuming the content is encoded using
the encoding defined by the application/x-www-form-
urlencoded content type.

void setBodyContent(byte[] content) Replaces the body content of the request. This method
will also adjust the Content-Length header field to align
with the length of the specified content.

Response object

Purpose

Accesses the Response object in Groovy exc?.response

The Response object contains all information related to the Service HTTP response. The response instance is sent on
to the User-Agent after the Rules are evaluated.

 | Groovy development guide | 146

The fields and methods for the Response Object are not available in scripts used with an Agent.

Groovy sample

if(exc?.response && exc?.identity) {
 exc.response.header.add("PA-Tracking-ID", exc.identity.trackingId)
}
anything()

Field summary

Field Description

int getStatusCode() Contains the HTTP response status code.

void setStatusCode(int) Sets the status code from an integer.

String getStatusMessage() Contains the HTTP response status message.

void setStatusMessage(String) Sets the status message from a string.

Method summary

Method Description

boolean isRedirect() Returns true if the status code is in the 300’s.

Header getHeader Contains the HTTP header information from the
response.

Warning: Previously executed custom Rules
can modify these values.

Body getBody Contains the HTTP body information from the response.

Warning: Previously executed custom Rules
can modify these values.

void setBodyContent(byte[] content) Replaces the body content of the response. This method
will also adjust the Content-Length header field to align
with the length of the specified content.

SslData object

Purpose

The SslData object provides access to information established in the TLS handshake with PingAccess.

Groovy sample

// Force TLS client authentication
def certChain = exc?.sslData?.clientCertificateChain
if(certChain && !certChain.isEmpty())
{
 pass();
}
else
{
 fail();

 | Groovy development guide | 147

}

Method summary

Method Description

List<String> getSniServerNames() Returns a list of SNI server_names sent by the user agent
in the TLS handshake. Empty if the user agent did not
utilize the SNI TLS extension.

List<java.security.cert.X509Certificate>
getClientCertificateChain()

Returns the certificate chain presented by the user agent
in the TLS handshake. Empty if the user agent did not
utilize TLS client authentication.

Groovy script examples
OAuth Policy context example

In some instances, it may be necessary to transmit identity information to Sites to provide details of the user
attempting to access a Site. In such instances, Groovy scripts can be used to inject identity information into various
portions of the HTTP request to the target. In this example, the Site is expecting the identity of the user to be
conveyed via the User HTTP header. This can be accomplished using the OAuth Groovy Script Rule and the
following Groovy script:

user=policyCtx?.context.get("oauth_token")?.attributes?.get("user")?.get(0)
exc?.request?.header?.add("User", "$user")
anything()

More complex Groovy script logic:

test = exc?.request?.header?.getFirstValue("test");
if(test != null && test.equals("foo"))
{
 //rule will fail evaluation if Test header has value 'foo'
 not(anything("Test header is foo"))
}
else
{
 //rule will pass evaluation is Test header has value of anything else
 //or isn't present
 anything("Test header is something else")
}

Set an exchange property named com.pingidentity.policy.error.info so the value will be available
for the $info variable in error templates when an error is encountered. The $info variable can be set by a Groovy
Script rule or an OAuth Groovy Script rule.

exc?.setProperty("com.pingidentity.policy.error.info", "this value will be
 passed to the template in $info variable")
not(anything())

Create a white listing rule for certain characters.

if (!exc?.request?.uri?.matches("[\\p{Po}\\p{N}\\p{Z}\\p{L}\\p{M}\\p{Zs}\\./
_\\-\\()\\{\\}\\[\\]]*"))
 {
 fail()
 }
 else

 | Groovy development guide | 148

 {
 pass()
 }

Add a cookie to the response.

// Construct the cookie value
value = "cookie-value"
cookieHeaderFieldValue = "ResponseTestCookie=${value}; Path=/"

// Add the cookie on to the response
exc?.response?.header?.add("Set-Cookie", cookieHeaderFieldValue)

pass()

Comb an AND and OR, invoking an existing rule matcher.

if ((anyOf(containsWebSessionAttribute("engineering",
 "true"), containsWebSessionAttribute("marketing", "true")) &&
 (containsWebSessionAttribute("manager", "true")))
{pass()
}
else{
fail()
}

Matchers
The Groovy Script Rule and the OAuth Groovy Script Rule must end execution with a Matcher instance. This could
either be a Matcher from the list of PingAccess matchers or from the Hamcrest library (for more information on
Hamcrest, see the Hamcrest Tutorial).

Example 1 - Simple Groovy Rule Inserts a Custom HTTP Header

test = "let's get Groovy!"
exc?.response?.header?.add("X-Groovy", "$test")
anything()

In the sample rule above, the script ends with a call to the Matcher anything(). The anything() Matcher
signals that the rule has passed.

Example 2 - OAuth Groovy Rule Checks the HTTP Method and Confirms the OAuth Scope

//Get the HTTP method name
def methodName = exc?.request?.method?.methodName()
if (methodName == "POST") {
 hasScope("WRITE")
} else {
 not(anything())
}

In the sample rule above, a Matcher is evaluated at the end of each line of execution. The first Matcher used is the
hasScope() Matcher that confirms if the OAuth Access token has the WRITE scope. If this is true, the rule passes.

The not(anything()) Matcher combination is evaluated when the methodName does not equal POST. This
Matcher combination evaluates to false.

PingAccess Matchers

The following table lists the Matchers available for the Groovy Script Rule and the OAuth Groovy Script Rule.

http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html
http://code.google.com/p/hamcrest/wiki/Tutorial

 | Groovy development guide | 149

Matcher Description

inIpRange(String cidr) Validates the source IP address of the request against the
cidrString parameter in CIDR notation. When Source
IP headers defined in the HTTP Requests page are found,
the source IP address determined from those headers is
used as the source address.

For agents, this value is also potentially controlled by the
override options on the Agent settings.

Example: inIpRange("127.0.0.1/8")

inIpRange(java.net.InetAddress
ipAddress, int prefixSize)

Validates the source IP address against the
ipAddress and the prefixSize parameters specified
individually. When Source IP headers defined in the
HTTP Requests page are found, the source IP address
determined from those headers is used as the source
address.

For agents, this value is also potentially controlled by the
override options on the Agent settings.

Example:
inIpRange(InetAddress.getByName("127.0.0.1"),8)is
equivalent to inIpRange("127.0.0.1/8")

inIpRange(String cidr, String
listValueLocation, boolean
fallBackToLastHopIp, String...
headerNames)

Validates the source IP address in the first of the
specified headerNames using the cidr value. Can
be specified as part of a Groovy Script as a means of
overriding the configuration stored in PingAccess for a
specific Groovy Script rule.

Valid values for the listValueLocation parameter
are FIRST, LAST, and ANY. This parameter controls
where, in a multivalued list of source IP addresses, the
last source should be taken from. If ANY is used, if any
of the source IP addresses in a matching header match
the CIDR value, the matcher evaluates to true.

Example: inIpRange("127.0.0.1/8",
"LAST", true, "X-Forwarded-For",
"Custom-Source-IP")

inIpRange(java.net.InetAddress
address, int prefixSize, String
listValueLocation, boolean
fallBackToLastHopIp, String...
headerName)

Validates the source IP address in the first of the
specified headerNames using the address and
prefixSize values. In all other respects, this matcher
behaves the same as the version that uses a cidr value
for comparison.

Example:
inIpRange(InetAddress.getByName("127.0.0.1"),
8, "LAST", true, "X-Forwarded-For",
"Custom-Source-IP")

requestXPathMatches(String
xPathString, String xPathValue)

Validates that the value returned by the xPathString
parameter is equal to the xPathValue parameter.

Example: requestXPathMatches("//
header[@name='Host']/
text()","localhost:3000")

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_HTTPRequests.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_HTTPRequests.html

 | Groovy development guide | 150

Matcher Description

inTimeRange(String startTime, String
endTime)

Validates that the current server time is between the
startTime and endTime parameters.

Example: inTimeRange("9:00 am","5:00
pm")

inTimeRange24(String startTime, String
endTime)

Validates that the current server time is between the
specified 24-hour formatted time range between the
startTime and endTime parameters.

Example: inTimeRange24("09:00","17:00")

requestHeaderContains(String field,
String value)

Validates that the HTTP header field value is equal to the
value parameter.

Example: requestHeaderContains("User-
Agent", "Mozilla/5.0 (Macintosh;
Intel Mac OS X 10_8_3)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/27.0.1453.93 Safari/537.36")

requestHeaderContains(Map<String,
String> fieldValuesMap, boolean
caseSensitive)

Validates that at all of the HTTP header fields maps
to the associated value. The first fieldValuesMap
string contains the HTTP header name, and the second
string contains the value to compare the incoming
request header value with.

The caseSensitive parameter determines whether a
case-sensitive comparison is performed on the value.

The second string in the fieldValuesMap supports
Java Regular Expressions.

If multiple pairs of strings are present in the
fieldValuesMap parameter, then all conditions must
be met in order for the matcher to pass.

Example: requestHeaderContains(['User-
Agent':'Mozilla/5.0',
'Cookie':'JSESSIONID'], false)

 | Groovy development guide | 151

Matcher Description

requestPostFormContains(Map<String,
String> fieldValuesMap, boolean
caseSensitive)

Validates that all of the HTTP form fields maps to the
associated value. The first fieldValuesMap string
contains the form header name, and the second string
contains the value to compare the incoming request
header value with.

The caseSensitive parameter determines whether a
case-sensitive comparison is performed on the value.

Note: This matcher determines whether to
use fields passed in the URL or forms with a
content-type header of application/
x-www-form-urlencoded.

The second string in the fieldValuesMap supports
Java Regular Expressions.

If multiple pairs of strings are present in the
fieldValuesMap parameter, then all conditions must
be met in order for the matcher to pass.

Example:
requestPostFormContains(['email':'@example.com',
'phonenumber':'720'], false)

requestHeaderDoesntContain(String
field, String value)

Validates that the HTTP header field value is not equal to
the value parameter.

Example:
requestHeaderDoesntContain("User-
Agent", "InternetExplorer")

requestBodyContains(String value) Validates that the HTTP body contains the value
parameter.

Example:
requestBodyContains("production")

requestBodyDoesntContain(String value) Validates that the HTTP body does not contain the value
parameter.

Example:
requestBodyDoesntContain("test")

containsWebSessionAttribute(String
attributeName, String attributeValue)

Validates that the PA Token contains the attribute name
and value.

Example:
containsWebSessionAttribute("sub",
"sarah")

containsACRValues(String value) Validates that the PA token contains a matching ACR
value.

The following table lists the matchers available to only the OAuth Groovy Rule.

 | Addon SDK for Java | 152

Matcher Description

hasScope(String scope) Validates that the OAuth access token contains the scope
parameter.

Example: hasScope("access")

hasScopes(String... scopes) Validates that the OAuth access token contains the list of
scopes.

Example: hasScopes("access","portfolio")

hasAttribute(String attributeName,
String attributeValue)

Checks for an attribute value within the current OAuth2
policy context.

Example: hasAttribute("account","joe")

Addon SDK for Java

Preface
This document provides technical guidance for using the PingAccess Add-on SDK. Developers can use this guide, in
conjunction with the installed Javadocs, to extend the functionality of the PingAccess server.

Important: A restart of PingAccess is required after the deployment of any custom plugins written in Java.

Intended audience

This guide is intended for application developers and system administrators responsible for extending PingAccess.
The reader should be familiar with Java software-development principles and practices. It describes the development
of:

• SiteAuthenticators
• Rules
• Identity mappings
• Load balancing strategies
• Locale override service

Additional documentation

• The PingAccess Javadocs provide detailed reference information for developers. The Javadocs can be accessed
with a web browser by viewing the file PA_HOME/sdk/apidocs/index.html.

Introduction
The PingAccess Add-on SDK provides the following extension points:

RuleInterceptor An interface for developing custom Rule
implementations to control authorization logic in
policies.

SiteAuthenticatorInterceptor An interface for developing custom Site Authenticators
to control how PingAccess (operating as a proxy) is able
to integrate with web servers or services it is protecting.

 | Addon SDK for Java | 153

IdentityMappingPlugin An interface for developing custom Identity Mappings
to provide user identity information to an Application
within PingAccess.

LoadBalancingPlugin An interface for developing custom Load Balancing
strategies that provide the logic for load balancing
requests to Target Hosts configured for a Site.

LocaleOverrideService An interface for developing custom logic for resolving
the locale of a request used for localization.

These extension points allow users to customize certain behaviors of PingAccess to suit an organization’s needs. This
SDK provides the means to develop, compile, and deploy custom extensions to PingAccess.

If you need assistance using the SDK, visit the Ping Identity Support Center (ping.force.com/Support) to see how we
can help you with your application. You may also engage the Ping Identity Global Client Services team for assistance
with developing customizations.

Get started with the SDK
This section describes the directories and build components that comprise the SDK and provides instructions for
setting up a development environment.

SDK directory structure

The PingAccess SDK directory (PA_HOME/sdk) contains the following:

• README.md – Contains an overview of the SDK contents.
• /samples/README.md – Contains an overview of the steps necessary to build and use the samples.
• /samples/Rules – Contains a maven project with example plug-in implementations for Rules showing a wide

range of functionality. You may use these examples for developing your own implementations.
• /samples/Rules/README.md – Contains the details of the Rules samples.
• /samples/SiteAuthenticator – Contains a maven project with example plug-in implementations for Site

Authenticators. You may use these examples for developing your own implementations.
• /samples/SiteAuthenticator/README.md – Contains the details of the Site Authenticator samples.
• /samples/IdentityMappings – Contains a maven project with example plug-in implementations for

Identity Mappings. You may use these examples for developing your own implementations.
• /samples/IdentityMappings/README.md – Contains the details of the IdentityMappings samples.
• /samples/LoadBalancingStrategies – Contains a maven project with example plug-in

implementations for Load Balancing Strategies. You may use these examples for developing your own
implementations.

• /samples/LoadBalancingStrategies/README.md – Contains the details of the
LoadBalancingStrategies samples.

• /samples/LocaleOverrideService – Contains a maven project with example plug-in implementations
for the Locale Override Service. You may use these examples for developing your own implementations.

• /samples/LocaleOverrideService/README.md – Contains the details of the LocaleOverrideService
samples.

• /apidocs/ – Contains the SDK Javadocs. Open index.html to get started.

SDK prerequisites

Before you start, ensure you have the Java SDK and Apache Maven installed. The samples use Apache Maven and
assume that the PingAccess SDK can be referenced as a dependency. They reference Ping Identity’s public maven
repository, located at:

http://maven.pingidentity.com/release

https://ping.force.com/Support
http://maven.apache.org/download.html

 | Addon SDK for Java | 154

If Internet access is unavailable, update the pingaccess-sdk dependency in your pom.xml to point to the local
installation.

<dependency>
 <groupId>com.pingidentity.pingaccess</groupId>
 <artifactId>pingaccess-sdk</artifactId>
 <version>4.0.1.3</version>
 <scope>system</scope>
 <systemPath><PA_HOME>/lib/pingaccess-sdk-4.2.0.0.jar</systemPath>
</dependency>
<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.0.0.GA</version>
 <scope>system</scope>
 <systemPath>PA_HOME/lib/validation-api-1.0.0.GA.jar</systemPath>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.4</version>
 <scope>system</scope>
 <systemPath>PA_HOME/lib/slf4j-api-1.7.4.jar</systemPath>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.4</version>
 <scope>system</scope>
 <systemPath>PA_HOME/lib/slf4j-log4j12-1.7.4.jar</systemPath>
</dependency>

Replace PA_HOME with the path to the PingAccess installation.

How to install the SDK samples

• Before you begin, ensure you have the Java SDK and Apache Maven installed.
• Each sample type is installed separately:

• For the Rules samples, navigate to PA_HOME/sdk/samples/Rules
• For the Site Authenticators samples, navigate to PA_HOME/sdk/samples/SiteAuthenticator

• From the sample's directory, run the command: $ mvn install

• This builds the samples, runs their tests, and copies the resulting jar file from the target directory to the
PA_HOME/lib directory.

jsmith-MBP-2:Rules jsmith$ mvn install
[INFO] Scanning for projects...
[INFO]
[INFO] Using the builder
 org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThreadedBuilder
 with a thread count of 1
[INFO]
[INFO]
 --
[INFO] Building PingAccess :: Sample Rules 3.0.0-RC5
[INFO]
 --
Downloading: http://...
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @
 sample-rules ---

 | Addon SDK for Java | 155

[INFO] Using 'ISO-8859-1' encoding to copy filtered resources.
[INFO] Copying 1 resource
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ sample-
rules ---
[INFO] Compiling 7 source files to /Users/jsmith/Downloads/pingaccess-3.0.0-
RC5/sdk/samples/Rules/target/classes
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources)
 @ sample-rules ---
[INFO] Using 'ISO-8859-1' encoding to copy filtered resources.
[INFO] Copying 4 resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:testCompile (default-testCompile) @
 sample-rules ---
[INFO] Compiling 4 source files to /Users/jsmith/Downloads/pingaccess-3.0.0-
RC5/sdk/samples/Rules/target/test-classes
[INFO]
[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ sample-rules

[INFO] Surefire report directory: /Users/jsmith/Downloads/pingaccess-3.0.0-
RC5/sdk/samples/Rules/target/surefire-reports

 T E S T S

Running com.pingidentity.pa.sample.TestAllUITypesAnnotationRule
Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.912 sec
Running com.pingidentity.pa.sample.TestIllustrateManyUITypesRule
Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.029 sec
Running com.pingidentity.pa.sample.TestValidateRulesAreAvailable
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.002 sec
Results :
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ sample-rules ---
[INFO] Building jar: /Users/jsmith/Downloads/pingaccess-3.0.0-RC5/sdk/
samples/Rules/target/sample-rules-3.0.0-RC5.jar
[INFO]
[INFO] --- maven-install-plugin:2.4:install (default-install) @ sample-rules

[INFO] Installing /Users/jsmith/Downloads/pingaccess-3.0.0-RC5/sdk/samples/
Rules/target/sample-rules-3.0.0-RC5.jar to /Users/jsmith/.m2/repository/com/
pingidentity/pingaccess/sample-rules/3.0.0-RC5/sample-rules-3.0.0-RC5.jar
[INFO] Installing /Users/jsmith/Downloads/pingaccess-3.0.0-RC5/sdk/samples/
Rules/pom.xml to /Users/jsmith/.m2/repository/com/pingidentity/pingaccess/
sample-rules/3.0.0-RC5/sample-rules-3.0.0-RC5.pom
[INFO]
[INFO] --- maven-antrun-plugin:1.7:run (default) @ sample-rules ---
[INFO] Executing tasks
main:
 [copy] Copying 1 file to /Users/jsmith/Downloads/pingaccess-3.0.0-RC5/
lib
[INFO] Executed tasks
[INFO]
 --
[INFO] BUILD SUCCESS
[INFO]
 --
[INFO] Total time: 6.418 s
[INFO] Finished at: 2014-07-08T16:38:30-07:00
[INFO] Final Memory: 16M/38M
[INFO]
 --

 | Addon SDK for Java | 156

Create your own plugins

This section describes the steps required to create your own plugins, from scratch, using the Addon SDK.

Generally, the following steps are taken to implement a plugin:

1. Create a new, empty Maven project. The root directory of the Maven project is referred to as <PLUGIN_HOME>.
2. Copy the pom.xml from the appropriate sample provided in <PA_HOME>/sdk/samples.

Note: For example, if you were creating a Rule, you would copy the pom.xml from <PA_HOME>/
sdk/samples/Rules/ to <PLUGIN_HOME>/.

3. Modify the groupId, artifactId, name, and version in the copied pom.xml file as appropriate.
4. Create a Java class that implements the plugin interface from the SDK in the <PLUGIN_HOME>/src/main/

java/com/yourpackagename directory. This interface is referred to as a Service Provider Interface (SPI).

Note: For example, if you are implementing a custom Rule, the class should implement the
RuleInterceptor SPI.

For each SPI, base classes are provided that simplify the implementation of the SPI.
5. Create a provider-configuration file for the plugin SPI containing the fully-qualified class name for the class

created in the previous step.

Note: For example, if you are implementing a custom Rule, you'll
create a file called <PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.policy.RuleInterceptor and its contents will be the FQCN of
the class.

6. Build the Maven project to obtain a jar containing the plugin implementation.
7. Copy the jar to <PA_HOME>/lib.

Important: After copying a custom plugin jar to the PingAccess lib, a restart of PingAccess is required to
complete the deployment of the custom plugin.

The following sections provide the details required to complete these steps for each type of plugin:

• Rule details on page 156
• Site authenticator details on page 157
• Identity mapping details on page 157
• Load balancing strategy details on page 158
• Locale override service details on page 158

Rule details

If you do not need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.policy.RuleInterceptor

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.policy.RuleInterceptor

Base Classes
com.pingidentity.pa.sdk.policy.RuleInterceptorBase

If you need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.policy.AsyncRuleInterceptor

Provider-configuration file

 | Addon SDK for Java | 157

<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.policy.AsyncRuleInterceptor

Base Classes
com.pingidentity.pa.sdk.policy.AsyncRuleInterceptorBase

Site authenticator details

If you do not need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticatorInterceptor

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticatorInterceptor

Base Classes
com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticatorInterceptorBase

If you need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.siteauthenticator.AsyncSiteAuthenticatorInterceptor

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.siteauthenticator.AsyncSiteAuthenticatorInterceptor

Base Classes
com.pingidentity.pa.sdk.siteauthenticator.AsyncSiteAuthenticatorInterceptorBase

Identity mapping details

If you do not need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.identitymapping.IdentityMappingPlugin

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.identitymapping.IdentityMappingPlugin

Base Classes
com.pingidentity.pa.sdk.identitymapping.IdentityMappingPluginBase

com.pingidentity.pa.sdk.identitymapping.header.HeaderIdentityMappingPlugin

If you need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.identitymapping.AsyncIdentityMappingPlugin

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.identitymapping.AsyncIdentityMappingPlugin

Base Classes
com.pingidentity.pa.sdk.identitymapping.AsyncIdentityMappingPluginBase

 | Addon SDK for Java | 158

Load balancing strategy details

If you do not need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.ha.lb.LoadBalancingPlugin

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.ha.lb.LoadBalancingPlugin

Base Classes
com.pingidentity.pa.sdk.ha.lb.LoadBalancingPluginBase

If you need to integrate with a Third-Party Service, use the following SPIs and base classes:

SPI
com.pingidentity.pa.sdk.ha.lb.AsyncLoadBalancingPlugin

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.ha.lb.AsyncLoadBalancingPlugin

Base Classes
com.pingidentity.pa.sdk.ha.lb.AsyncLoadBalancingPluginBase

Locale override service details

A Locale Override Service cannot integrate with a Third-Party Service so the following SPIs and base classes are
used for all implementations:

SPI
com.pingidentity.pa.sdk.localization.LocaleOverrideService

Provider-configuration file
<PLUGIN_HOME>/META-INF/services/
com.pingidentity.pa.sdk.localization.LocaleOverrideService

Base Classes
No base classes are provided

Integrating with third-party services

In PingAccess 5.1, the Addon SDK introduced the ability for a custom plugin to integrate with external, third-party
services via HTTP. This section provides a high-level overview of utilizing this functionality from a custom plugin.

• Obtaining the HTTP client instance on page 158
• Obtaining a handle to a third-party service on page 159
• Making a HTTP call to a third-party service on page 160
• Base classes on page 161
• Sample plugins on page 161

Obtaining the HTTP client instance

PingAccess provides access to a HTTP client utility interface, HttpClient, via dependency injection. Plugins are
expected to obtain an instance of this interface using an approach like the following:

public class DocumentationPlugin // interfaces and base classes omitted for
 brevity

 | Addon SDK for Java | 159

{
 private HttpClient httpClient;

 // ... other code omitted ...

 @Inject
 public void setHttpClient(HttpClient httpClient)
 {
 this.httpClient = httpClient;
 }

 // ... other code omitted ...
}

Obtaining a handle to a third-party service

Given a HttpClient instance, a plugin will also need a handle to a Third-Party Service to make an outbound HTTP call
to the service represented by the Third-Party Service administrative configuration object. This handle is an instance of
the ThirdPartyServiceModel class and is specified to the HttpClient in its send method.

There are two different ways to obtain a ThirdPartyServiceModel instance:

• Administrator-configured third-party services
• Third-party services for the OAuth authorization server and OIDC provider

Administrator-configured third-party services

The PingAccess Administrative UI and API allow administrators to define the communication configuration for an
external service by defining a Third-Party Service. These configuration objects can then be associated with custom
plugins via their configuration.

To enable a plugin's configuration to reference a Third-Party Service, it should define a field in the configuration with
the type of ThirdPartyServiceModel. Here is an example:

 private static class Configuration extends SimplePluginConfiguration
 {
 // ... other code omitted ...

 @UIElement(order = 30,
 type = ConfigurationType.SELECT,
 label = "Risk Authorization Service",
 modelAccessor = ThirdPartyServiceModelAccessor.class,
 required = true)
 @NotNull
 private ThirdPartyServiceModel riskAuthzService;

 // ... other code omitted ...

 public ThirdPartyServiceModel getRiskAuthzService()
 {
 return riskAuthzService;
 }

 public void setRiskAuthzService(ThirdPartyServiceModel
 riskAuthzService)
 {
 this.riskAuthzService = riskAuthzService;
 }
 }

The important items in this example:

• The modelAccessor attribute of the UIElement must be set to ThirdPartyServiceModelAccessor

 | Addon SDK for Java | 160

• The field in the plugin configuration class must be of type ThirdPartyServiceModel

Third-party services for the OAuth authorization server and OIDC provider

In addition to providing a way for an administrator to configure a plugin to use an arbitrary Third-Party Service,
PingAccess allows a plugin to use a third-party service that represents the OAuth Authorization Server or OIDC
Provider. The benefit of leveraging this functionality is that a plugin can require access to either of these services
without requiring the administrator to configure the plugin to use those services.

Similar to the previous section, the plugin obtains a ThirdPartyServiceModel instance that is a handle to the OAuth
Authorization Server or OIDC Provider by indicating this requirement in its plugin configuration class. However, the
mechanism is a bit different, as shown in the following example:

 private static class Configuration extends SimplePluginConfiguration
 {
 // ... other code omitted ...

 private ThirdPartyServiceModel oidcProvider;

 // ... other code omitted ...

 public ThirdPartyServiceModel getOidcProvider()
 {
 return oidcProvider;
 }

 @Inject
 @OidcProvider
 public void setOidcProvider(ThirdPartyServiceModel oidcProvider)
 {
 this.oidcProvider = oidcProvider;
 }
 }

The important take-away from this example is that the setter for the oidcProvider field is annotated with the
@OidcProvider annotation.

Making a HTTP call to a third-party service

With an instance of HttpClient and an instance of ThirdPartyServiceModel in hand, a plugin can make a HTTP call
to the external service represented by the ThirdPartyServiceModel. Here is an example method that makes a GET
request to a resource on the external service with a path of /data and a query string of page=1:

private static CompletionStage<ClientResponse> sendRequest(HttpClient
 httpClient,

 ThirdPartyServiceModel model)
{
 Headers headers = ClientRequest.createHeaders();
 headers.setAccept(Collections.singletonList("application/json"));

 ClientRequest request = new ClientRequest(Method.GET,
 "/data?page=1",
 headers);

 return httpClient.send(request, model);
}

The result of the HttpClient send method is a CompletionStage. A CompletionStage is returned because PingAccess is
performing the HTTP call asynchronously and as a result, handling of the result of the call needs to be performed by
callbacks registered with the CompletionStage.

 | Addon SDK for Java | 161

For a more complete example of using the HttpClient to make an external HTTP call, please refer to the sample SDK
plugins packaged with the PingAccess distribution.

Base classes

The SDK provides the following base classes to make it easier to implement a plugin that leverages the HttpClient
interface. They all provide access to a HttpClient instance via a getHttpClient method.

• AsyncRuleInterceptorBase
• AsyncSiteAuthenticatorInterceptorBase
• AsyncIdentityMappingPluginBase
• AsyncLoadBalancingPluginBase

Sample plugins

The use of the HttpClient and ThirdPartyServiceModel classes are demonstrated in the following samples provided in
the PingAccess distribution:

• RiskAuthorizationRule, a Rule that obtains a risk score from an external, risk service as well as leveraging the
OAuth Authorization Server to obtain an OAuth access token used to access the risk service.

• MetricBasedPlugin, a Load Balancing Strategy that obtains host capacity metadata from an external service.

Implementation guidelines
The following sections provide specific programming guidance for developing custom interfaces. Note that the
information is not exhaustive – consult the Javadocs to find more details about interfaces discussed here as well as
additional functionality.

Important: A restart of PingAccess is required after the deployment of any custom plugins written in Java.

Logging

Use the SLF4j API for logging activities in your module. Documentation on using SLF4j is available on the SLF4j
website.

Lifecycle

The plugins and the implementation of a PluginConfiguration can be instantiated for a number of reasons and at many
times. For example, with a RuleInterceptor here is what happens before the RuleInterceptor is available to process
user requests:

• The Rule annotation on the implementation class of the RuleInterceptor is interrogated to determine which
PluginConfiguration instance will be instantiated.

• The following is performed on RuleInterceptor and PluginConfiguration. Which of these is handled first is not
defined.

• The bean will be provided to Spring for Autowiring.
• The bean will be provided to Spring for post construction initialization. (See PostConstruct)

• PluginConfiguration.setName(String) is called.
• PA attempts to map the incoming JSON configuration to the PluginConfiguration instance.
• ConfigurablePlugin.configure(PluginConfiguration) is called.
• Validator.validate(Object, Class[]) method is invoked and provided to the RuleInterceptor.
• The instance is then made available to service end user requests, such as

RequestInterceptor.handleRequest(com.pingidentity.pa.sdk.http.Exchange) and
ResponseInterceptor.handleResponse(com.pingidentity.pa.sdk.http.Exchange)

http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

 | Agent SDK for Java | 162

Injection

Before they are put into use, Rules, SiteAuthenticators, and their defined PluginConfigurations are passed through
Spring's Autowiring and initialization. To future-proof any code against changes in PingAccess, we recommend that
Spring not be used as a dependency. Use the annotation javax.inject.Inject for any injection.

Classes available for injection

Currently, injection is available for the following classes:

• com.pingidentity.pa.sdk.util.TemplateRenderer

Differences between Rules for Agents and Sites

Rules may be applied to applications associated with Agents or Sites. Some features of the SDK are not
available to rules that are applied to agents. Rules that use features only available to sites should be marked
as only applying to sites. This is done by setting the destination element of the rule annotation to the value
{RuleInterceptorSupportedDestination.Site}

Rules that apply only to agents are limited in the following ways:

• The handleResponse method is not called.
• The request body is not present.
• The Exchange.getDestinations list is empty and modifying the destination list has no effect.

As with rules that use features only available to sites, rules that only apply to agents should be marked
as only applying to agents. To do this, set the destination element of the rule annotation to the value
{RuleInterceptorSupportedDestination.Agent}.

Agent SDK for Java

Preface
This document provides technical guidance for using the PingAccess Agent SDK for Java. Developers can use this
guide along with the Javadocs for the Java Agent API and sample source code to implement the PingAccess Agent
Protocol in custom agents.

Intended audience

This guide is intended for application developers and system administrators responsible for implementing a Java
PingAccess Agent. The reader should be familiar with Java software-development principles and practices. It
describes the use of the SDK within a sample Java Servlet Filter.

Additional documentation

The Java Agent API Javadocs provide detailed reference information for developers. After unzipping the
pingaccess-agent-java-sdk-1.1.3.zip package, the Javadocs can be accessed with a web browser by
viewing the file <AGENT_SDK_JAVA_HOME>/apidocs/index.html.

Introduction
The PingAccess Agent SDK for Java provides an API and sample code to enable developers to build agents for Java-
based application and web servers. Agents provide access management features to their containing server by relying
on central PingAccess servers over the PingAccess Agent Protocol. The PingAccess Agent Protocol Specification is
available from the Ping Identity support portal.

https://ping.force.com/Support/PingIdentityArticle?id=kA340000000Gsx0CAC

 | Agent SDK for Java | 163

The process used when a PingAccess Agent is added to the policy decision process is as follows:

1. The client accesses a resource. If the user is already authenticated, this process continues with step 5.
2. The agent asks PingAccess for instructions. PingAccess checks the URL policy and determines that it is a

protected resource. PingAccess then redirects the client to PingFederate to establish a session.
3. The user logs in, and PingFederate creates the session.
4. The client is then redirected back to the resource.
5. The agent asks PingAccess for instructions. PingAccess checks the URL policy and determines that it is a

protected resource. PingAccess then checks the session token and determines that it is valid.
6. If session revocation is enabled, PingAccess checks and updates the central session revocation list. If the session is

valid, the agent is instructed to set identity HTTP headers.

The PingAccess Agent SDK for Java consists of the following components:

Java Agent API (Java Agent) pingaccess-agent-java-api-1.1.3.0.jar:
The Java Agent API is a set of classes that implement the
PingAccess Agent Protocol.

PingAccess Agent SDK for Java pingaccess-agent-java-sdk-1.1.3.zip: The
PingAccess Agent SDK for Java package.

Servlet Filter Sample <AGENT_SDK_FOR_JAVA_HOME>/sample :
The Servlet Filter Sample demonstrates how the Java
Agent API integrates into a Java Servlet container.
The provided source code, logging configuration and
deployment descriptor provide a functional example for
how to integrate the Java Agent API into an existing web
application. The sample can be modified in place and
recompiled using Maven to test customizations to the
Servlet Filter Sample code for your environment.

Note: This sample code demonstrates how
to implement a servlet filter and has been
qualified on Apache Tomcat 7. The filter itself
is production quality and can be used either as-
is or as a starting point for further development.
Application configuration within the sample
demonstrates how to associate the filter with
a servlet (namely, in web.xml). Further
hardening of this file or the application server
configuration may be required.

 | Agent SDK for Java | 164

If you need assistance using the PingAccess Agent SDK for Java, visit the Ping Identity Support Center
(ping.force.com/Support) to see how we can help you with your application. You may also engage the Ping Identity
Global Client Services team for assistance with developing customizations.

Agent SDK directory structure
The PingAccess Agent SDK for Java directory (pingaccess-agent-java-sdk-1.1.3) contains the following:

/apidocs The Javadocs for the Java Agent API. Open
index.html in this directory to access the Javadocs
content.

/dist The directory containing pingaccess-agent-
java-api-1.1.3.0.jar

/sample A directory containing src and target directories for
building a Java Servlet Filter. This filter uses the Java
Agent API, an agent.properties configuration
exported from PingAccess, and the init-params from
the web application web.xml file to enforce resource
policy decisions configured in PingAccess.

Agent SDK prerequisites
Before you start, ensure you have the Java SDK, Apache Maven (maven.apache.org) and an application server (e.g.
Apache Tomcat) installed. The sample uses Apache Maven and assumes that the Java Agent API can be referenced as
a dependency. It references Ping Identity’s public Maven repository, located at:

http://maven.pingidentity.com/release

If Internet access is unavailable, there are two other ways to reference the Java Agent API. First, once Apache Maven
is installed, install the Java Agent API into your local dependency repository by executing the following command:

mvn install:install-file -Dfile=<AGENT_SDK_JAVA_HOME>/dist/pingaccess-agent-
java-api-1.1.3.0.jar -DgroupId=com.pingidentity -DartifactId=pingaccess-
agent-java-api -Dversion=1.1.3.0 -Dpackaging=jar

Alternatively, update the dependency in your pom.xml to point to the local installation:

<dependency>
 <groupId>com.pingidentity</groupId>
 <artifactId>pingaccess-agent-java-api</artifactId>
 <version>1.1.3.0</version>
 <scope>system</scope>
 <systemPath><AGENT_SDK_JAVA_HOME>/dist/pingaccess-agent-java-
api-1.1.3.0.jar</systemPath>
</dependency>

With either of these options, replace <AGENT_SDK_JAVA_HOME> with the absolute path to the unzipped
pingaccess-agent-java-sdk-1.1.3.0 directory.

How to install the servlet filter sample
Ensure you have the PingAccess Agent SDK for Java, Apache Maven, and Apache Tomcat. These instructions
assume that you are using Apache Tomcat.

https://ping.force.com/Support
https://maven.apache.org

 | Agent SDK for Java | 165

• The servlet filter sample is installed under <AGENT_SDK_JAVA_HOME>/sample.
• A deployed version of the servlet filter is under <AGENT_SDK_JAVA_HOME>/sample/target/agent-

sample.

For the initial setup of the web application, we assume you already have Tomcat or another application server set up
on the same machine hosting PingAccess. Out of the box, PingAccess generates self-signed server certificates for
listeners servicing runtime ports with the hostname localhost. By default, the servlet filter sample configures
the Java Agent (Java Agent API) to use "strict" certificate checking for communications with PingAccess. The Java
Agent will not be able to communicate with PingAccess over HTTPS if it is not also on localhost because of
strict hostname checking. If PingAccess already has a server certificate configured with a valid hostname other than
localhost, then you can deploy the Java Agent into a container on another system.

If you cannot setup the application server on the same system as an existing PingAccess service, and that PingAccess
deployment still uses the default localhost server certificate for the Agent port, there is another option. You can
change the default strict certificate checking in agent-sample/WEB-INF/web.xml to test. Please see the
comments in agent-sample/WEB-INF/web.xml for more detail.

The agent-sample (servlet filter sample) web application is meant to demonstrate the features of the Java Agent within
the context of a functional, standalone sample application. The servlet filter sample uses the Java Agent to intercept
requests bound for sample servlet and will accept or reject them based on the configured PingAccess policy. The
sample servlet only prints out headers, cookies, and other parameters it receives in the request.

1. In the Tomcat webapps directory, create a directory called ROOT.
2. Copy the WEB-INF, META-INF, and assets contents from /sample/target/agent-sample/ into

webapps/ROOT.
This sample servlet filter must run as / to properly carry out the OpenID Connect workflow.

3. In the Tomcat bin directory, create a script called setenv.sh (Linux) or setenv.bat (Windows) with the
following contents:

• For Linux:

export CATALINA_OPTS="-Dlog4j.configurationFile=<PATH_TO_TOMCAT_ROOT>/
webapps/ROOT/WEB-INF/logs/log4j2.xml -
Dserver.log.file=<PATH_TO_TOMCAT_ROOT>/webapps/ROOT/WEB-INF/logs/
server.log"

• For Windows:

set CATALINA_OPTS=="-Dlog4j.configurationFile=<PATH_TO_TOMCAT_ROOT>/
webapps/ROOT/WEB-INF/logs/log4j2.xml -
Dserver.log.file=<PATH_TO_TOMCAT_ROOT>/webapps/ROOT/WEB-INF/logs/
server.log"

The Agent servlet filter logging is configured in webapps/ROOT/WEB-INF/logs/log4j2.xml, and
outputs to webapps/ROOT/WEB-INF/logs/server.log

4. Conditional: If running Tomcat on Linux, execute the command chmod a+x setenv.sh to make this script
executable.

5. Configure a PingAccess Agent.
6. Configure an Application and associate the new Agent with it.
7. When configuring an Agent through the PingAccess administration console, it automatically exports the agent

properties file. Copy the downloaded properties file to webapps/ROOT/WEB-INF/agent-config/
agent.properties.

Important: If Tomcat is running on Java version 7, some version 8 cipher suites are unavailable. This
may lead to errors.

To work around this issue, edit agent.properties to remove the following cipher suites from
agent.ssl.ciphers:

 | Agent SDK for Java | 166

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• TLS_RSA_WITH_AES_128_GCM_SHA256
• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

8. Start Tomcat
9. Start a browser and navigate to http://<HOST>:<PORT>/sample

The values for <HOST> and <PORT> here need to match the Tomcat configuration in use.

Note: If your Tomcat server is not set up to use HTTPS, ensure that any related Web Sessions do not have
the Secure option enabled.

PingAccess Agent SDK for Java Release History

Version 1.1.3 - July 2018 Resolved issues

• Fixed an issue where site cookies were not being set
properly for HTTP redirects in the servlet container
environment (e.g., Tomcat).

• Fixed an issue where an error was being
generated by the SDK sample implementation of
ClientHttpServletRequest.getHeaders
when calling a header that does not exist.

Version 1.1.2 - June 2017 Resolved issues

• Fixed an issue where the Java agent was handling the
PingAccess set-cookie header incorrectly.

• Fixed an issue where the Java agent wasn't correctly
processing multiple set-cookie headers sent by
PingAccess.

• Fixed an issue where the SDK sample
implementation was not correctly enforcing the
PingAccess Agent Protocol directives when the
ClientHttpServletRequest getCookies method
was called. This resulted in a discrepancy between
the cookie request headers returned from the
getHeader* methods and the getCookies
method.

Version 1.1.1 - April 2017 Resolved issues

• Fixed an issue where unknown attributes should be
ignored

• Fixed an issue where percent-encoded sequences in
resource paths were being handled incorrectly

• Fixed an issue where an "Index out of bounds"
exception occurs if a cookie value is "".

Version 1.1 - August 2015 Resolved issues

• Fixed an issue where OAuth API response headers
were getting trimmed

• Fixed an issue where the Java Agent enforced the
requirement of a username and shared secret

 | Agent SDK for C | 167

• Fixed an issue where the Agent was not handling a
477 response correctly

Version 1.0 - June 2015 • Initial Release

Agent SDK for C

Preface

This documentation provides technical guidance for using the PingAccess Agent SDK for C. Developers can use this
guide along with the API documentation for the SDK and sample source code to implement custom agents that use
the PingAccess Agent Protocol to integrate with a PingAccess policy server.

Intended Audience

This guide is intended for application developers and system administrators responsible for implementing a C-based
PingAccess agent. The reader should be familiar with C software development principles and practices. It describes
the use of the SDK within a sample Agent for Apache.

Additional documentation

The SDK documentation provides detailed reference information for developers. After unzipping the pingaccess-
agent-c-sdk-version.zip package, the API documentation can be accessed with a web browser by viewing
the file AGENT_SDK_C_HOME/apidocs/index.html. The current version of the API documentation may also
be found online at https://developer.pingidentity.com/content/dam/developer/documentation/pingaccess/agent-c-sdk/
latest/index.html

Introduction
The PingAccess Agent SDK for C provides an API and sample code to enable developers to build agents for C or C+
+-based application and web servers.

Supported platforms

• RedHat Enterprise Linux Server 6 (32 bit)
• RedHat Enterprise Linux Server 6 (64 bit)
• RedHat Enterprise Linux Server 7 (32 bit)
• RedHat Enterprise Linux Server 7 (64 bit)
• SUSE Linux Enterprise Server 11 SP4 (64 bit)
• SUSE Linux Enterprise Server 12 SP2 (64 bit)

The PingAccess Agent SDK for C provides an API and sample code to enable developers to build agents for C-based
application and web servers. Agents provide access management features to their containing server by relying on
central PingAccess servers over the PingAccess Agent Protocol. The PingAccess Agent Protocol Specification is
available from the Ping Identity support portal.

https://developer.pingidentity.com/content/dam/developer/documentation/pingaccess/agent-c-sdk/latest/index.html
https://developer.pingidentity.com/content/dam/developer/documentation/pingaccess/agent-c-sdk/latest/index.html
https://ping.force.com/Support/PingIdentityArticle?id=kA340000000Gsx0CAC

 | Agent SDK for C | 168

The process used when a PingAccess Agent is added to the policy decision process is as follows:

1. The client accesses a resource. If the user is already authenticated, this process continues with step 5.
2. The agent asks PingAccess for instructions. PingAccess checks the URL policy and determines that it is a

protected resource. PingAccess then redirects the client to PingFederate to establish a session.
3. The user logs in, and PingFederate creates the session.
4. The client is then redirected back to the resource.
5. The agent asks PingAccess for instructions. PingAccess checks the URL policy and determines that it is a

protected resource. PingAccess then checks the session token and determines that it is valid.
6. If session revocation is enabled, PingAccess checks and updates the central session revocation list. If the session is

valid, the agent is instructed to set identity HTTP headers.

The PingAccess Agent SDK for C consists of the following components:

SDK (C Agent) The SDK is a set of C header files that represent the
interface to the library that implements the PingAccess
Agent Protocol.

C Agent libraries The C libraries implement the PingAccess Agent
Protocol. There are binaries for Red Hat Enterprise Linux
6/7 as well as for Windows.

PingAccess Agent SDK for C API documentation Each of the interfaces defined in the header files is fully
documented.

Apache Agent Sample <AGENT_SDK_FOR_C_HOME>/sample : The Apache
Agent Sample demonstrates how the SDK integrates
into Apache as an Apache module that is integrated
with the Apache request processing workflow. The
provided source code and module configuration provide
a functional example for how to integrate the SDK
into an existing web application. The sample can be
modified in-place and recompiled using make to test
customizations to the Sample code for your environment.

Note: This sample code demonstrates how to
implement the PingAccess Agent as an Apache
module and has been qualified in the following
environments:

• Red Hat Enterprise Linux 6 (RHEL6), 64-bit
• Red Hat Enterprise Linux 7 (RHEL7), 64-bit

The Apache Agent itself is production-quality and can
be used either as-is or as a starting point for further
development. While Ping Identity provides this as a

 | Agent SDK for C | 169

sample, the only versions that are fully supported in
production are the precompiled versions available from
the Ping Identity download site.

The sample includes instructions for how to configure
the sample as a PingAccess Agent to protect websites
within its scope. Note that further hardening of
the Apache server configuration or of the sample
configuration file may be required.

If you need assistance using the PingAccess Agent SDK for C, visit the Ping Identity Support Center (ping.force.com/
Support) to see how we can help you with your application. You may also engage the Ping Identity Professional
Services team for assistance with developing customizations.

Getting Started with the PingAccess Agent SDK for C

Agent SDK for C directory structure

The PingAccess Agent SDK for C directory contains the following subdirectories:

/ This directory contains the Agent SDK for C
README.md, which contains information developers
will need in order to develop agents using the SDK. It
also contains ReadMeFirst.pdf and Legal.pdf,
which contain general information about the kit and
third-party licenses used by components of the SDK.

/apidocs API documentation for the SDK. Open index.html to
access the API documentation content.

/include Agent SDK header files.

/lib 32-bit and 64-bit libraries for Red Hat Enterprise Linux
6/7 and Windows, including third-party dependencies
required by the SDK.

/sample Sample source code for an agent for Apache. This
sample agent uses the SDK, and includes a sample
configuration file for Apache to use the sample agent to
enforce authentication and access control policies.

Agent SDK for C sample code

The Agent SDK for C sample code is available both in the SDK distribution and on github at https://github.com/
pingidentity/pa-agent-c-sdk-sample-apache.

Before building the sample code, ensure you have the PingAccess Agent SDK for C archive, the GNU make utility
and associated compiler utilities installed with your compiler, and Apache and its development libraries.

The sample uses Apache and assumes that the PingAccess Agent SDK for C can be referenced as a dependency. For
more details about specific dependencies and requirements, as well as instructions on how to build the sample code,
see AGENT_SDK_C_HOME/sample/readme.md.

Release notes

• Version 1.1.5 - February 2019

• Added support for FreeBSD 8

https://ping.force.com/Support
https://github.com/pingidentity/pa-agent-c-sdk-sample-apache
https://github.com/pingidentity/pa-agent-c-sdk-sample-apache

 | Addon SDK for Java migration guide | 170

• Version 1.1.4 - October 2018

• Fixed potential security issues.

• Version 1.1.3 - August 2018

• Updated version of libcurl to fix an issue where libcurl was only checking the first SAN in the server
certificate.

• Fixed a potential security issue.

• Version 1.1.2 - March 2017

• Added support for:

• SUSE Linux Enterprise Server 11 SP4 (x86_64)
• SUSE Linux Enterprise Server 12 SP2 (x86_64)

• Version 1.1.1 - January 2017

• Established a workaround for a known issue in the Network Security Services library that results in a memory
leak when the agent closes a HTTPS connection to a PingAccess policy server. For more information, see this
KB article.

• Fixed an issue where duplicate headers were being included in the backend request to the PingAccess Engine
causing the request for content to be blocked by the agent.

• Version 1.1 - November 2016

• Added policy server failover support. Policy server failover support is only provided by the SDK when using
the libcurl HTTP client.

• Version 1.0.2 - September 2016

• Fixed an issue where agents could not communicate with PingAccess servers using a certificate that is signed
by a certificate authority because the CRL Distribution Point extension is missing. This issue is limited to
agents on Windows deployments.

• Addressed a potential security vulnerability. This issue is limited to Windows deployments.
• Version 1.0.1 - May 2016

• Fixed an issue with ZeroMQ policy cache where a terminated process could cause a condition that resulted in
unexpected CPU utilization.

• Version 1.0 - April 2016

• Initial Release.

Addon SDK for Java migration guide

PingAccess Addon SDK for Java Migration Guide
Plugins built against the Java Addon SDK for PingAccess 5.0 are now required to be built with JDK 8, as the SDK for
PingAccess 5.0 uses Java 8 features. Previously, plugins could be built with either JDK 7 or JDK 8.

The following sections provide a detailed description of the changes, organized by package. Where relevant, code
examples show how to port existing code to account for the changes in the SDK APIs.

• General changes on page 171
• com.pingidentity.pa.sdk.http on page 174
• com.pingidentity.pa.sdk.identity on page 191
• com.pingidentity.pa.sdk.identitymapping.header on page 192
• com.pingidentity.pa.sdk.policy on page 192
• com.pingidentity.pa.sdk.services on page 198
• com.pingidentity.pa.sdk.siteauthenticator on page 199

https://bugzilla.mozilla.org/show_bug.cgi?id=1202413
https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PN1zCAG
https://ping.force.com/Support/PingIdentityArticle?id=kA340000000PN1zCAG

 | Addon SDK for Java migration guide | 171

• com.pingidentity.pa.sdk.ui on page 199
• com.pingidentity.pa.sdk.user on page 200
• com.pingidentity.pa.sdk.util on page 200

General changes

Prevent modification to Request in Response chain

Starting in PingAccess 5.0, any modifications made to a Request or its header fields during response processing will
now result in a warning log message and the modification operation being ignored. Previously, PingAccess would log
a warning message about the modification but still allow the modification operation to complete.

Retrieving Key Pair and Trusted Certificate Group configuration data

In the previous version of the SDK, a SDK plugin accessed the configuration data of a Key Pair or Trusted Certificate
Group configured via the Administrative API by annotating a field in the plugin's PluginConfiguration class with a
JsonDeserialize annotation, specifying the appropriate custom deserializer from the SDK. For example:

public class Configuration extends SimplePluginConfiguration
{
 @JsonDeserialize(using = PrivateKeyDeserializer.class)
 KeyStore.PrivateKeyEntry keyPair;

 @JsonDeserialize(using = TrustedCertificateGroupDeserializer.class)
 Collection<X509Certificate> certificateGroup;
}

In the current version of the SDK, this mechanism has changed to be less error-prone as well as to provide access to
more properties of the Key Pairs and Trusted Certificate Groups. The previous Configuration class should be ported to
the following:

public class Configuration extends SimplePluginConfiguration
{
 KeyPairModel keyPair;

 TrustedCertificateGroupModel certificateGroup;
}

The KeyPairModel#getPrivateKeyEntry method provides access to the KeyStore.PrivateKeyEntry object for the
corresponding Key Pair in the administrative configuration. The TrustedCertificateGroupModel#getCertificates
method provides access to the Collection of X509Certificate objects in the corresponding Trusted Certificate Group in
the administrative configuration. Refer to the JavaDoc for each of these classes for more information.

Related to this change, the provided implementations of ConfigurationModelAccessor, PrivateKeyAccessor and
TrustedCertificateGroupAccessor, have been updated to use these new classes. Both classes have also been moved to
new packages. PrivateKeyAccessor has also been renamed to KeyPairAccessor.

BEFORE:

import com.pingidentity.pa.sdk.accessor.PrivateKeyAccessor;
import com.pingidentity.pa.sdk.accessor.TrustedCertificateGroupAccessor;

// … class definition omitted ...

private void invokePrivateKeyAccessorGet(
 PrivateKeyAccessor accessor,
 String id)
{
 KeyStore.PrivateKeyEntry keyPair = accessor.get(id);
}
private void invokeTrustedCertificateGroupAccessorGet(
 TrustedCertificateGroupAccessor accessor,

 | Addon SDK for Java migration guide | 172

 String id)
{
 Collection<X509Certificate> certificates = accessor.get(id);
}

AFTER:

import
 com.pingidentity.pa.sdk.accessor.certgroup.TrustedCertificateGroupModel;
import com.pingidentity.pa.sdk.accessor.keypair.KeyPairAccessor;

// … class definition omitted ...

private void invokePrivateKeyAccessorGet(
 KeyPairAccessor accessor,
 String id)
{
 KeyStore.PrivateKeyEntry keyPair = accessor.get(id)

 .map(KeyPairModel::getPrivateKeyEntry)
 .orElse(null);
}

private void invokeTrustedCertificateGroupAccessorGet(
 TrustedCertificateGroupAccessor accessor,
 String id)
{
 Collection<X509Certificate> certificates = accessor.get(id)
 .map(TrustedCertificateGroupModel::getCertificates)
 .orElse(null);
}

Changes to validation of PluginConfiguration instances

In the previous version of the SDK, the ConfigurablePlugin#configure method was invoked and passed a
PluginConfiguration instance. The ConfigurablePlugin was expected to assign the specified PluginConfiguration
instance to a field annotated with the javax.validation.Valid annotation. After the configure method returned,
PingAccess passed the ConfigurablePlugin instance to a javax.validation.Validator for further validation.

If setup correctly, this logic allows javax.validation.Constraint annotations to be used to declare the validation to be
applied to fields in a PluginConfiguration implementation, ensuring the configuration was valid as well as providing
validation error message to PingAccess to provide to administrators using the Administrative API or UI.

However, if the ConfigurablePlugin#configure method needed to post-process the specified PluginConfiguration
instance, the method needed to duplicate all the validation declared on the fields of the PluginConfiguration.

To remove the need for this duplication of validation logic, PingAccess will now validate the PluginConfiguration
instance with a javax.validation.Validator prior to passing the instance to the ConfigurablePlugin#configure method.

Further, the ConfigurablePlugin no longer needs to annotate the field used to hold the PluginConfiguration instance.
The field is still necessary to implement the ConfigurablePlugin#getConfiguration method.

The following example ConfigurablePlugin implementation demonstrates this change:

public class ValidationExample
 implements ConfigurablePlugin<ValidationExample.Configuration>
{
 // @Valid annotation no longer required
 private Configuration configuration;

 @Override
 public void configure(Configuration configuration) throws
 ValidationException

 | Addon SDK for Java migration guide | 173

 {
 this.configuration = configuration;

 // With the previous version of the SDK, these assertions were not
 // guaranteed to be true, despite the javax.validation.Constraint
 // annotations enforcing these conditions.
 //
 // In the current version of the SDK, these assertions are guaranteed
 // to be true because they are enforced by the
 javax.validation.Constraint
 // annotations on the fields in the PluginConfiguration class, and
 the
 // PluginConfiguration validation is performed before invoking the
 // configure method.
 //
 // The end result is that plugins can remove duplicated validation
 // logic from the configure method if further post-processing of the
 // configuration needs to be performed.
 assert(configuration.getAttributeName() != null);
 assert(configuration.getAttributeName().length() > 0);
 assert(configuration.getAttributeName().length() <= 16);
 assert(configuration.getAttributeValue() != null);

 }

 @Override
 public Configuration getConfiguration()
 {
 return configuration;
 }

 static class Configuration extends SimplePluginConfiguration
 {
 @NotNull
 @Size(min = 1,
 max = 16,
 message = "Attribute name length must be between 1 and 16
 characters")
 private String attributeName;

 @NotNull
 private String attributeValue;

 public String getAttributeName()
 {
 return attributeName;
 }

 public void setAttributeName(String attributeName)
 {
 this.attributeName = attributeName;
 }

 public String getAttributeValue()
 {
 return attributeValue;
 }

 public void setAttributeValue(String attributeValue)
 {
 this.attributeValue = attributeValue;
 }
 }

 | Addon SDK for Java migration guide | 174

}

com.pingidentity.pa.sdk.http
com.pingidentity.pa.sdk.http.Body

The Body interface has changed to require an explicit read of data before invoking methods to
obtain that data. Previously, methods to obtain the data would result in an implicit read of the data.
The following code examples illustrate this change in semantics.

As the updated JavaDoc for the Body interface indicates, plugins should avoid interrogating a Body
object unless absolutely necessary because reading a Body object's data into memory can impact the
scalability of PingAccess. As plugin code is updated, evaluate whether the Body object needs to be
used by the plugin.

Using the Body#read method

BEFORE:

private void invokeRead(Body body) throws IOException
{
 body.read();
}

AFTER:

private void invokeRead(Body body) throws AccessException
{
 try
 {
 body.read();
 }
 catch (IOException e)
 {
 throw new AccessException("Failed to read body content",
 HttpStatus.BAD_GATEWAY,
 e);
 }
}

Using the Body#getContent method:

BEFORE:

private void invokeGetContent(Body body) throws IOException
{
 byte[] content = body.getContent();
}

AFTER:

private void invokeGetContent(Body body) throws AccessException
{
 invokeRead(body); // see the Body#read code example for this
 method
 byte[] content = body.getContent();
}

Using the Body#getBodyAsStream method:

 | Addon SDK for Java migration guide | 175

BEFORE:

private void invokeGetBodyAsStream(Body body) throws IOException
{
 InputStream stream = body.getBodyAsStream();
}

AFTER:

private void invokeGetBodyAsStream(Body body) throws
 AccessException
{
 invokeRead(body); // see the Body#read code example for this
 method
 InputStream stream = body.newInputStream();
}

Note the rename of the method from getBodyAsStream to newInputStream.

Using the Body#write method:

BEFORE:

private void invokeWrite(Body body, BodyTransferrer
 bodyTransferrer) throws IOException

{

 body.write(bodyTransferrer);

}

AFTER:

This functionality is no longer supported. To obtain the content of the Body, read the content into
memory using the Body#read method and then invoke Body#getContent or Body#newInputStream.

Using the Body#getLength method

BEFORE:

private void invokeGetLength(Body body) throws IOException
{
 int length = body.getLength();
}

AFTER:

private void invokeGetLength(Body body) throws AccessException

{

 invokeRead(body); // see the Body#read code example for this
 method

 int length = body.getLength();

}

Using the Body#getRaw method:

 | Addon SDK for Java migration guide | 176

BEFORE:

private void invokeGetRaw(Body body) throws IOException
{
 byte[] rawBody = body.getRaw();
}

AFTER:

This functionality is no longer supported. This method used to provide access to the content as it
appeared on the wire, which required complicated handling if the body content used a chunked
Transfer-Encoding. Use Body#getContent instead.

com.pingidentity.pa.sdk.http.BodyFactory

Using the BodyFactory#continuousBody method

BEFORE:

private void invokeContinuousBody(BodyFactory bodyFactory, byte[]
 content)
{
 Body body = bodyFactory.continuousBody(content);
}

AFTER:

private void invokeContinuousBody(BodyFactory bodyFactory, byte[]
 content)
{
 Body body = bodyFactory.createInMemoryBody(content);
}

BEFORE:

private void invokeContinuousBody(BodyFactory bodyFactory,
 InputStream in)
{
 Body body = bodyFactory.continuousBody(in);
}

AFTER:

A Body instance can no longer be created from an InputStream using the BodyFactory class.
Instead, a plugin should read the contents of the InputStream into a byte array and provide the byte
array to BodyFactory#createInMemoryBody.

com.pingidentity.pa.sdk.http.Constants

The constants available from this class have been removed from the SDK. Plugins using these
constants should maintain their own constants with the needed values.

com.pingidentity.pa.sdk.http.Exchange

A handful of methods have been removed from the Exchange.

Further, the mechanism for storing data on the Exchange via properties has been enhanced to make
it easier to write type-safe code when working with Exchange properties.

Using the Exchange#getCreationTime method

BEFORE:

Calendar creationTime = exchange.getCreationTime();

 | Addon SDK for Java migration guide | 177

AFTER:

Calendar creationTime = Calendar.getInstance();
creationTime.setTime(Date.from(exchange.getCreationTime()));

NOTE: If a Calendar object is not required, consider using the Instant object returned from the
getCreationTime method directly instead of converting it into a Calendar object.

Using the Exchange#getDestinations method

BEFORE:

List<String> destinations = exchange.getDestinations();

AFTER:

This functionality is no longer supported. Consider using the Exchange#getTargetHosts method to
obtain similar information from the Exchange.

Using the Exchange#getOriginalHostHeader method

BEFORE:

String originalHostHeader = exchange.getOriginalHostHeader();

AFTER:

This functionality is no longer supported. Consider using the Exchange#getUserAgentHost method
to obtain similar information from the Exchange. The getUserAgentHost method leverages the
PingAccess HTTP requests configuration to determine the Host header value sent by the user agent.

Using the Exchange#getOriginalHostHeaderHost method

BEFORE:

String host = exchange.getOriginalHostHeaderHost();

AFTER:

This functionality is no longer supported. Consider using the Exchange#getUserAgentHost method
to obtain similar information from the Exchange. The getUserAgentHost method leverages the
PingAccess HTTP requests configuration to determine the Host header value sent by the user agent.

Using the Exchange#getOriginalHostHeaderPort method

BEFORE:

String port = exchange.getOriginalHostHeaderPort();

AFTER:

This functionality is no longer supported. Consider using the Exchange#getUserAgentHost method
to obtain similar information from the Exchange. The getUserAgentHost method leverages the
PingAccess HTTP requests configuration to determine the Host header value sent by the user agent.

Using the Exchange#getOriginalRequestBaseUri method

BEFORE:

String originalRequestBaseUri =
 exchange.getOriginalRequestBaseUri();

AFTER:

 | Addon SDK for Java migration guide | 178

This functionality is no longer supported. A possible replacement is as follows:

String originalRequestBaseUri = exchange.getUserAgentProtocol() +
 "://" +
 exchange.getUserAgentHost();

Using the Exchange#getProperties method

BEFORE:

Map<String, String> properties = exchange.getProperties();

AFTER:

This functionality is no longer supported. Properties should be obtained individually from the
Exchange.

Using the Exchange#getRequestBaseUri method

BEFORE:

String requestBaseUri = exchange.getRequestBaseUri();

AFTER:

This functionality is no longer supported. A possible replacement is as follows:

String requestBaseUri = exchange.getUserAgentProtocol() +
 "://" +
 exchange.getUserAgentHost();

Using the Exchange#getRequestScheme method

BEFORE:

String requestScheme = exchange.getRequestScheme();

AFTER:

This functionality is no longer supported. A possible replacement is as follows:

String requestScheme = exchange.getUserAgentProtocol() + "://";

Using the Exchange#getUser method

BEFORE:

User user = exchange.getUser();

AFTER:

The User interface is no longer supported. Use the Identity interface instead. It can be retrieved via
the Exchange#getIdentity method.

Using the Exchange#setUser method

BEFORE:

private void invokeSetUser(Exchange exchange, User user)
{
 exchange.setUser(user);
}

 | Addon SDK for Java migration guide | 179

AFTER:

This functionality is no longer supported. The identity associated with an Exchange cannot be
replaced.

Using the Exchange#setSourceIp method

BEFORE:

private void invokeSetSourceIp(Exchange exchange, String
 sourceIp)
{
 exchange.setSourceIp(sourceIp);
}

AFTER:

This functionality is no longer supported. This value cannot be changed.

Using the Exchange#setProperty method

BEFORE:

private void invokeSetProperty(Exchange exchange, String
 propertyKey, String value)
{
 exchange.setProperty(propertyKey, value);
}

AFTER:

private void invokeSetProperty(Exchange exchange,
 ExchangeProperty<String>
 propertyKey,
 String value)
{
 exchange.setProperty(propertyKey, value);
}

See the JavaDoc for ExchangeProperty for instructions on creating an ExchangeProperty object.

Using the Exchange#getProperty method

BEFORE:

private void invokeGetProperty(Exchange exchange, String
 propertyKey)
{
 Object propertyValueObj = exchange.getProperty(propertyKey);
 if (propertyValueObj instanceof String)
 {
 String propertyValue = (String) propertyValueObj;
 }
}

AFTER:

private void invokeGetProperty(Exchange exchange,
 ExchangeProperty<String> propertyKey)
{
 String propertyValue =
 exchange.getProperty(propertyKey).orElse(null);
}

 | Addon SDK for Java migration guide | 180

NOTE: Exchange#getProperty now returns an Optional object instead of the Object directly.

com.pingidentity.pa.sdk.http.Header

This deprecated class has been replaced by the Headers interface. A Headers object can be created
via a HeadersFactory obtained from the ServiceFactory#headersFactory method. The majority of
methods on Header have counterparts on the Headers interface. See the JavaDoc for the Headers
interface for more information.

com.pingidentity.pa.sdk.http.HeaderField

This class is now final and cannot be extended.

Constructing a HeaderField

BEFORE:

private HeaderField createHeaderField(String line)
{
 return new HeaderField(line);
}

AFTER:

private HeaderField createHeaderField(String line)
{
 String name = line.substring(0, line.indexOf(':'));
 String value = (line.substring(line.indexOf(":") +
 1)).trim();

 return new HeaderField(name, value);
}

NOTE: Parsing an HTTP header field line can be error prone, consider if the plugin can be avoid
having to parse an HTTP header field line.

Using the HeaderField#setHeaderName method:

BEFORE:

private void invokeSetHeaderName(HeaderField field)
{
 field.setHeaderName(new HeaderName("X-Custom"));
}

AFTER:

This functionality is no longer supported. A HeaderField's name is set upon construction and cannot
be changed.

Using the HeaderField#getApproximateSize method:

BEFORE:

int approximateSize = field.getApproximateSize();

AFTER:

This method has been removed. The value returned by the method can still be computed:

int approximateSize = 2 * (4 +

 field.getHeaderName().toString().length() +
 field.getValue().length());

 | Addon SDK for Java migration guide | 181

com.pingidentity.pa.sdk.http.Headers

A few methods on the Headers interface have been updated to use the Instant class, instead of Date.

Using the Headers#getDate method

BEFORE:

Date date = headers.getDate();

AFTER:

Date date = Date.from(headers.getDate());

Using the Headers#setDate method

BEFORE:

private void invokeSetDate(Headers headers, Date date)
{
 headers.setDate(date);
}

AFTER:

private void invokeSetDate(Headers headers, Date date)
{
 headers.setDate(date.toInstant());
}

Using the Headers#getLastModified method

BEFORE:

SimpleDateFormat format = new SimpleDateFormat("E, dd MMM yyyy
 HH:mm:ss z",
 Locale.ENGLISH);

String lastModified = headers.getLastModified();
if (lastModified != null)
{
 Date lastModifiedDate = format.parse(lastModified);
}

AFTER:

Date lastModifiedDate = Date.from(headers.getLastModified());

Using the Headers#setLastModified method

BEFORE:

private void invokeSetLastModified(Headers headers, Date date)
{
 SimpleDateFormat format = new SimpleDateFormat("E, dd MMM
 yyyy HH:mm:ss z",

 Locale.ENGLISH);

 headers.setLastModified(format.format(date));
}

 | Addon SDK for Java migration guide | 182

AFTER:

private void invokeSetLastModified(Headers headers, Date date)
{
 headers.setLastModified(date.toInstant());
}

com.pingidentity.pa.sdk.http.HeadersFactory

Using the HeadersFactory#createFromRawHeaderFields method

BEFORE:

private void invokeCreateFromRawHeaderFields(HeadersFactory
 factory,
 List<String> fields)
 throws ParseException
{
 Headers headers = factory.createFromRawHeaderFields(fields);
}

AFTER:

This functionality is no longer supported. Consider if the plugin can create HeaderFields directly
and utilize the HeadersFactory#create method.

com.pingidentity.pa.sdk.http.HttpStatus

The HttpStatus enum was converted to a final class. Common HttpStatus instances are defined as
constants on HttpStatus.

Using the HttpStatus#getLocalizationKey method

BEFORE:

String localizationKey = status.getLocalizationKey();

AFTER:

This functionality is no longer supported. Instead, a HttpStatus contains a LocalizedMessage
instance that encapsulates the localization of the status message for use in error templates.

com.pingidentity.pa.sdk.http.MimeType

The constants available in this class are now available as constant MediaType instances in the class
com.pingidentity.pa.sdk.http.CommonMediaTypes.

com.pingidentity.pa.sdk.http.MediaType

This class is now final and cannot be extended.

Constructing a MediaType

BEFORE:

private void createMediaType(String mediaTypeString)
{
 MediaType mediaType = new MediaType(mediaTypeString);
}

AFTER:

private void createMediaType(String mediaTypeString)
{
 MediaType mediaType = MediaType.parse(mediaTypeString);

 | Addon SDK for Java migration guide | 183

}

com.pingidentity.pa.sdk.http.Message

A number of methods have been removed from the Message interface.

Using the Message#getBodyAsStream method

BEFORE:

InputStream bodyStream = message.getBodyAsStream();

AFTER:

This functionality is no longer supported. However, the following code snippet could be used to
maintain semantics of the old method.

Body body = message.getBody();
try
{
 body.read();
}
catch (IOException | AccessException e)
{
 throw new RuntimeException("Could not get body as stream",
 e);
}

InputStream bodyStream = body.newInputStream();

While this snippet maintains semantics, it is recommended that a plugin propagate errors as an
AccessException instead of a RuntimeException.

Using the Message#getCharset method

BEFORE:

Charset charset = message.getCharset();

AFTER:

This functionality is no longer supported. However, the following code snippet could be used to
maintain semantics of the old method.

Charset charset = message.getHeaders().getCharset();
if (charset == null)
{
 charset = StandardCharsets.UTF_8;
}

While this snippet maintains semantics, a plugin should consider how to handle the case where a
Charset is not specified by a Message's header fields. Assuming a Charset of UTF-8 could lead to
issues in some cases.

Using the Message#getHeader method

BEFORE:

Header header = message.getHeader();

AFTER:

 | Addon SDK for Java migration guide | 184

This functionality is no longer supported. Instead, use Message#getHeaders and the Headers
interface instead of Header.

Using the Message#setHeader method

BEFORE:

private void invokeSetHeader(Message message, Header header)
{
 message.setHeader(header);
}

AFTER:

This functionality is no longer supported. Instead, use Message#setHeaders and the Headers
interface instead of Header.

Using the Message#isDeflate method

BEFORE:

boolean deflate = message.isDeflate();

AFTER:

This method has been removed. However, the value can still be computed with the following code
snippet:

List<String> contentEncodingValues =
 message.getHeaders().getContentEncoding();
boolean deflate = contentEncodingValues.stream().anyMatch(v ->
 v.equalsIgnoreCase("deflate"))
 && contentEncodingValues.size() == 1;

Using the Message#isGzip method

BEFORE:

boolean gzip = message.isGzip();

AFTER:

This method has been removed. However, the value can still be computed with the following code
snippet:

List<String> contentEncodingValues =
 message.getHeaders().getContentEncoding();
boolean gzip = contentEncodingValues.stream().anyMatch(v ->
 v.equalsIgnoreCase("gzip"))
 && contentEncodingValues.size() == 1;

Using the Message#isHTTP10 method

BEFORE:

boolean http10 = message.isHTTP10();

AFTER:

This method has been removed. However, the value can still be computed with the following code
snippet:

boolean http10 = message.getVersion().equals("1.0");

 | Addon SDK for Java migration guide | 185

Using the Message#isHTTP11 method

BEFORE:

boolean http11 = message.isHTTP11();

AFTER:

The method has been removed. However, the value can still be computed with the following code
snippet:

boolean http11 = message.getVersion().equals("1.1");

Using the Message#read method

BEFORE:

private void invokeRead(Message message,
 InputStream inputStream,
 boolean createBody) throws IOException
{
 message.read(inputStream, createBody);
}

AFTER:

This functionality is no longer supported. A Request attached to an Exchange can no longer be
completely replaced, but individual components can be replaced, such as the method, uri, headers
and body. A Response attached to an Exchange can be replaced by using Exchange#setResponse.

Using the Message#setVersion method

BEFORE:

private void invokeSetVersion(Message message, String version)
{
 message.setVersion(version);
}

AFTER:

This functionality is no longer supported. The version of a Message cannot be changed.

Using the Message#write method

BEFORE:

private void invokeWrite(Message message,
 OutputStream output) throws IOException
{
 message.write(output);
}

AFTER:

This functionality is no longer supported. However, the following code snippet can be used to
perform the equivalent operation:

private void invokeWrite(Message message,
 OutputStream output) throws IOException,
 AccessException
{
 Body body = message.getBody();
 body.read();

 | Addon SDK for Java migration guide | 186

 output.write(message.getStartLine().getBytes(StandardCharsets.ISO_8859_1));

 output.write(message.getHeaders().toString().getBytes(StandardCharsets.ISO_8859_1));
 output.write("\r\n".getBytes(StandardCharsets.ISO_8859_1));
 output.write(body.getContent());
 output.flush();
}

com.pingidentity.pa.sdk.http.Method

The Method interface has been converted to a final class. Additionally, the related Methods enum
has been merged into the Method class. The Method class provides common Method instances as
class-level constants.

Obtaining a common Method instance

BEFORE:

Method get = Methods.GET

AFTER:

Method get = Method.GET;

Using the Method#getMethodName method

BEFORE:

String methodName = method.getMethodName();

AFTER:

String methodName = method.getName();

com.pingidentity.pa.sdk.http.Request

A few methods have been removed from the Request interface.

Using the Request#getPostParams method

BEFORE:

private void invokeGetPostParams(Request request) throws
 IOException
{
 Map<String, String[]> postParams = request.getPostParams();
}

AFTER:

private void invokeGetPostParams(Request request) throws
 AccessException
{
 Body body = request.getBody();
 try
 {
 body.read();
 }
 catch (IOException e)
 {
 throw new AccessException("Failed to read body content",

 | Addon SDK for Java migration guide | 187

 HttpStatus.BAD_GATEWAY,
 e);
 }

 Map<String, String[]> postParams = body.parseFormParams();
}

Using the Request#isMultipartFormPost method

BEFORE:

boolean multipartFormPost = request.isMultipartFormPost();

AFTER:

This method has been removed from the Request interface. However, the value can still be
calculated using the following code snippet:

Headers headers = request.getHeaders();

boolean multipartFormPost =
 request.getMethod() == Method.POST
 && headers.getContentType() != null
 &&
 headers.getContentType().getBaseType().equals("multipart/form-
data")
 && headers.getContentType().getParameter("boundary") !=
 null;

com.pingidentity.pa.sdk.http.ResponseBuilder

A handful of methods were removed from ResponseBuilder. Additionally, a handful of methods
have changed their semantics, particularly those that included an HTML message payload. See the
updated JavaDoc for ResponseBuilder for more info.

Using the ResponseBuilder#badRequestText method

BEFORE:

Response response =
 ResponseBuilder.badRequestText(message).build();

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.BAD_REQUEST)

 .contentType(CommonMediaTypes.TEXT_PLAIN)
 .body(message)
 .build();

NOTE: This approach does not localize the response body. Using a TemplateRenderer is
recommended instead.

Using the ResponseBuilder#contentLength method

BEFORE:

Response response =
 ResponseBuilder.newInstance().contentLength(length).build();

AFTER:

 | Addon SDK for Java migration guide | 188

This functionality is no longer supported. Consider using one of the ResponseBuilder#body
methods instead of explicitly setting the content length. This ensures that the body content of the
Response aligns with the Content-Length header field.

Using the ResponseBuilder#continue100 method

BEFORE:

Response response = ResponseBuilder.continue100().build();

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.CONTINUE).build();

Using the ResponseBuilder#forbiddenText method

BEFORE:

Response response = ResponseBuilder.forbiddenText().build();

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.FORBIDDEN)

 .contentType(CommonMediaTypes.TEXT_PLAIN)

 .body(HttpStatus.FORBIDDEN.getMessage())
 .build();

NOTE: This approach does not localize the response body. Using a TemplateRenderer is
recommended instead.

Using the ResponseBuilder#forbiddenWithoutBody method

BEFORE:

Response response =
 ResponseBuilder.forbiddenWithoutBody().build();

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.FORBIDDEN).build();

BEFORE:

Response response =
 ResponseBuilder.forbiddenWithoutBody(message).build();

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.FORBIDDEN).build();

NOTE: In the original method, the String message parameter was not used.

Using the ResponseBuilder#htmlMessage method

 | Addon SDK for Java migration guide | 189

BEFORE:

String message = ResponseBuilder.htmlMessage(caption, text);

AFTER:

This functionality is no longer supported. Plugins that used this method will need to construct the
HTML message without this method. Consider using the TemplateRenderer utility class in place of
this method.

Using the ResponseBuilder#internalServerError method

BEFORE:

Response response =
 ResponseBuilder.internalServerError(message).build();

AFTER:

Response response =
 ResponseBuilder.internalServerError().body(message).build();

NOTE: This approach does not localize the response body. Using a TemplateRenderer is
recommended instead.

Using the ResponseBuilder#internalServerErrorWithoutBody method

BEFORE:

Response response =
 ResponseBuilder.internalServerErrorWithoutBody().build();

AFTER:

Response response =
 ResponseBuilder.internalServerError().build();

Using the ResponseBuilder#newInstance method

The no-arg newInstance method has been removed. A HttpStatus is required to create an instance
of ResponseBuilder and the required HttpStatus object should be passed to the newInstance method
that accepts a HttpStatus.

BEFORE:

Response response = ResponseBuilder.newInstance().build()

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.INTERNAL_SERVER_ERROR).build();

Using the ResponseBuilder#noContent method

BEFORE:

Response response = ResponseBuilder.noContent().build();

 | Addon SDK for Java migration guide | 190

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.NO_CONTENT).build();

Using the ResponseBuilder#notFoundWithoutBody method

BEFORE:

Response response =
 ResponseBuilder.notFoundWithoutBody().build();

AFTER:

Response response = ResponseBuilder.notFound().build();

Using the ResponseBuilder#serverUnavailable method

BEFORE:

Response response =
 ResponseBuilder.serverUnavailable(message).build();

AFTER:

Response response =
 ResponseBuilder.serviceUnavailable().body(message).build();

NOTE: This approach does not localize the response body. Using a TemplateRenderer is
recommended instead.

Using the ResponseBuilder#serviceUnavailableWithoutBody method

BEFORE:

Response response =
 ResponseBuilder.serverUnavailableWithoutBody().build();

AFTER:

Response response = ResponseBuilder.serviceUnavailable().build();

Using the ResponseBuilder#status method

The status methods have been removed. Instead the status should be specified to the newInstance
method as it is now required.

BEFORE:

Response response =
 ResponseBuilder.newInstance().status(HttpStatus.OK).build();

AFTER:

Response response =
 ResponseBuilder.newInstance(HttpStatus.OK).build();

Using the ResponseBuilder#unauthorizedWithoutBody method

 | Addon SDK for Java migration guide | 191

BEFORE:

Response response =
 ResponseBuilder.unauthorizedWithoutBody().build();

AFTER:

Response response = ResponseBuilder.unauthorized().build();

com.pingidentity.pa.sdk.http.Response

A few methods were removed from the Response interface.

Using the Response#isRedirect method

BEFORE:

boolean redirect = response.isRedirect();

AFTER:

boolean redirect = response.getStatusCode() >= 300
 && response.getStatusCode() < 400;

Using the Response#setStatusCode method

BEFORE:

response.setStatusCode(HttpStatus.OK.getCode());

AFTER:

response.setStatus(HttpStatus.OK);

Using the Response#setStatusMessage method

BEFORE:

response.setStatusMessage(HttpStatus.OK.getMessage());

AFTER:

response.setStatus(HttpStatus.OK);

com.pingidentity.pa.sdk.identity
com.pingidentity.pa.sdk.identity.Identity

The getTokenExpiration method was updated to use an Instant instead of Date.

Using the Identity#getTokenExpiration method

BEFORE:

Date expiration = identity.getTokenExpiration();

AFTER:

Date expiration = Date.from(identity.getTokenExpiration());

com.pingidentity.pa.sdk.identity.OAuthTokenMetadata

 | Addon SDK for Java migration guide | 192

The OAuthTokenMetadata methods now use an Instant instead of a Date.

Using the OAuthTokenMetadata#getExpiresAt method:

BEFORE:

Date expiresAt = metadata.getExpiresAt();

AFTER:

Date expiresAt = Date.from(metadata.getExpiresAt());

Using the OAuthTokenMetadata#getRetrievedAt method:

BEFORE:

Date retrievedAt = metadata.getRetrievedAt();

AFTER:

Date retrievedAt = Date.from(metadata.getRetrievedAt());

com.pingidentity.pa.sdk.identitymapping.header

ClientCertificateMapping has been removed from the SDK, as it was not required to create an IdentityMappingPlugin
implementation.

Plugins utilizing this class should create their own version of this class.

com.pingidentity.pa.sdk.policy
com.pingidentity.pa.sdk.policy.AccessExceptionContext

The nested Builder class has been removed from AccessExceptionContext and
instead AccessExceptionContext is a builder, that can be initially created with the new
AccessExceptionContext#create method.

The LocalizedMessage interface has been introduced to simplify the configuration of a localized
message for use in an error template. A LocalizedMessage has three implementations provided in
the SDK: FixedMessage, BasicLocalizedMessage and ParameterizedLocalizedMessage. See the
following code examples for more information on using these new classes.

Constructing an AccessExceptionContext:

BEFORE:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus,

 Throwable cause)

{
 return AccessExceptionContext.builder()
 .cause(cause)
 .httpStatus(httpStatus)

 .exceptionMessage(httpStatus.getMessage())

 .errorDescription(httpStatus.getLocalizationKey())
 .errorDescriptionIsKey(true)

 .errorDescriptionSubstitutions(new String[0])
 .build();

 | Addon SDK for Java migration guide | 193

}

AFTER:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus,

 Throwable cause)
{
 return AccessExceptionContext.create(httpStatus)
 .cause(cause)

 .exceptionMessage(httpStatus.getMessage())

 .errorDescription(httpStatus.getLocalizedMessage());
}

BEFORE:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus,

 String localizationKey,

 String[] substitutions)
{
 return AccessExceptionContext.builder()
 .httpStatus(httpStatus)

 .errorDescription(localizationKey)
 .errorDescriptionIsKey(true)

 .errorDescriptionSubstitutions(substitutions)
 .build();
}

AFTER:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus,

 String localizationKey,

 String[] substitutions)
{
 LocalizedMessage localizedMessage =
 new ParameterizedLocalizedMessage(localizationKey,
 substitutions);

 return AccessExceptionContext.create(httpStatus)

 .errorDescription(localizedMessage);
}

BEFORE:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus,

 String localizationKey)
{
 return AccessExceptionContext.builder()

 | Addon SDK for Java migration guide | 194

 .httpStatus(httpStatus)

 .errorDescription(localizationKey)
 .errorDescriptionIsKey(true)
 .build();
}

AFTER:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus,

 String localizationKey)
{
 LocalizedMessage localizedMessage = new
 BasicLocalizedMessage(localizationKey);
 return AccessExceptionContext.create(httpStatus)

 .errorDescription(localizedMessage);
}

BEFORE:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus)
{
 return AccessExceptionContext.builder()
 .from(httpStatus)

 .httpStatusDescription(httpStatus.getLocalizationKey())

 .httpStatusDescriptionIsKey(true)
 .templateFile("template.html")
 .contentType("text/html");
}

AFTER:

private AccessExceptionContext
 createAccessExceptionContext(HttpStatus httpStatus)
{
 return AccessExceptionContext.create(httpStatus)

 .errorDescription(httpStatus.getLocalizedMessage());
}

NOTE: this example demonstrates that it is no longer possible to set a template file and its
associated content type on an AccessExceptionContext. To generate an error response from a
template file, use the TemplateRenderer class. See the JavaDoc for the TemplateRenderer class for
more information.

com.pingidentity.pa.sdk.policy.AccessException

The changes to AccessExceptionContext apply to the creation of AccessException because the
creation of an AccessException requires an AccessExceptionContext.

In addition to these changes, obtaining information from AccessException has also changed. See the
code examples below for more information.

Finally, AccessException no longer derives from IOException and derives directly from Exception
instead.

Constructing an AccessException:

 | Addon SDK for Java migration guide | 195

BEFORE:

private void throwAccessException(String errorDescription,
 Throwable throwable) throws
 AccessException
{
 throw new AccessException(errorDescription, throwable);
}

AFTER:

private void throwAccessException(String errorDescription,
 Throwable throwable) throws
 AccessException
{
 LocalizedMessage templateMessaage = new
 FixedMessage(errorDescription);
 throw new
 AccessException(AccessExceptionContext.create(HttpStatus.INTERNAL_SERVER_ERROR)

 .exceptionMessage(errorDescription)

 .cause(throwable)

 .errorDescription(templateMessaage));
}

BEFORE:

private void throwAccessException(String errorDescription) throws
 AccessException
{
 throw new AccessException(errorDescription);
}

AFTER:

private void throwAccessException(String errorDescription) throws
 AccessException
{
 LocalizedMessage templateMessage = new
 FixedMessage(errorDescription);
 throw new
 AccessException(AccessExceptionContext.create(HttpStatus.INTERNAL_SERVER_ERROR)

 .exceptionMessage(errorDescription)

 .errorDescription(templateMessage));
}

BEFORE:

private void createAccessException(int statusCode,
 String statusMessage,
 String errorDescription)
 throws AccessException
{
 throw new AccessException(statusCode, statusMessage,
 errorDescription);
}

 | Addon SDK for Java migration guide | 196

AFTER:

private void createAccessException(int statusCode,
 String statusMessage,
 String errorDescription)
 throws AccessException
{
 HttpStatus httpStatus = new HttpStatus(statusCode,
 statusMessage);
 LocalizedMessage templateMessage = new
 FixedMessage(errorDescription);
 throw new
 AccessException(AccessExceptionContext.create(httpStatus)

 .exceptionMessage(errorDescription)

 .errorDescription(templateMessage));
}

BEFORE:

private void throwAccessException(int statusCode,
 String statusMessage,
 String errorDescription,
 Throwable throwable) throws
 AccessException
{
 throw new AccessException(statusCode, statusMessage,
 errorDescription, throwable);
}

AFTER:

private void throwAccessException(int statusCode,
 String statusMessage,
 String errorDescription,
 Throwable throwable) throws
 AccessException
{
 HttpStatus httpStatus = new HttpStatus(statusCode,
 statusMessage);
 LocalizedMessage templateMessage = new
 FixedMessage(errorDescription);
 throw new
 AccessException(AccessExceptionContext.create(httpStatus)

 .exceptionMessage(errorDescription)

 .errorDescription(templateMessage)

 .cause(throwable));
}

BEFORE:

private void throwAccessException() throws AccessException
{
 throw new AccessException(AccessExceptionContext.builder()

 .httpStatusCode(403)

 .httpStatusMessage("Forbidden")

 | Addon SDK for Java migration guide | 197

 .build());
}

AFTER:

private void throwAccessException() throws AccessException
{
 throw new
 AccessException(AccessExceptionContext.create(HttpStatus.FORBIDDEN));
}

Using the AccessException#getExceptionContext method

BEFORE:

AccessExceptionContext context =
 accessException.getExceptionContext();

AFTER:

This functionality is no longer supported. The information that used to be provided by the
AccessExceptionContext is now provided directly by an AccessException.

Using the AccessException#getHttpStatusCode method

BEFORE:

int statusCode = accessException.getHttpStatusCode();

AFTER:

int statusCode = accessException.getErrorStatus().getCode();

Using the AccessException#getHttpStatusMessage method

BEFORE:

String statusMessage = accessException.getHttpStatusMessage();

AFTER:

String statusMessage =
 accessException.getErrorStatus().getMessage();

Using the AccessException#setHttpStatusCode method

BEFORE:

accessException.setHttpStatusCode(statusCode);

AFTER:

This functionality is no longer supported. The status code associated with an AccessException is
fixed once it is constructed.

Using the AccessException#setHttpStatusMessage method

BEFORE:

accessException.setHttpStatusMessage(statusMessage);

AFTER:

 | Addon SDK for Java migration guide | 198

This functionality is no longer supported. The status message associated with an AccessException is
fixed once it is constructed.

com.pingidentity.pa.sdk.policy.RuleInterceptor

The handleRequest and handleResponse methods on a RuleInterceptor no longer throw an
IOException. Instead, they throw an AccessException, which no longer derives from IOException.

Accounting for the RuleInterceptor#handleRequest method signature change

BEFORE:

@Override
public Outcome handleRequest(Exchange exchange) throws
 IOException
{
 Outcome outcome = applyPolicy(exchange);

 return outcome;
}

AFTER:

@Override
public Outcome handleRequest(Exchange exchange) throws
 AccessException
{
 Outcome outcome = applyPolicy(exchange);

 return outcome;
}

Account for the RuleInterceptor#handleResponse method signature change

BEFORE:

@Override

public void handleResponse(Exchange exchange) throws IOException

{

 applyPolicyToResponse(exchange.getResponse());

}

AFTER:

@Override
public void handleResponse(Exchange exchange) throws
 AccessException
{
 applyPolicyToResponse(exchange.getResponse());
}

com.pingidentity.pa.sdk.policy.error.InternalServerErrorCallback

This class has been removed. Use LocalizedInternalServerErrorCallback instead.

com.pingidentity.pa.sdk.services
com.pingidentity.pa.sdk.services.ServiceFactory

This class is now final and cannot be extended.

 | Addon SDK for Java migration guide | 199

com.pingidentity.pa.sdk.siteauthenticator
com.pingidentity.pa.sdk.siteauthenticator.SiteAuthenticatorInterceptor

This interface is no longer a RequestInterceptor or ResponseInterceptor, but it still defines the
handleRequest and handleResponse methods:

public interface SiteAuthenticatorInterceptor<T extends
 PluginConfiguration>
 extends DescribesUIConfigurable, ConfigurablePlugin<T>
{
 void handleRequest(Exchange exchange) throws AccessException;
 void handleResponse(Exchange exchange) throws
 AccessException;
}

Additionally, these methods now only throw an AccessException instead of an IOException or
InterruptedException.

Accounting for the SiteAuthenticatorInterceptor#handleRequest method signature change

BEFORE:

@Override
public Outcome handleRequest(Exchange exc)
 throws RuntimeException, IOException,
 InterruptedException
{
 // Site authenticator implementation //

 return Outcome.CONTINUE;
}

AFTER:

@Override
public void handleRequest(Exchange exc) throws AccessException
{
 // Site authenticator implementation //
}

Accounting for the SiteAuthenticatorInterceptor#handleResponse method signature change

BEFORE:

@Override
public void handleResponse(Exchange exc) throws IOException
{
 // Site authenticator response implementation //
}

AFTER:

@Override
public void handleResponse(Exchange exc) throws AccessException
{
 // Site authenticator response implementation //
}

com.pingidentity.pa.sdk.ui
com.pingidentity.pa.sdk.ui.ConfigurationType

 | Performance tuning guide | 200

The deprecated PRIVATEKEY enum value has been removed. Instead use a ConfigurationType
of ConfigurationType#SELECT and specify the PrivateKeyAccessor.class instance to
ConfigurationBuilder#dynamicOptions or UIElement#modelAccessor.

com.pingidentity.pa.sdk.user
com.pingidentity.pa.sdk.user.User

This class has been removed from the SDK. Use the Identity interface instead. An instance of
Identity can be retrieved from the Exchange, similar to the User interface.

com.pingidentity.pa.sdk.util
com.pingidentity.pa.sdk.util.TemplateRenderer

The semantics of the renderResponse method have changed so it produces a Response and does not
have any side-effects on the specified parameters.

Using the TemplateRenderer#renderResponse method:

BEFORE:

private void invokeRenderResponse(TemplateRenderer
 templateRenderer,
 Map<String, String> context,
 String templateName,
 Exchange exchange,
 ResponseBuilder builder)
{
 templateRenderer.renderResponse(context, templateName,
 exchange, builder);
}

AFTER:

private void invokeRenderResponse(TemplateRenderer
 templateRenderer,
 Map<String, String> context,
 String templateName,
 Exchange exchange,
 ResponseBuilder builder)
{
 Response response = templateRenderer.renderResponse(exchange,
 context,

 templateName,
 builder);
 exchange.setResponse(response);
}

Performance tuning guide

Performance tuning
While PingAccess has been engineered as a high performance engine, its default configuration may not match your
deployment goals nor the hardware you have available. Consult the following sections to optimize various aspects of
a PingAccess deployment for maximum performance.

 | Performance tuning guide | 201

Info: An additional document related to performance, the PingAccess Capacity Planning Guide, is also
available to customers as a performance data reference. This document is available from the Customer Portal
(ping.force.com/Support).

Java tuning
Tuning the Java heap

One of the most important tuning options you can apply to the Java Virtual Machine (JVM) is to configure how
much heap (memory for runtime objects) to use. The JVM grows the heap from a specified minimum to a specified
maximum. If you have sufficient memory, best practice is to “fix” the size of the heap by setting minimum and
maximum to the same value. This allows the JVM to reserve its entire heap at startup, optimizing organization and
eliminating potentially expensive resizing.

By default, PingAccess fixes the Java heap at 512 megabytes (MB). This is a fairly small footprint and not optimal
for supporting higher concurrent user loads over extended periods of activity. If you expect your deployment of
PingAccess to serve more than 50 concurrent users (per PingAccess node if deploying a cluster), we recommend that
you increase the heap size.

Configure JVM crash log in Java startup

This section describes how to modify JVM crash log settings. The JVM crash log location is specified in run.bat
(Windows) or run.sh (Linux) and is enabled by default.

Use these steps to disable the JVM crash log or to change the location in which the crash log is stored.

1. Open <PA_HOME>/bin/run.bat (Windows) or <PA_HOME>/bin/run.sh (Linux) for editing.
2. To disable JVM crash log reporting, comment out the line that specifies the JVM crash log location. For example,

#ERROR_FILE"=-XX:ErrorFile=$PA_HOME/log/java_error%p.lo"g.
3. To enable JVM crash log reporting, remove the comment tag and make the line active. For example,

ERROR_FILE"=-XX:ErrorFile=$PA_HOME/log/java_error%p.lo"g.

Configure memory dumps in Java startup

This section describes how to modify JVM memory dump settings. The JVM memory dump location is specified in
run.bat (Windows) or run.sh (Linux) and is disabled by default.

Use these steps to enable JVM memory dump or to change the location in which the dump is stored.

1. Open <PA_HOME>/bin/run.bat (Windows) or <PA_HOME>/bin/run.sh (Linux) for editing.
2. To enable JVM memory dump, remove the comment tag on the line that specifies the JVM memory dump

location. For example, HEAP_DUMP"=-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=
$PA_HOME/lo"g.

3. To disable JVM memory dump, comment out the line. For example, #HEAP_DUMP"=-XX:
+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=$PA_HOME/lo"g.

Modify the Java heap size

To modify the Java heap size for both Windows and Linux installations, including their services, do the following:

1. Open the jvm-memory.options file located in PA_HOME/conf.
2. Specify overall heap size by modifying the #Minimim heap size and #Maximum heap size parameters.

• Modify -Xms512m to change the #Minimim heap size value
• Modify -Xmx512m to change the #Maximum heap size value

Specify units as m (megabytes) or g (gigabytes).
3. Specify young generation size by modifying the #Minimum size for the Young Gen space and

#Maximum size for the Young Gen space variables.

https://ping.force.com/Support

 | Performance tuning guide | 202

• Modify -XX:NewSize=256m to change the #Minimum size for the Young Gen space value
• Modify -XX:MaxNewSize=256m to change the #Maximum size for the Young Gen space

value

Set values to 50% of #Minimim heap size and #Maximum heap size.

Info: Not advisable if selecting the G1 collector (see Garbage Collector Configuration for more
information).

Operating system tuning

This section contains tuning recommendations for your operating system. The tuning recommendations provided here
are particularly useful in preventing deployment issues in high capacity environments. See the included topics for
guidance specific to your operating system.

Linux tuning

This section describes tuning recommendations for the Linux operating system environment. Implement these
recommendations to prevent deployment issues, particularly in high capacity environments. The following settings
will increase the performance and capacity of the networking (particularly TCP) stack and file descriptor usage,
respectively, enabling PingAccess to handle a high volume of concurrent requests.

Network/TCP tuning:

Add/Modify the following entries in /etc/sysctl.conf

##TCP Tuning##
Controls the use of TCP syncookies (default is 1)
and increase the number of outstanding syn requests allowed.
net.ipv4.tcp_syncookies=1
net.ipv4.tcp_max_syn_backlog=8192

Increase number of incoming connections.
somaxconn defines the number of request_sock structures allocated
per each listen call.
The queue is persistent through the life of the listen socket.
net.core.somaxconn=4096

Increase number of incoming connections backlog queue.
Sets the maximum number of packets, queued on the INPUT side,
when the interface receives packets faster
than kernel can process them.
net.core.netdev_max_backlog=65536

increase system IP port limits
net.ipv4.ip_local_port_range=2048 65535

Turn on window scaling which can enlarge the transfer window:
net.ipv4.tcp_window_scaling=1

decrease TCP timeout
net.ipv4.tcp_fin_timeout=10

Enables fast recycling of TIME_WAIT sockets.
(Use with caution according to the kernel documentation!)
net.ipv4.tcp_tw_recycle=1

Allow reuse of sockets in TIME_WAIT state for new connections
only when it is safe from the network stack’s perspective.
net.ipv4.tcp_tw_reuse=1

 | Performance tuning guide | 203

Increase the read and write buffer space allocatable
(minimum size, initial size, and maximum size in bytes)
net.ipv4.tcp_rmem = 4096 65536 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

The maximum number of packets which may be queued
for each unresolved address by other network layers
net.ipv4.neigh.default.unres_qlen=100
net.ipv4.neigh.eth0.unres_qlen=100
net.ipv4.neigh.em1.unres_qlen=100

Default Socket Receive and Write Buffer
net.core.rmem_default=8388608
net.core.wmem_default=8388608
##############

Increase File Descriptor limits:

Add/Modify the following lines in /etc/security/limits.conf:

pingAccessAccount soft nofile 10400
pingAccessAccount hard nofile 10400

where pingAccessAccount is the user account used to run the PingAccess java process (or * for all users).

Windows tuning

This section describes tuning recommendations for the Windows (version 7 and up) operating system environment.
Implement these recommendations to prevent deployment issues, particularly in high capacity environments. The
following settings will increase the performance and capacity of network (specifically the TCP socket) connectivity,
enabling PingAccess to handle a high volume of concurrent requests.

Increase the number of available ephemeral ports

1. View ephemeral ports: netsh int ipv4 show dynamicportrange tcp
2. Increase ephemeral ports: netsh int ipv4 set dynamicport tcp start=1025 num=64510
3. Reboot the machine.
4. View and confirm updated port range: netsh int ipv4 show dynamicportrange tcp

Reduce socket TIME_WAIT delay

1. Click Start > Run, type regedit and click OK to open the Registry Editor.
2. Navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Tcpip

\Parameters.
3. Create a new DWORD value (32 bit) and provide the name TcpTimedWaitDelay.
4. Set a decimal value of 30.
5. Reboot the machine.

Garbage collector configuration
Selecting the appropriate garbage collector depends on the size of the heap and available CPU resources. The
following is a table of available collectors and some general guidance on when and how to use them.

Specify the garbage collector using the jvm-memory.options file located in PA_HOME/conf. Modify the
parameter beneath #Use the parallel garbage collector using the information provided below.

 | Performance tuning guide | 204

Garbage Collector Description Modifications

Parallel • Best used with heaps 4GB or less
• Full stop-the-world copying and

compacting collector
• Uses all available CPUs (by

default) for garbage collection

Default collector for server JVM. No
modification is required.

Concurrent Mark Sweep (CMS) • Best for heaps larger than 4GB
with at least 8 CPU cores

• Mostly a concurrent collector
• Some stop-the-world phases
• Non-Compacting
• Can experience expensive, single

threaded, full collections due to
heap fragmentation

Set to ‑XX:
+UseConcMarkSweepGC in jvm-
memory.options.

Garbage First (G1) • Best for heaps larger than 6GB
with at least 8 CPU cores

• Combination concurrent and
parallel collector with small stop-
the-world phases

• Long-term replacement for CMS
collector (does not suffer heap
fragmentation like CMS)

Set to ‑XX:+UseG1GC in jvm-
memory.options. Also disable
#Minimim heap size and
#Maximum heap size tuning.
Explicit sizing adversely affects
pause time goal. To disable, comment
the lines out in the script.

Acceptor threads
PingAccess uses a pool of threads to respond to HTTP/S requests made to the TCP port(s) in use. This applies to
both administrative and runtime engine listening ports. Acceptor threads read user requests from the administrative or
runtime port and pass the requests to worker threads for processing. For performance, only one acceptor thread need
be used in most situations. On larger multiple CPU core machines, more acceptors may be used.

To modify, open the run.properties file located in the conf directory of your PingAccess deployment and
specify the number of acceptors you want to use on the following lines:

admin.acceptors=N

engine.http.acceptors=N

agent.http.acceptors=N

Where N represents the number of acceptor threads.

Worker threads
PingAccess uses a pool of worker threads to process user requests and a separate pool to process agent requests.
Worker threads receive user requests from Acceptor threads, process them, respond back to the client and then return
to the pool for reuse. By default, PingAccess starts with a minimum of five worker threads and grows as needed
(unbounded by default). You can define the minimum and maximum number of Worker threads in each pool by
adding and/or modifying properties found in the run.properties file.

To set values, open the run.properties file located in the conf directory of your PingAccess deployment. If the
properties do not exist in the file add them.

 | Performance tuning guide | 205

engine.httptransport.coreThreadPoolSize=N
engine.httptransport.maxThreadPoolSize=N

and

agent.httptransport.coreThreadPoolSize=N
agent.httptransport.maxThreadPoolSize=N

Where N represents the number of worker threads.

Maintenance of the pool is such that if the number of threads in the pool exceeds the value
of engine.httptransport.coreThreadPoolSize, threads idle for 60 seconds
are terminated and removed from the pool. The idle timeout value is not modifiable.
However, if the values of engine.httptransport.coreThreadPoolSize and
engine.httptransport.maxThreadPoolSize are the same, a fixed sized pool is created and idle
threads are not terminated and removed. Similarly for agent.httptransport.coreThreadPoolSize and
agent.httptransport.maxThreadPoolSize.

Since the pool by default is allowed to grow and shrink based on demand, it is recommended
that you tune the engine.httptransport.coreThreadPoolSize and
agent.httptransport.coreThreadPoolSize (minimum) to satisfy moderate demand on the system. We
recommend a minimum of 10 threads per available CPU core as a good value to support up to twice the number of
concurrent users without error or significant degradation in performance.

Backend server connections
PingAccess provides the following option to control and optimize connections to the proxied site.

Max Connections

Connections to PingAccess are not explicitly connections to the proxied site. PingAccess creates a pool of
connections, unlimited in size by default, that are multiplexed to fulfill client requests. Maintenance of the pool
includes creating connections to the site when needed (if none are available) and removing connections when they are
closed by the backend server due to inactivity.

In certain situations it can be advantageous to limit the number of connections in the pool for a given Web site. If,
for example, the Web site is limited to the number of concurrent connections it can handle or has specific HTTP
Keep Alive settings, limiting the number of connections from PingAccess can improve overall performance by not
overloading the backend server. In the event that all connections in the pool are in use, a requesting thread waits
for one to become available. Assuming that response time from the backend site is sufficiently fast, the time spent
waiting for a connection is likely to be less than if the system becomes overloaded.

Info: We strongly recommended that you understand the limits and tuning of the server application being
proxied. Setting the Max Connections value too low may create a bottleneck to the proxied site, setting the
value too high (or unlimited) may cause PingAccess to overload the server.

See Sites documentation for information on setting Max Connections.

Logging and Auditing
PingAccess uses a high performance, asynchronous logging framework to provide logging and auditing services with
as low impact to overall application performance as possible.

 | Clustering reference guide | 206

Logging

Although logging is handled by a high performance, asynchronous logging framework, it is more efficient to the
system overall to log the minimum amount of information required. We highly recommend that you review the
section of the documentation for logging and adjust the level to the lowest, most appropriate level to suit your needs.

Auditing

As with logging, auditing is provided by the same high performance, asynchronous logging framework. Furthermore,
auditing messages can be written to a database instead of flat files, decreasing file I/O. If you do not require auditing
for interactions with a Resource or between PingAccess and PingFederate, it is more efficient to disable audit
logging. However, if you do require auditing services and have access to a Relational Database Management System
(RDBMS), we recommend auditing to a database. You will see a decrease in disk I/O, which may result in increased
performance depending on database resources.

Agent tuning
Several properties in the agent.properties file can be configured for increased performance. See the agent
documentation for Apache or IIS for more information on agent configuration and setting properties.

Max Connections

Connections from the agent to PingAccess are limited by
agent.engine.configuration.maxConnections. Though the default is set to 10, the PingAccess policy
server sees optimal performance at 50 concurrent requests per CPU. In certain situations it can be advantageous to
increase the number of connections. In the event that all connections in the pool are in use, a requesting thread waits
for one to become available. Assuming that response time to PingAccess is sufficiently fast, the time spent waiting
for a connection is likely to be less than if the system becomes overloaded. Note that this is the maximum number
of connections per worker process, and not simply the total number of workers the agent has access to. Setting
agent.engine.configuration.maxConnections value too low may create a bottleneck to PingAccess,
and setting the value too high may cause PingAccess to become overloaded.

Max Tokens

By default, the maximum number of cached tokens in an agent is unlimited. In certain situations it can be
advantageous to limit the size of the cache for the agent, as a smaller cache has a smaller memory footprint, freeing
up memory available to the application for servicing requests. However, when the token cache limit is reached, the
least recently used token-policy mapping will be removed from the cache. If that token-policy mapping happens to
be needed again, the agent will have a cache miss, resulting in the need to obtain a new token-policy mapping from
PingAccess.

Clustering reference guide

Clustering
PingAccess can be configured in a clustered environment to provide higher scalability and availability for critical
services. While it is important to understand that there may be tradeoffs between availability and performance,
PingAccess is designed to operate efficiently in a clustered environment.

PingAccess clusters are made up of three types of nodes:

Administrative Console Provides the administrator with a configuration interface

https://docs.pingidentity.com/bundle/PAAA/page/Configuration.html
https://docs.pingidentity.com/bundle/PAAI/page/Configuration.html

 | Clustering reference guide | 207

Replica Administrative Console Provides the administrator with the ability to recover a
failed administrative console using a manual failover
procedure.

Clustered Engine Handles incoming client requests and evaluates policy
decisions based on the configuration replicated from the
administrative console

Any number of clustered engines can be configured in a cluster, but only one administrative console and one replica
administrative console can be configured in a cluster.

Configuration information is replicated to all of the clustered engine nodes and the replica administrative node from
the administrative console. State information replication is not part of a default cluster configuration, but some state
information can be replicated using PingAccess subclusters.

Using multiple network interface cards to route traffic

The routing of different types of traffic over specific interfaces is a network infrastructure exercise. However,
PingAccess does support the routing of traffic over multiple network interfaces since, by default, PingAccess binds to
all interfaces, as specified by a 0.0.0.0 address for the following parameters in conf/run.properties.

admin.bindAddress=0.0.0.0
clusterconfig.bindAddress=0.0.0.0
engine.http.bindAddress=0.0.0.0
agent.http.bindAddress=0.0.0.0

You can override this setting by specifying a single bind address.

PingAccess Subclusters

Subclusters are a method to provide better scaling of very large PingAccess deployments by allowing multiple engine
nodes in the configuration to share certain information. A load balancer is placed in front of each subcluster in order
to distribute connections to the nodes in the subcluster.

Subclusters serve three purposes:

• Providing fault-tolerance for mediated tokens if a cluster node is taken offline.
• Reducing the number of STS transactions with PingFederate when the front-end load balancer does not provide a

sticky session.
• Ensure rate limits are enforced properly if the front-end load balancer does not provide a sticky session.

Rate limiting rules and token mediation require a runtime state cluster. If token mediation and rate limiting are not
used in your environment, subclustering is not necessary.

Info: The cache can be tuned using the EHCache Configuration Properties (pa.ehcache.*) listed in the
Configuration file reference guide.

https://docs.pingidentity.com/bundle/pa_m_ConfigurationFileReferenceGuide_pa51/page/pa_c_Reference_Information.html

 | Clustering reference guide | 208

PingAccess provides clustering features that allow a group of PingAccess servers to appear as a single system. When
deployed appropriately, server clustering can facilitate high availability of critical services. Clustering can also
increase performance and overall system throughput. It is important to understand, however, that availability and
performance are often at opposite ends of the deployment spectrum. Thus, you may need to make some configuration
tradeoffs that balance availability with performance to accommodate specific deployment goals.

In a cluster, you can configure each PingAccess engine, or node, as an administrative console, a replica administrative
console, or a runtime engine in the run.properties file. Runtime engines service client requests, while the
console server administers policy and configuration for the entire cluster (via the administrative console). The replica
administrative console provides a backup copy of the information on the administrative node in the event of a non-
recoverable failure of the administrative console node. A cluster may contain one or more runtime nodes, but only
one console node and only one replica console node. Server-specific configuration data is stored in the PingAccess
administrative console server in the run.properties file. Information needed to bootstrap an engine is stored in the
bootstrap.properties file on each engine.

Table 1: bootstrap.properties

engine.admin.configuration. host Defines the host where the administrative console is
available. The default is localhost.

engine.admin.configuration. port Defines the port where the administrative console is
running. The default is 9000.

engine.admin.configuration. userid Defines the name of the engine.

engine.admin.configuration. keypair Defines an elliptic curve key pair that is in the JSON
Web Key (JWK) format.

engine.admin.configuration. bootstrap.truststore Defines the truststore, in JWK format, that is used for
communication with the administrative console.

At startup, a PingAccess engine node in a cluster checks its local configuration and then makes a call to the
administrative console to check for changes. How often each engine in a cluster checks the console for changes is
configurable in the engine run.properties file.

Configuration information is replicated to all engine nodes. By default, engines do not share runtime state. For
increased performance, you can configure engines to share runtime state by configuring cluster interprocess
communication using the run.properties file.

 | Clustering reference guide | 209

Info: Runtime state clustering consists solely of a shared cache of security tokens acquired from the
PingFederate STS for Token Mediation use cases using the Token Mediator Site Authenticator.

Engine nodes include a status indicator that indicates the health of the node and a Last Updated field that indicates
the date and time of the last update. The status indicator can be green (good status), yellow (degraded status), or red
(failed status).

The status is determined by using the value for admin.polling.delay as an interval to measure health:

Green (good status): The replica administrative node contacted the primary
administrative node on the last pull request.

Yellow (degraded status): The replica administrative node contacted the primary
administrative node between 2 and 10 intervals.

Red (failed status): The replica administrative node has either never
contacted the primary administrative node, or it has been
more than 10 intervals since the nodes communicated.

Configure cluster prerequisites
Before configuring a PingAccess cluster, there are several prerequisite steps that must be taken.

1. Install PingAccess on each cluster node.
2. Create a key pair for the PingAccess administrative console that uses the DNS name of the administrative node as

the common name. If an administrative replica console is created, this key pair needs to either be configured with
the administrative replica node defined in the Subject Alternative Names for the key pair, or the key pair needs to
be configured as a wildcard certificate.

Info: Using an IP address as the common name or in the subject alternative names is also acceptable, as
long as those values are used in the administrative node fields on the Administrative Nodes configuration
page.

3. Edit PA_HOME/conf/run.properties on the clustered console and change the
pa.operational.mode parameter from STANDALONE to CLUSTERED_CONSOLE.

4. Go to Settings > System > Clustering > Administrative Nodes and change the Primary Administrative Node
value from localhost:9000 to <dns_name>:9000, where <dns_name> is the common name from
the key pair defined in step 2.

5. Restart the administrative node

Configure a PingAccess cluster
Prior to configuring your cluster, PingAccess should be set up as a STANDALONE server. The initial node becomes
the primary administrative console, and is used to configure the rest of the cluster.

1. Install PingAccess on each cluster node

Note: The sequence of the configuration flow is significant: host names first, then generate keys, and then
configure the cluster.

2. Navigate to Settings > System > Clustering > Administrative Nodes and define the Primary Administrative
Node as a host:port pair.
The host must be a resolvable DNS name for the node or the node's IP address. The port is the TCP port
PingAccess listens to for the administrative interface. The default port is 9090.

3. If a replica administrative node will be used in the cluster, perform the following steps:
a) Define a host:port pair for the replica node.
b) Click Save & Download to download the replica administrative node configuration file.
c) Copy the downloaded replica1_data.zip file to the replica administrative node.

 | Clustering reference guide | 210

Note: If a replica administrative node is added after the cluster has been deployed, it will be necessary to
update the configuration for each engine node when the replica administrative node is added.

4. Navigate to Settings > Security > Key Pairs and create a new key pair to assign to the ADMIN listener. The key
pair needs to be valid for both the primary and replica administrative nodes.

Tip: If a replica administrative node is not defined during the initial cluster configuration, you might still
opt to define a subject alternative name for a future replica administrative node. This avoids having to
reissue the keys when adding the replica administrative node in the future.

5. Open conf/run.properties in an editor and change the pa.operational.mode value to
CLUSTERED_CONSOLE.

6. Navigate to Settings > Networking > Listeners and assign the newly created key pair to the CONFIG QUERY
listener.

Note: If clusterconfig.enabled is set to false in run.properties, the key pair needs to be
assigned to the ADMIN listener instead. This property is set to false when a cluster has been upgraded
from PingAccess 3.2 or earlier.

7. Restart PingAccess on the administrative node.
Perform steps 8-10 on the replica administrative node, if one has been configured.
8. Unzip replica1_data.zip in the PA_HOME directory.
9. Open conf/run.properties in an editor and change the pa.operational.mode value to

CLUSTERED_CONSOLE_REPLICA

10. Start PingAccess on the replica administrative node.
For each engine node, perform steps 11-16.
11. Navigate to Settings > System > Clustering and click Add Engine.
12. After defining the engine's parameters, click Save & Download to download the engine configuration zip file.
13. Copy engine_name_data.zip to the engine node.
14. On the engine node, unzip engine_name_data.zip in the PA_HOME directory.
15. On the engine node, open conf/run.properties in an editor and change the pa.operational.mode

value to CLUSTERED_ENGINE.
16. Start PingAccess on the engine node.

Navigate to Settings > System > Clustering to check your cluster's status. If everything is configured properly, the
cluster engine nodes and optional replica administrative node should show a green status icon, indicating that the
cluster is operational.

You can optionally configure each node to run PingAccess as a service set to automatically run when the node is
started. For more information about configuring PingAccess as a service, see installation documentation for more
information.

Configure the primary administrative node
Define the PingAccess server you want to use as the administrative node.

Warning: If you are promoting a replica admin node to primary, remove the bootstrap properties file from
the replica admin node.

Note: This procedure allows you to specify an HTTP or HTTPS proxy. If proxy configuration is defined in a
properties file (bootstrap.properties or run.properties), it will take precedence over UI or API
configuration.

Note: If a proxy is configured on an replica administrative node, when failing over and before removing the
bootstrap.properties file, the administrative node should have the same proxy configuration.

1. Enter the host and port for the administrative console. The default is localhost:9000.
2. If applicable, specify an HTTP Proxy for the engine. Click Create to create an HTTP proxy.

 | Clustering reference guide | 211

3. If applicable, specify an HTTPS Proxy for the engine. Click Create to create an HTTPS proxy.
4. Click Save.

Configure PingAccess subclusters

1. Modify PA_HOME/conf/run.properties and change the
pa.cluster.interprocess.communication value from none to either tcp or udp.

Info: Using UDP for the interprocess communication allows a multicast group to be used for this
communication, which for a larger subcluster may be more efficient.

2. Conditional: If TCP is used for interprocess communication, configure the
pa.cluster.tcp.discovery.initial.hosts value to specify a list of initial hosts to contact for group
discovery.

3. Conditional: If UDP is used for interprocess communication, optionally configure the
pa.cluster.mcast.group.address and pa.cluster.mcast.group.port values for each
subcluster.

4. Update the pa.cluster.bind.address with the IP address of the network interface that should handle the
interprocess communication traffic for the cluster.

5. Place a load balancer in front of each subcluster to distribute the load across the subcluster nodes.
6. Restart the engine nodes.

Configure the Replica Administrative Node
When using a replica administrative node, it is necessary to define a key pair to use for the CONFIG QUERY listener
that includes both the primary administrative node and the replica administrative node. This can be accomplished
either by using a wildcard certificate or by defining subject alternative names in the key pair that include the replica
administrative node's DNS name. If a replica administrative node is used in your configuration, configure the replica
administrative node before defining the engine nodes, or the bootstrap.properties files generated for the
engine nodes will not include information about the replica administrative node.

In addition to the configuration below, the Replica Administrative node includes a status indicator that indicates the
health of the node and a read-only Last Updated field that indicates the date and time of the last update. The status
indicator can be green (good status), yellow (degraded status), or red (failed status).

The status is determined by using the value for admin.polling.delay as an interval to measure health:

Green (good status): The replica administrative node contacted the primary
administrative node on the last pull request.

Yellow (degraded status): The replica administrative node contacted the primary
administrative node between 2 and 10 intervals.

Red (failed status): The replica administrative node has either never
contacted the primary administrative node, or it has been
more than 10 intervals since the nodes communicated.

Note: If a Replica Administrative Node is being configured in the environment, that must be done prior to
configuring the engines.

1. Go to Settings > System > Clustering > Administrative Nodes.
2. Configure the Host value. This name and port pair must match either a subject alternative name in the key pair or

be considered a match for the wildcard specified if the key pair uses a wildcard in the common name.
3. If applicable, specify an HTTP Proxy for the engine. Click Create to create an HTTP proxy.
4. If applicable, specify an HTTPS Proxy for the engine. Click Create to create an HTTPS proxy.

 | Clustering reference guide | 212

5. Specify the Replica Administrative Node Trusted Certificate to use for cases where a TLS-terminating network
appliance, such as a load balancer, is placed between the engines and the admin node.

6. Click Save & Download to download the <replicaname>_data.zip file for the replica administrative
node. PingAccess automatically generates and downloads a public and private key pair into the
bootstrap.properties file for the node. The Public Key is indicated on this screen.

7. Copy the downloaded file to the replica administrative node's PA_HOME directory and unzip it.
8. Conditional: If the Replica Administrative Node is running on a Linux host, execute the command chmod 400

conf/pa.jwk.
9. Edit PA_HOME/conf/run.properties on the replica administrative node and change the

pa.operational.mode value to CLUSTERED_CONSOLE_REPLICA .
10. Start the replica node.
11. You can verify replication has completed by monitoring the PA_HOME/log/pingaccess.log file and

looking for the message "Configuration successfully synchronized with administrative node".

Manual fail over to the replica administrative node
The Replica Administrative Node is intended to be used for disaster recovery purposes. If the clustered console is
recoverable, then that recovery should be used rather than failing over to the Replica Administrative Node.

Warning: Only one primary administrative node should be running for the cluster at any given time.

1. Open PA_HOME/conf/run.properties in an editor.
2. Locate the pa.operational.mode line and change the value from CLUSTERED_CONSOLE_REPLICA to

CLUSTERED_CONSOLE

This change is detected while the node is running, and does not require a restart of the node.

Reinstate a replica administrative node after failing over
Once the console has been failed over to the replica, you need to set up a new replica console again.

1. Install the new replica node.
2. Change the run.properties value for pa.operational.mode to CLUSTERED_CONSOLE_REPLICA
3. Go to Settings > System > Clustering > Administrative Nodes and change the Primary Administrative Node

hostname and port to the failed over node.
4. Remove the Replica Administrative Node public key, then change the Replica Administrative Node hostname

and port to point to the new replica node.

Tip: If your key pair does not include a wildcard, you will want to use the same hostname as the original
console in order to avoid having to recreate the console key pair and the bootstrap.properties files for each
engine.

5. Click Save & Download to download the bootstrap file for the replica administrative node.
6. Copy the downloaded file to the new replica administrative node's <PA_HOME>/conf directory, and rename it

to bootstrap.properties
7. Edit PA_HOME/conf/run.properties on the new replica administrative node and change the

pa.operational.mode value to CLUSTERED_CONSOLE_REPLICA
8. Start the new replica node
9. You can verify replication has completed by monitoring the PA_HOME/log/pingaccess.log file and

looking for the message "Configuration successfully synchronized with administrative node"

If you want to then switch back to the original console, shut down the original replica node, and fail over back to the
newly created replica console. Follow the above steps a second time to re-establish the original replica node.

 | Clustering reference guide | 213

Configure an engine
For each engine:

1. Click Settings > System > Clustering
2. Click Add Engine to configure a new engine.
3. Enter a Name for the engine. Special characters and spaces are allowed.
4. Enter a Description of the engine.
5. If applicable, specify an HTTP Proxy for the engine. Click Create to create an HTTP proxy.
6. If applicable, specify an HTTPS Proxy for the engine. Click Create to create an HTTPS proxy.
7. Specify the Engine Trusted Certificate to use for cases where a TLS-terminating network appliance, such as a

load balancer, is placed between the engines and the admin node.
8. Click Save & Download to generate and download a public and private key pair into the

<enginename>_data.zip file for the engine. This file is prepended with the name you give the engine.
Depending on your browser configuration, you may be prompted to save the file.

9. Copy the zip file to the PA_HOME directory of the corresponding engine in the cluster and unzip it. The engine
uses these files to authenticate and communicate with the administrative console.

Info: Generate a new key for an engine at any time by clicking Save & Download and unzipping the
<enginename>_data.zip archive on the engine to replace the files with a new set of configuration
files. When that engine starts up and begins using the new files, PingAccess deletes the old key.

10. Conditional: On Linux systems running the PingAccess engine, change the permissions on the extracted pa.jwk
to mode 400 by executing the command chmod 400 conf/pa.jwk after extracting the zip file.

11. Start each engine.

Info: For information on configuring engine to share information with each other in a cluster, see
Configure a PingAccess cluster on page 209.

Edit an engine

1. Navigate to Settings > System > Clustering.
2. Expand the engine you want to edit, then click .
3. Edit the engine Name or Description, as appropriate.
4. If a new public key is needed, click Save & Download
5. If a new public key is not needed, click Save.

Remove an engine's access to the Administrative Console

1. Navigate to Settings > System > Clustering
2. Expand the engine you wish to remove from the cluster and edit it.
3. Click Delete under the Public Keys heading to revoke engine access to the administrative console.

Info: Use the Save & Download button to create a new key for the engine. See the steps for setting up a
PingAccess engine above.

4. Click Save.

Remove an engine

 | Deployment guide | 214

1. Navigate to Settings > System > Clustering.
2. Expand the engine you want to delete and click to permanently remove all references to the engine from the

cluster.
3. Click Delete in the confirmation window.

Deployment guide

PingAccess deployment guide
There are many topics to consider when deciding how PingAccess fits into your existing network, from determining
the deployment architecture required for your use case and whether high-availability options are required. This
section provides information to help you make the right decisions for your environment.

Use cases and deployment architecture
There are many options for deploying PingAccess in your network environment depending on your needs and
infrastructure capabilities. For example, you can design a deployment that supports mobile and API access
management, Web access management, or auditing and proxying. For each of these environments, you can choose a
stand-alone deployment for proof of concept or deploy multiple PingAccess servers in a cluster configuration for high
availability, server redundancy, and failover recovery.

You have a choice between using PingAccess as a Gateway or using a PingAccess Agent plugin on the web server. In
a gateway deployment, all client requests first go through PingAccess and are checked for authorization before they
are forwarded to the target site. In an agent deployment, client requests go directly to the web server serving up the
target site, where they are intercepted by the Agent plugin and checked for authorization before they are forwarded
to the target resource. The same access control checks are performed by the PingAccess Policy Server in both cases
and only properly authorized client request are allowed to reach the target assets. The difference is that in a gateway
deployment client requests are rerouted through PingAccess Gateway, while in an agent deployment they continue to
be routed directly to the target site, where PingAccess Agent is deployed to intercept them.

PingAccess Agent makes a separate access control request to PingAccess Policy Server using the PingAccess Agent
Protocol (PAAP). The agent request contains just the relevant parts of the client request so that PingAccess Policy
Server can make the access control decision and respond with instructions to the agent regarding any modifications to
the original client request that the agent should perform prior to forwarding the request. For example, the agent may
add headers and tokens required by the target resource. Under the PingAccess Policy Server's control, the agent may
perform a certain amount of caching of information in order to minimize the overhead of contacting the PingAccess
Policy Server, thus minimizing response time.

In both gateway and agent deployment the response from the target resource is processed on the way to the original
client. In an agent deployment, the amount of processing is more limited than in a gateway deployment. The agent
does not make another request to the Policy Server, so response processing is based on the initial agent response.
Consequently, the agent is not able to apply the request processing rules available to the gateway.

When designing a deployment architecture, many requirements and components must be identified for a successful
implementation. Proper network configuration of routers/firewalls and DNS ensure that all traffic is routed through
PingAccess for the Resources it is protecting and that alternative paths (for example, backdoors) are not available.

The following sections provide specific use cases and deployment architecture requirements to assist with designing
and implementing your PingAccess environment.

Deploy for Gateway Web Access Management

A PingAccess Web access management (WAM) deployment enables an organization to quickly set up an environment
that provides a secure method of managing access rights to Web-based applications while integrating with existing

 | Deployment guide | 215

identity management infrastructure. With growing numbers of internal and external users, and more and more
enterprise resources available online, it is important to ensure that qualified users can access only those applications
to which they have permission. A WAM environment provides authentication and policy-based access management
while integrating with existing infrastructure.

Deployed at the perimeter of a protected network between browsers and protected Web-based applications,
PingAccess Gateway performs the following actions:

• Receives inbound calls requesting access to Web applications. Web Session protected requests contain a
previously-obtained PA token in a cookie derived from the user's profile during an OpenID Connect based login at
PingFederate.

• Evaluates application and resource-level policies and validates the tokens in conjunction with an OpenID Connect
Policy configured within PingFederate.

• Acquires the appropriate target security token (Site Authenticators) from the PingFederate STS or from a cache
(including attributes and authorized scopes) should a Web application require identity mediation.

• Makes authorized requests to the sites where the Web applications reside and responses are received and
processed.

• Relays the responses on to the browsers.

The following sections describe sample Proof of Concept and Production architectures for a WAM use case
deployment.

• WAM Gateway POC Deployment Architecture
• WAM Gateway Production Deployment Architecture

Deploy for Agent Web Access Management

A PingAccess Web access management (WAM) agent deployment enables an organization to quickly set up an
environment that provides a secure method of managing access rights to Web-based applications while integrating
with existing identity management infrastructure and minimal network configuration changes. With growing numbers
of internal and external users, and more and more enterprise resources available online, it is important to ensure that
qualified users can access only those applications to which they have permission. A WAM environment provides
authentication and policy-based access management while integrating with existing infrastructure.

The PingAccess Agent plugin is installed on the Web server hosting the protected Web-based applications and
configured to communicate with PingAccess Server also deployed on the network. When the agent intercepts a client
request to a protected Web application resource it performs the following actions:

• Intercepts inbound requests to Web applications.
• Sends agent requests to the PingAccess Policy Server sending along relevant request information needed by Policy

Server.
• Receives agent responses from Policy Server and follows the instructions from Policy Server, modifies the request

as specified, and allows the request to proceed to the target resource.
• Intercepts responses from the application and modifies response headers as instructed in the initial agent request to

Policy Server.
• Relays responses on to the browsers.

The PingAccess Policy Server listens for agent requests and performs the following actions:

• Evaluates application and resource-level policies and validates the tokens in conjunction with an OpenID Connect
Policy configured within PingFederate

• Acquires the appropriate HTTP request header configuration from the associated Identity Mappings.
• Sends an agent response with instructions on whether to allow the request and how to modify the client request

headers.

The following sections describe sample Proof of Concept and Production architectures for a WAM use case
deployment.

• WAM Agent POC Deployment Architecture
• WAM Agent Production Deployment Architecture

 | Deployment guide | 216

Deploy for Gateway API Access Management

A PingAccess API access management deployment enables an organization to quickly set up an environment
that provides a secure method of controlling access to APIs while integrating with existing identity management
infrastructure. Pressure from an ever-expanding mobile device and API economy can lead developers to hastily
design and expose APIs outside the network perimeter. Standardized API access management leads to a more
consistent, centrally-controlled model that ensures existing infrastructure and security policies are followed, thereby
safeguarding an organization’s assets.

PingAccess Gateway sits at the perimeter of a protected network between mobile, in-browser, or server-based client
applications and protected APIs and performs the following actions:

• Receives inbound API calls requesting protected applications. OAuth-protected API calls contain previously-
obtained access tokens retrieved from PingFederate acting as an OAuth Authorization Server.

• Evaluates application and resource-level policies and validates access tokens in conjunction with PingFederate.
• Acquires the appropriate target site security token (Site Authenticators) from the PingFederate STS or from a

cache (including attributes and authorized scopes) should an API require identity mediation.
• Makes authorized requests to the APIs and responses are received and processed.
• Relays the responses on to the clients.

The following sections describe sample Proof of Concept and Production architectures for an API access management
use case deployment.

• API Access Management POC Deployment Architecture
• API Access Management Production Deployment Architecture

Deploy for auditing and proxying

A PingAccess deployment for auditing and proxying enables an organization to quickly set up an environment that
provides a secure method of controlling access to back-end Sites. With growing numbers of internal and external
users, it is important to know which users are accessing applications, from where and when they are accessing them,
and ensuring that they are correctly accessing only those applications to which they have permission. A standardized
auditing/proxying deployment provides a centrally-controlled model that ensures existing infrastructure and security
policies are followed, thereby safeguarding an organization’s assets.

Sitting at the perimeter of a protected network between mobile, in-browser, or server-based client applications and
back-end Sites, PingAccess performs the following actions:

• Receives inbound calls requesting access to protected back-end Sites.
• Audits the request and then makes authorized requests to the back-end Sites.
• Receives and processes responses and relays them on to the clients.

The following sections describe sample Proof of Concept and Production architectures for an auditing/proxying use
case deployment.

• Audit and Proxy POC Deployment Architecture
• Audit and Proxy Production Deployment Architecture

Configuration by use case
Your next configuration steps depend on what type of deployment you are implementing. See the Deployment
Guide for a detailed discussion of deployment considerations and best practices in designing your architecture. The
following sections describe the configuration steps for the most common use cases:

• API Access Management Gateway Deployment
• Web Access Management Agent Deployment
• Web Access Management Gateway Deployment
• Auditing and Proxying Gateway Deployment

 | Deployment guide | 217

Next steps

Once you complete the above configuration settings, your next steps are similar for all use cases:

• Configure Sites and Agents to define the target applications to be protected. Sites may need Site Authenticators to
define the credentials the site expects for access control.

• Configure Applications and Resources to define the assets you wish to allow clients to access.
• Create Policies for the defined applications and resources to protect them.

Web Access Management Gateway deployment

The following section describes the important configuration options for a Web Access Management Gateway
deployment. See Deploying for Gateway Web Access Management in the Deployment Guide for specific use case
information.

Step Description

Configure the connection to the PingFederate. PingAccess uses PingFederate to manage web session
and authentication.

Configure the OpenID Connect Relying Party Client for
PingAccess.

The client must be registered with PingFederate and the
client credentials configured in PingAccess to identify
PingAccess when requesting authentication for users
trying to access Web applications.

Configure Web session details to enable protection of
Web Resources.

Configures settings for secure Web sessions such as
timeout values, cookie parameters, and cryptographic
algorithms.

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

Define virtual servers for protected Resources. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name. If SNI is available (Java 8), specific key pairs
can be assigned to virtual hosts.

Web Access Management Agent deployment

The following section describes the important configuration options for a Web Access Management Agent
deployment See Deploying for Agent Web Access Management for specific use case information.

First, PingAccess Agent needs to be deployed using the following steps:

1. Install PA Agent on Web Server - following instruction in PingAccess Agent for Apache Installation or
PingAccess Agent for IIS Installation depending on your specific Web server.

2. Define the Agents and download agent bootstrap.properties file via the download field in the Shared Secrets field.
3. Deploy the agent bootstrap.properties file to agents following instructions in PingAccess Agent Configuration .

The rest of PingAccess deployment is similar to Web Access Management Gateway Deployment.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Configure_PingFederate_Runtime.html
https://documentation.pingidentity.com/pingfederate/pf90/index.shtml#concept_clientManagement.html
https://documentation.pingidentity.com/pingfederate/pf90/index.shtml#concept_clientManagement.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Web_Session.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Web_Session.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_ClusteringReferenceGuide_pa51/page/pa_c_Clustering1.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Import_a_Certificate.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Trusted_Certificate_Group.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_CreateVirtualHost.html
https://docs.pingidentity.com/bundle/PAAA/page/Installation.html
https://docs.pingidentity.com/bundle/PAAI/page/Installation.html
https://docs.pingidentity.com/bundle/PAAA/page/Configuration.html

 | Deployment guide | 218

Step Description

Configure the connection to the PingFederate. PingAccess uses PingFederate to manage web session
and authentication.

Configure the OpenID Connect Relying Party Client for
PingAccess.

The client must be registered with PingFederate and the
client credentials configured in PingAccess to identify
PingAccess when requesting authentication for users
trying to access Web applications.

Configure Web session details to enable protection of
Web Resources.

Configures settings for secure Web sessions such as
timeout values, cookie parameters, and cryptographic
algorithms.

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

Define virtual servers for protected Resources. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name. If SNI is available (Java 8), specific key pairs
can be assigned to virtual hosts.

API Access Management Gateway deployment

The following section describes the important configuration options for deploying an API Gateway. See Deploying
for Gateway API Access Management in the Deployment Guide for specific use case information.

Step Description

Configure the connection to the PingFederate OAuth
Authorization Server.

PingAccess uses this connection and credentials to
validate incoming Access Tokens for securing API calls.

Configure the Resource Server OAuth Client. The client must be registered with PingFederate and
the client credentials configured in PingAccess to
authenticate PingAccess when validating incoming
Access Tokens.

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Configure_PingFederate_Runtime.html
https://documentation.pingidentity.com/pingfederate/pf90/index.shtml#concept_clientManagement.html
https://documentation.pingidentity.com/pingfederate/pf90/index.shtml#concept_clientManagement.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Web_Session.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Web_Session.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_ClusteringReferenceGuide_pa51/page/pa_c_Clustering1.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Import_a_Certificate.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Trusted_Certificate_Group.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_CreateVirtualHost.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Configure_OAuth_Resource_Server.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Configure_OAuth_Resource_Server.html
https://documentation.pingidentity.com/pingfederate/pf90/index.shtml#concept_clientManagement.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_ClusteringReferenceGuide_pa51/page/pa_c_Clustering1.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Import_a_Certificate.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Trusted_Certificate_Group.html

 | Deployment guide | 219

Step Description

Define virtual servers for protected applications. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name. If SNI is available (Java 8), specific key pairs
can be assigned to virtual hosts

Auditing and proxying Gateway deployment

The following section describes the important configuration options for an auditing or proxying deployment (see
Deploying for Auditing and Proxying for specific use case information).

Step Description

Generate or Import Key Pairs and configure HTTP
Listeners.

Defines the certificates and keys used to secure access
to the PingAccess administrative console and secure
incoming HTTPS requests at runtime.

Set up your cluster for high availability. Facilitates high availability of critical services, and
increases performance and overall system throughput.

Add trusted CA certificates. Defines trust to certificates presented during outbound
secure HTTPS connections.

Create a trusted certificate group. Provides a trusted set of anchor certificates for use when
authenticating outbound secure HTTPS connections.

Define virtual servers for protected Resources. Allows one server to share PingAccess Resources
without requiring all Sites on the server to use the same
host name.

Web Access Management
With growing numbers of internal and external users, and more and more enterprise resources available online, it is
important to ensure that qualified users can access only those resources to which they have permission. PingAccess
uses Web Access Management (WAM) capabilities to allow organizations to manage access rights to Web-based
resources. WAM is a form of identity management that controls access to Web resources, providing authentication
and policy-based access management. Once a user is authenticated, PingAccess applies application and resource-level
policies to the request. Once policy evaluation is passed, any required identity mediation between the back-end site
and the authenticated user is performed. The user is then granted access to the requested resource.

PingAccess provides two deployment architectures for Web Access Management - gateway and agent. In a gateway
deployment client requests are routed to PingAccess which then forwards authorized requests to the target application.
In an agent deployment, client requests are intercepted at the web server hosting the application via the PingAccess
agent plugin. The agent then communicates with PingAccess Policy Server to validate access before allowing the
request to proceed to the target application resource.

Choose Between an Agent or Gateway deployment

PingAccess can be deployed using Agents, as a Gateway (or reverse proxy), or using a combination of both. Before
deciding on a deployment, it is important to understand the pros and cons of each deployment scenario and determine
how they impact your strategy.

Gateway

Pros:

• Fewer number of deployed components that require maintenance
• Independent of target application platform

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_CreateVirtualHost.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_KeyPairs.html
https://docs.pingidentity.com/bundle/pa_m_ClusteringReferenceGuide_pa51/page/pa_c_Clustering1.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Import_a_Certificate.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Trusted_Certificate_Group.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_CreateVirtualHost.html

 | Deployment guide | 220

• No impact on web/app server processing and performance
• Able to work with existing security token types (such as creating 3rd party WAM tokens)

Cons:

• Requires networking changes
• Requires strategy for securing direct access to backend web/app servers (network routing or service level

authentication)
• Depending on the application, may require content / request/response rewriting
• Another layer that requires HA/DR planning

Agents

Pros:

• No networking or server level authentication changes required
• Tight integration with web server handling requests
• Scales with application

Cons:

• High cost of ownership when many agent instances deployed, although should be upgradable/patchable
independently of PingAccess (policy) server

• Policy evaluation is cached; although it is periodically flushed/re-evaluated (for new sessions, updates to session
token, etc.) it isn't quite is "real time" as proxy

• Tight dependency on web server version & platform

Web Access Management Gateway proof of concept deployment architecture

This environment is used to emulate the Production environment for testing purposes. In the test environment,
PingAccess can be set up with the minimum hardware requirements. This environment example does not provide high
availability and is not recommended for a Production environment.

 | Deployment guide | 221

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Externally exposing segment where PingAccess is
accessible to Web browsers. PingAccess is a standalone
instance in this environment, serving as both a runtime
and an administrative port.

Protected Zone Back-end controlled zone in which Sites hosting the
protected Web applications are located. All requests
to these Web applications must be designed to pass
through PingAccess. PingFederate is accessible to
Web browsers in this zone and is a standalone instance
in this environment, serving as both a runtime and
an administrative port. PingFederate requires access
to identity management infrastructure in order to
authenticate users (depicted by the icon in the diagram).

Web Access Management Gateway production deployment architecture

There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

 | Deployment guide | 222

Info: PingAccess can provide high availability and basic load balancing for the protected web apps in
the protected zone. See the Availability Profiles and Load Balancing Strategies documentation for more
information.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Externally exposing segment where PingAccess
is accessible to Web browsers. A minimum of two
PingAccess engine nodes will be deployed in the
DMZ to achieve high availability. Depending on your
scalability requirements, more nodes may be required.

Protected Zone Back-end controlled zone in which Sites hosting the
protected Web applications are located. All requests
to these Web applications must be designed to pass
through PingAccess. PingFederate is accessible to Web
browsers in this zone and requires access to identity
management infrastructure in order to authenticate
users (depicted by the icon in the diagram). A minimum
of two PingFederate engine nodes will be deployed
in the protected zone. Administrative nodes for both
PingAccess and PingFederate may be co-located on a
single machine to reduce hardware requirements.

 | Deployment guide | 223

Web Access Management Agent proof of concept deployment architecture

This environment is used to emulate the Production environment for testing purposes. In the test environment,
PingAccess can be set up with the minimum hardware requirements. This environment example does not provide high
availability and is not recommended for a Production environment.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Externally exposed segment where application Web
server is accessible to Web clients. PingAccess Agent
is deployed as a plugin on this Web server. The agent
interacts with PingAccess Policy Server in the Protected
Zone. PingFederate is deployed as a standalone instance
in this environment because during user authentication
clients interact with PingFederate. PingFederate requires
access to Identity Management Infrastructure in order to
authenticate users.

Protected Zone Back-end controlled zone with no direct access by
Web clients. PingAccess Policy Server is deployed in
this zone. PingAccess interacts with PingFederate in
the DMZ Zone. Identity Management Infrastructure is
deployed in this zone.

 | Deployment guide | 224

Web Access Management Agent production deployment architecture

There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming requests for Web
applications originate.

DMZ Externally exposed segment where (possibly multiple)
application Web servers are accessible to Web clients.
PingAccess Agent is deployed as a plugin on these Web
servers. Agents interact with PingAccess Policy Server in
the Protected Zone.

 | Deployment guide | 225

Zone Description

Protected Zone Back-end controlled zone with no direct access by
Web clients. PingAccess Policy Server is deployed in
a cluster in this zone with a separate administrative
engine. PingFederate is also deployed in this zone in
a cluster with its own separate administrative engine.
PingFederate needs access to the Identity Management
Infrastructure in order to authenticate users. Since
during user authentication Web clients need to interact
with PingFederate directly, a reverse proxy such as
PingAccess Gateway is required to forward client
requests through the DMZ. This aspect is not shown in
the diagram.

API Access Management proof of concept deployment architecture
This environment is used to emulate a production environment for development and testing purposes. In the test
environment, PingAccess can be set up with the minimum hardware requirements. Given these conditions, we do not
recommend using this proposed architecture in a production deployment as it does not provide high availability.

The following table describes the three zones within this proposed architecture.

Zone Description

External Zone External network where incoming API requests
originate.

 | Deployment guide | 226

Zone Description

DMZ Externally exposing segment where PingAccess is
accessible to API clients. PingAccess is a standalone
instance in this environment, serving as both a runtime
and an administrative port.

Protected Zone Back-end controlled zone in which Sites hosting
the protected APIs are located. All requests to these
APIs must be designed to pass through PingAccess.
PingFederate is accessible to API clients in this zone and
is a standalone instance, serving as both a runtime and an
administrative port.

API Access Management production deployment architecture
There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

Info: PingAccess can provide high availability and basic load balancing for the protected web apps in the
protected zone. See the Load Balancing Strategies documentation for more information.

The following environment example is a recommended production quality deployment architecture for an API access
management use case.

 | Deployment guide | 227

The following table describes the three zones within this proposed architecture.

External Zone External network where incoming API requests
originate.

DMZ Externally exposing segment where PingAccess is
accessible to API clients. A minimum of two PingAccess
engine nodes will be deployed in the DMZ to achieve
high availability. Depending on your scalability
requirements, more nodes may be required.

Protected Zone Back-end controlled zone in which Sites hosting
the protected APIs are located. All requests to these
APIs must be designed to pass through PingAccess.
PingFederate is accessible to API clients in this zone.
A minimum of two PingFederate engine nodes will be
deployed in the protected zone. Administrative nodes for
both PingAccess and PingFederate may be co-located on
a single machine to reduce hardware requirements

Auditing and proxying proof of concept deployment architecture
This environment is used to emulate a production environment for development and testing purposes. In the test
environment, PingAccess can be set up with the minimum hardware requirements. Given these conditions, we do not
recommend using this proposed architecture in a production deployment as it does not provide high availability.

The following table describes the three zones within this proposed architecture.

 | Deployment guide | 228

Zone Description

External Zone External network where incoming requests originate.

DMZ Externally exposing segment where PingAccess is
accessible to clients. PingFederate and PingAccess are
standalone instances in this environment, serving as both
runtime and administrative ports.

Protected Zone Contains back-end Sites audited and proxied through
PingAccess. Audit results are sent to an audit repository
or digested by reporting tools. Many types of audit
repository/tools are supported such as SIEM/GRC,
Splunk, database, and flat files.

Auditing and proxying production deployment architecture
There are many considerations when deploying a Production environment. For high availability and redundancy,
the environment requires clustering and load-balancing. Load balancers are required as part of the networking
infrastructure to achieve high availability by ensuring that requests are sent to available servers they are front-ending.
Best practices in network design and security also include firewalls to ensure that only required ports and protocols
are permitted across zones.

Info: PingAccess can provide high availability and basic load balancing for the protected web apps in the
protected zone. See the Load Balancing Strategies documentation for more information.

The following environment example is a recommended production quality deployment architecture for an auditing/
proxying use case.

 | Configuration file reference guide | 229

The following table describes the three zones within this proposed architecture.

External Zone External network where incoming requests originate.

DMZ Externally exposing segment where PingAccess is
accessible to clients. A minimum of two PingAccess
engine nodes will be deployed in the DMZ. Depending
on your scalability requirements, more nodes may be
required.

Protected Zone Contains back-end Sites audited and proxied through
PingAccess. Audit results are sent to an audit repository
or digested by reporting tools. Many types of audit
repository tools are supported such as SIEM/GRC,
Splunk, database, and flat files.

Configuration file reference guide

Configuration file reference
This document provides a reference to configurable parameters used by PingAccess at runtime. These parameters are
configured in the run.properties file located at <PA_HOME>/conf/.

Note: Changes made to the run.properties file will take effect after PingAccess is restarted.

Tip: When storing passwords in run.properties, we strongly recommend you obfuscate them using the
obfuscate.bat or obfuscate.sh utility to mask the password value. This utility is located in the
PA_HOME/bin folder.

account.locking.max.consecutive.failures
Defines the maximum number of failed login attempts before locking the account when using basic
authentication in the administrative UI or administrative REST APIs. The default value is 3.

account.locking.max.lockout.period
Defines, in minutes, the amount of time to lock an account out from the administrative interfaces
after exceeding the account.locking.max.consecutive.failures. The default value is
1.

admin.acceptors
Defines the number of admin acceptor threads used to establish connections. The default value is 1.

admin.auth
Overrides the administrator authentication method. For example, if SSO Authentication is enabled
and is somehow misconfigured, this property can be used to bypass the database configuration and
force the use of Basic Authentication. Default value is default.

admin.backlog
Defines the maximum queue length for incoming admin connection indications. The default value is
512.

admin.bindAddress
Defines the IP address that admin.port will bind to. This is typically required on multihomed
servers having multiple IP addresses. The default value of 0.0.0.0 means that the port will bind
to all of the server's IP addresses.

admin.header.Strict-Transport-Security

 | Configuration file reference guide | 230

Sets the parameters for the Strict-Transport-Security response header sent to the browser when an
administrator is interacting with the Admin UI.

admin.header.X-Content-Type-Options
Sets the parameters for the X-Content-Type-Options response header sent to the browser when an
admin is interacting with the Admin UI.

admin.header.X-Frame-Options
Sets the parameters for the X-Frame-Options HTTP response header sent to the browser when an
admin is interacting with the Admin UI.

admin.header.X-XSS-Protection
Sets the parameters for the X-XSS-Protection HTTP response header sent to the browser when an
admin is interacting with the Admin UI.

admin.headers
Additional headers added to responses from the PingAccess Administrator Console and the
Administrator API interface. Header values are defined using the admin.header prefix.

admin.httptransport.coreThreadPoolSize
Defines the number of threads to keep in the admin transport pool, even if they are idle. The default
value is 5.

admin.httptransport.ioThreads
Defines the number of I/O threads for the admin host. A value of 0 is used to denote that
PingAccess should automatically calculate the appropriate number of I/O threads for the host. The
default value is 0.

admin.httptransport.maxThreadPoolSize
Defines the maximum number of threads for the admin transport pool. The default value is -1,
which denotes no limit.

admin.httptransport.socketTimeout
Defines, in milliseconds, the admin socket timeout. The default value is 30000.

admin.max.request.bodylength
Defines, in megabytes, the maximum body length for a request to the administrative API endpoint.
The default value is 15.

admin.polling.delay
Defines, in milliseconds, how long after the initial query to the administrative console that the
replica administrative node begins querying for configuration information. The default is every
2000 milliseconds.

admin.polling.initialdelay
Defines, in milliseconds, how long after the replica administrative node starts up before it begins to
poll the administrative console for configuration information. The default is 500.

admin.port
Defines the TCP port on which the PingAccess administrative console runs. Default is 9000.

admin.reuseAddress
When enabled, allows a process to bind to a port which remains in a TIME_WAIT state for the
admin transport. The default value is true.

admin.ssl.ciphers
Defines the type of cryptographic ciphers available for use with administrative HTTPS ports.

admin.ssl.protocols
Defines the protocols for use with administrative HTTPS ports.

 | Configuration file reference guide | 231

admin.ui.max.sessions
Defines the maximum number of sessions for the admin UI when admin SLO is not enabled.

agent.assets.header.X-Frame-Options
Sets the parameters for the X-Frame-Options HTTP response header sent to the browser via the
agent when responding to a request for an asset used by a PingAccess template.

agent.assets.headers
Additional headers added to responses from PingAccess Agents. Header values are defined using
the agent.assets.header prefix.

agent.authz.header.required
Defines whether PingAccess server should authenticate agent requests using agent name and shared
secret in the vnd-pi-authz header. Default value is true. Setting this to false is useful for POCs
and/or debugging.

agent.cache.invalidated.response.duration
Defines the duration in seconds that application configuration changes are sent by PingAccess
server to agents using the vnd-pi-cache-invalidated header in agent responses for the changed
application. Default value is 900.

agent.default.token.cache.ttl
Defines, in seconds, the time to live for cached agent tokens.

agent.error.header.X-Frame-Options
Sets the parameters for the X-Frame-Options HTTP response header sent to the browser via the
agent when responding with a PingAccess error template.

agent.error.headers
Additional headers added to error responses from PingAccess Agents. Header values are defined
using the agent.error.header prefix.

agent.http.backlog
Defines the maximum queue length for incoming admin connection indications. The default value is
512.

agent.http.bindAddress
Defines the address from which an engine listens for agent requests.

agent.http.enabled
Defines whether a STANDALONE or CLUSTERED_ENGINE node listens for agent requests on
the port defined by the agent.http.port setting. Default is true.

agent.http.port
Defines the TCP port on which the engine listens for agent requests. Default is 3030.

agent.http.reuseAddress
When enabled, allows a process to bind to a port which remains in a TIME_WAIT state for the
agent transport. The default value is true.

agent.http.secure
Defines whether the engine is using HTTPS for agent requests. Default is true.

agent.httptransport.coreThreadPoolSize
Defines the number of threads to keep in the agent transport pool, even if they are idle. The default
value is 5.

agent.httptransport.ioThreads
Defines the number of I/O threads for the agent host. A value of 0 is used to denote that PingAccess
should automatically calculate the appropriate number of I/O threads for the host. The default value
is 0.

 | Configuration file reference guide | 232

agent.httptransport.maxThreadPoolSize
Defines the maximum number of threads for the agent transport pool. The default value is -1,
which denotes no limit.

agent.httptransport.socketTimeout
Defines, in milliseconds, the agent socket timeout. The default value is 30000.

agent.ssl.ciphers
Defines the type of cryptographic ciphers available for use with agent HTTPS ports.

agent.ssl.protocols
Defines the protocols used for communication with agent HTTPS ports.

as.ssl.ciphers
Defines the type of cryptographic ciphers available for use with authorization server HTTPS ports.

as.ssl.protocols
Defines the protocols used for communication with authorization server HTTPS ports.

client.ioThreads
Defines the number of threads for client connections to backend sites. A value of 0 means there is
no limit. The default value is 0.

clusterconfig.acceptors
Defines the number of cluster configuration acceptor threads used to establish connections. The
default value is 1.

clusterconfig.backlog
Defines the maximum queue length for incoming cluster configuration connection indications. The
default value is 512.

clusterconfig.bindAddress
Defines the optional address used for cluster configuration.

clusterconfig.enabled
When enabled, uses the cluster coonfiguration port for cluster replication. When disabled, the admin
port is used for cluster configuration replication. The default value is true.

Note: This parameter is set to false by the PingAccess Upgrade Utility after a
PingAccess cluster is upgraded from a version earlier than 4.0.

clusterconfig.httptransport.coreThreadPoolSize
Defines the number of threads to keep in the cluster configuration transport pool, even if they are
idle. The default value is 5.

clusterconfig.httptransport.ioThreads
Defines the number of I/O threads for the cluster configuration host. A value of 0 is used to denote
that PingAccess should automatically calculate the appropriate number of I/O threads for the host.
The default value is 0.

clusterconfig.httptransport.maxThreadPoolSize
Defines the maximum number of threads for the cluster configuration transport pool. The default
value is -1, which denotes no limit.

clusterconfig.httptransport.socketTimeout
Defines, in milliseconds, the cluster configuration socket timeout. The default value is 30000.

clusterconfig.port
Defines the optional port used for cluster configuration.

clusterconfig.reuseAddress

 | Configuration file reference guide | 233

When enabled, allows a process to bind to a port which remains in a TIME_WAIT state for the
cluster configuration transport. The default value is true.

clusterconfig.secure
When enabled, enables SSL communications for the cluster configuration port. The default value is
true.

clusterconfig.ssl.ciphers
Defines the type of cryptographic ciphers available for use with HTTPS ports in a clustered
configuration.

clusterconfig.ssl.protocols
Defines the protocols used for communication with HTTPS ports in a clustered configuration.

enable.detailed.heartbeat.response
When enabled, this setting enables a customizable heartbeat response to be returned. When disabled,
the heartbeat endpoint returns a 200 OK response. The default value is false.

engine.admin.configuration.audience
Defines the audience used for cluster authentication. This property must be set to the same value on
all nodes in a PingAccess cluster. The default value is PingAccessAdminServer.

engine.assets.header.X-Frame-Options
Sets the parameters for the X-Frame-Options HTTP response header sent to the browser via the
engine when responding to a request for an asset used by a PingAccess template.

engine.assets.headers
Additional headers added to responses from the PingAccess Engine. Header values are defined
using the engine.assets.header prefix.

engine.error.header.X-Frame-Options
Sets the parameters for the X-Frame-Options HTTP response header sent to the browser via the
engine when responding with a PingAccess error template.

engine.error.headers
Additional headers added to error responses from the PingAccess Engine. Header values are defined
using the engine.error.header prefix.

engine.http.acceptors
Defines the number of engine acceptor threads used to establish connections. The default value is 1.

engine.http.backlog
Defines the maximum queue length for incoming engine connection indications. The default value
is 512.

engine.http.bindAddress
Defines the address for an engine in a clustered environment.

engine.http.enabled
Defines whether a STANDALONE or CLUSTERED_ENGINE node listens for requests on the
ports defined by the Engine Listeners. Default is true.

engine.http.reuseAddress
When enabled, allows a process to bind to a port which remains in a TIME_WAIT state for the
engine transport. The default value is true.

engine.httptransport.coreThreadPoolSize
Defines the number of threads to keep in the engine transport pool, even if they are idle. The default
value is 5.

engine.httptransport.ioThreads

 | Configuration file reference guide | 234

Defines the number of I/O threads for the engine host. A value of 0 is used to denote that
PingAccess should automatically calculate the appropriate number of I/O threads for the host. The
default value is 0.

engine.httptransport.maxThreadPoolSize
Defines the maximum number of threads for the engine transport pool. The default value is -1,
which denotes no limit.

engine.httptransport.socketTimeout
Defines, in milliseconds, the engine socket timeout. The default value is 30000.

engine.polling.delay
Defines, in milliseconds, how long after the initial query to the administrative console that the
engine begins querying for configuration information. The default is every 2000 milliseconds.

engine.polling.initialdelay
Defines, in milliseconds, how long after the engine starts up before it begins to poll the
administrative console for configuration information. The default is 500.

engine.ssl.ciphers
Defines the type of cryptographic ciphers available for use with engine HTTPS ports.

engine.ssl.protocols
Defines the protocols used with engine HTTPS ports.

engine.websocket.maxConnections
Sets the maximum number of allowed web socket connections. Default is -1 (unlimited).

pa.admin.test.connections
A boolean property that allows the PingAccess admin UI to make HTTP calls to validate that it can
reach PingFederate and sites when the user configures them.

pa.admin.user.password.error.message
Defines the message returned when password complexity is not satisfied. The default value is
Password must be at least 8 characters in length, contain one
upper-case letter, one lower-case letter and one digit..

pa.admin.user.password.regex
Defines the regex that controls password complexity for the Administration Console. The default
value is

((?=.*\\d)(?=.*[a-z])(?=.*[A-Z]).{8,20})

pa.auditing.unknown.resource
When set to true, this setting causes PingAccess to audit requests for resources that are requested
but not mapped to an Application or Resource. This setting can be used to help troubleshoot
resource definition issues. The default is false.

pa.backup.filesToKeep
Defines the number of backup files to preserve when the Administrator authenticates to PingAccess.
The default value is 25.

pa.cluster.auth.pwd
Sets the key that each engine in the cluster must use to authenticate when joining the group. This
prevents unauthorized engines from joining a cluster. This key should be treated as a strong key
rather than as a human-readable password value. (Values: any string or blank)

Important: If pa.cluster.encrypt is true, pa.cluster.auth.pwd must
not be blank.

pa.cluster.bind.address

 | Configuration file reference guide | 235

Defines the IP address to which you bind the TCP or UDP listener. The default is 127.0.0.1.

pa.cluster.bind.port
The port associated with the bind-address property above. The default is 7610.
Whether this is a TCP or UPD port depends on the value configured for the
pa.cluster.interprocess.communication property (see above).

pa.cluster.encrypt
Indicates whether to encrypt network traffic sent between engines in a cluster. (Values: true or
false [default])

Important: If pa.cluster.encrypt is true, pa.cluster.auth.pwd must
not be blank.

pa.cluster.failure.detection.bind.port
Indicates the bind port of a server socket that is opened on the given engine and used
by other engines as part of one of the cluster's failure-detection mechanisms. This port
is bound to the address determined by pa.cluster.bind.address. The default
is 7710. Whether this is a TCP or UDP port depends on the value configured for the
pa.cluster.interprocess.communication property (see above).

pa.cluster.interprocess.communication
Defines how the JGroups cluster communicates. none (the default): Indicates that no
communication is configured between servers in the cluster. udp: Indicates that the cluster uses
Multicast communications to send and receive information to and from multiple servers at once.
tcp: Indicates that the cluster uses Unicast communications to send and receive information to and
from individual servers one at a time.

pa.cluster.mcast.group.address
Defines the IP address shared among engines in the same cluster for UDP multicast communication;
required when the interprocess communication mode is set to udp. (Range: 224.0.0.0 to
239.255.255.255; note that some addresses in this range are reserved for other purposes.) This
property is not used for TCP. All engines in a cluster must use the same address for this property and
the port property below. The default value is 239.16.96.69.

pa.cluster.mcast.group.port
Defines the UDP port associated with the pa.cluster.mcast.group.address property
above. The default value is 7611.

pa.cluster.serverstate.replicationIntervalMilliseconds
Defines, in milliseconds, how often Rate Limiting metadata is replicated within a subcluster. The
default value is 1000.

pa.cluster.serverstate.staleEntryEvictionIntervalSeconds
Defines, in seconds, how often a PingAccess engine scans the Rate Limiting
metadata to evaluate metadata to be removed from the cache, based on the
pa.cluster.serverstate.timeToIdleSeconds value. The default value is 60.

pa.cluster.serverstate.timeToIdleSeconds
Defines, in seconds, how long metadata for the Rate Limiting rule is maintained by a PingAccess
Engine after its last use. The default value is 86400.

pa.cluster.tcp.discovery.initial.hosts
Designates the initial hosts to be contacted for group membership information when discovering
and joining the group; required when the interprocess communication mode is set to tcp.
The value is a comma-separated list of host names (or IP addresses) and ports. For example,
127.0.0.1[7602].

pa.default.availability.ondemand.connectTimeout

 | Configuration file reference guide | 236

Defines, in milliseconds, the amount of time to wait before trying to connect to the remote host. The
default is 10000.

pa.default.availability.ondemand.failedRetryTimeout
Defines, in seconds, the amount of time to wait before retrying a failed host. The default is 60.

pa.default.availability.ondemand.maxRetries
Defines the maximum number of retries before marking the target system down. The default is 2.

pa.default.availability.ondemand.pooledConnectionTimeout
Defines, in milliseconds, the amount of time to wait before timing out the request for a pooled
connection to the target site. The default is -1.

pa.default.availability.ondemand.readTimeout
Defines, in milliseconds, the amount of time to wait before timing out the read response for a target
site. The default is -1.

pa.default.availability.ondemand.retryDelay
Defines, in milliseconds, the amount of time to wait after a timeout before retrying the host. The
default is 250.

pa.default.contentRewrite.buffer.default
Defines, in bytes, the default buffer size when using a Rewrite Content rule to do a search and
replace of content. The default value is 2048.

pa.default.contentRewrite.buffer.min
Defines, in bytes, the minimum buffer size used when using a Rewrite content rule. The default
value is 1024.

pa.default.limitRequestLine
Defines the maximum number of bytes to read from the request line. The default value is 8192.

pa.default.maxConnectionsPerSite
Defines the maximum number of connections PingAccess will open to the PingFederate Admin or
Engine. A value of -1 means there is no limit. The default is -1.

pa.default.maxHeaderCount
Defines the maximum number of headers to read from a request. The default value is 100.

pa.default.maxHttpHeaderSize
Defines the maximum number of bytes to read when reading headers. The default value is 8192.

pa.default.maxRequestBodySize
Defines the maximum number of bytes to read from a request body. The default value is 204800.

pa.default.session.cookie.attributes.httponly
Defines the default setting for the HTTP-Only Cookie setting for newly-created web sessions. The
default value is true.

pa.default.session.cookie.attributes.secure
Defines the default setting for the Secure Cookie setting for newly-created web sessions. The
default value is true.

pa.default.session.cookie.size.threshold
Defines, in bytes, the default maximum session cookie size. The default value is 4093.

pa.ehcache.AuthTokenCache.maxEntriesLocalHeap
Defines the maximum size of the JWT identity mapping token cache used when sending tokens to a
protected site. Default is 10000.

pa.ehcache.PATokenValidationCache.maxEntriesLocalHeap

 | Configuration file reference guide | 237

Defines the maximum number of entries in the local heap for decryption of signed or encrypted
PingAccess tokens. The default is 10000.

pa.ehcache.PATokenValidationCache.timeToIdleSeconds
Defines, in seconds, the time an entry in the token validation cache can be idle before it is
expired. The default is 120 seconds.

pa.ehcache.PATokenValidationCache.timeToLiveSeconds
Defines, in seconds, the maximum time an entry can be in the token validation cache. The default is
300 seconds.

pa.ehcache.PAWamUserAttributesCache.maxEntriesLocalHeap
Defines the maximum number of entries in the local heap for the PA WAM user attribute cache. The
default is 10000.

pa.ehcache.PAWamUserAttributesCache.timeToIdleSeconds
Defines, in seconds, the time an entry in the PA WAM user attribute cache can be idle before it is
expired. The default is 120 seconds.

pa.ehcache.PAWamUserAttributesCache.timeToLiveSeconds
Defines, in seconds, the maximum time an entry can be in the PA WAM user attribute cache. The
default is 300 seconds.

pa.ehcache.PFSessionValidationCache.maxEntriesLocalHeap
Defines the maximum number of entries in the local heap for the session validation cache. The
default is 10000.

pa.ehcache.PFSessionValidationCache.timeToIdleSeconds
Defines, in seconds, the time an entry in the session validation cache can be idle before it is
expired. The default is 120 seconds.

pa.ehcache.PFSessionValidationCache.timeToLiveSeconds
Defines, in seconds, the maximum time an entry can be in the session validation cache. The default
is 300 seconds.

pa.ehcache.PingFederateReferenceTokenCache.maxEntriesLocalHeap
Defines the maximum number of entries in the local heap for OAuth tokens. The default is 10000.

pa.ehcache.ServiceTokenCache.maxEntriesLocalHeap
Defines the maximum number of entries in the local heap for token mediation. The default is
10000.

pa.ehcache.ServiceTokenCache.timeToIdleSeconds
Defines, in seconds, the time an entry in the token mediation cache can be idle before it is expired.
The default is 1800 seconds.

pa.ehcache.ServiceTokenCache.timeToLiveSeconds
Defines, in seconds, the maximum time an entry can be in the token mediation cache. The default is
14400 seconds.

pa.ehcache.SessionStateCache.maxEntriesLocalHeap
Defines the maximum size of the identity attribute entry cache when the user's attributes are stored
on the server rather than as a cookie. Default is 10000.

pa.interceptors.relativepath.decode.count
Number of times the URL is decoded to check for path traversal characters. The default is 3.

pa.interceptors.relativepath.decode.regex

 | Configuration file reference guide | 238

Defines the accepted URL regex pattern that administrators can customize based on their needs. The
default value is:Defines the regular expression to use when checking for a valid path in an incoming
request. The default value is

[\\p{Po}\\p{N}\\p{Z}\\p{L}\\p{M}\\p{Zs}\\./_\\-\\\\~()\\{\\}\\[\
\]]*

Note: This value is double-escaped as required by the
java.util.regex.Pattern Java class.

pa.interceptors.relativepath.strict
When this property is set to true, the incoming URL is matched with the whitelist pattern defined
in pa.interceptors.relativepath.decode.regex. All other request URLs are
rejected. The default value is false.

pa.jdbc.filepassword
Defines the password used to encrypt the PingAccess configuration database. Default is 2Access.

pa.jdbc.password
Defines the password for the database user of the PingAccess configuration database. Default is
2Access.

pa.jdbc.username
Defines the username for accessing the PingAccess configuration database. Default is sa.

pa.keystore.pw
Defines the password for the $JAVA_HOME/lib/security/cacerts keystore.

pa.localization.missing.message.placeholder
Defines the message used when an error message is unresolvable. An error will be logged.

pa.localization.resource.bundle.cache.enable
When set to false, allows language files in /conf/localization to be added or modified. When
true, enables caching of language files and properties.

pa.oidc.logout.redirect
A boolean property that defines whether or not to redirect the user to the token provider on logout.
If true, the user is redirected to the token provider.

pa.oidc.logout.redirectURI
The URI that a user gets sent to when they log out.

pa.oidc.post.preservation.encrypt
When enabled, POST data preserved through a redirection to PingFederate for authentication is
encrypted on the client to be used after the authentication is successful. The default value is false.

pa.oidc.post.preservation.maxRequestBodySize
Defines, in bytes, the maximum size of the post body for POST preservation. The default value is
8192.

pa.oidc.post.preservation.paramsAttributeName
Used to store the encoded or encrypted POST payload in the browser session storage during POST
preservation.

pa.operational.mode
Controls the operational mode of the PingAccess server in a cluster. Valid values are:

• STANDALONE - Use this value for a standalone (unclustered) PingAccess instance that runs
both the administrative console and the engine. This is the default.

• CLUSTERED_CONSOLE - Use this value for the server instance you want to use as the
administrative console server.

 | Configuration file reference guide | 239

Info: Only one engine in a cluster can run the administrative console.
• CLUSTERED_CONSOLE_REPLICA - Use this value for the server instance you want to use as

the backup administrative console server.
• CLUSTERED_ENGINE - Use this value to indicate a server engine.

Note:

Define the following Engine and Admin properties depending on what operational
mode an engine is using.

• Define all of the following Engine and Admin properties when
pa.operational.mode is set to STANDALONE.

• Define only the Admin properties when using CLUSTERED_CONSOLE or
CLUSTERED_CONSOLE_REPLICA mode.

• Define only the Engine properties when using CLUSTERED_ENGINE mode.

pa.uri.strict
When enabled, this setting requires the raw input URI be in strict compliance with the URI spec
implemented by java.net.URI when generating URIs. The default value is false.

pf.api.keepAliveTimeout
Defines, in milliseconds, the keep alive timeout for the PingFederate API. The default value is
30000.

pf.api.maxConnections
Defines the maximum number of connections PingAccess will establish to the PingFederate API
endpoint. A value of -1 means there is no limit. The default value is -1.

pf.api.maxRetries
Defines the maximum number of retries PingAccess attempts to make to the PingFederate server
before delcaring the server unavailable. The default value is 0.

pf.api.readTimeout
Defines, in milliseconds, how long the API will wait for responses from PingFederate when making
calls to the PingFederate Admin API. The default value is -1.

pf.api.socketTimeout
Defines, in milliseconds, the socket timeout for the PingFederate API endpoint. The default value is
5000.

pf.redirect.header.X-Frame-Options
Sets the parameters for the X-Frame-Options value that is sent when the user is redirected to
PingFederate to authenticate.

pf.redirect.headers
Additional headers added to the redirection response that sends the client to PingFederate for
authentication. Header values are defined using the pf.redirect.header prefix.

pf.ssl.ciphers
Defines the type of cryptographic ciphers available for use with PingFederate HTTPS ports.

pf.ssl.protocols
Defines the protocols used for communication with PingFederate HTTPS ports.

provider.ssl.ciphers
Defines the type of cryptographic ciphers available for use with Provider HTTPS ports.

provider.ssl.protocols
Defines the protocols used for communication with Provider HTTPS ports.

rule.error.headers

 | PingAccess for AWS: Solution setup guide | 240

Additional headers added to responses that result from policy rule results. Header values are defined
using the rule.error.header prefix.

site.ssl.ciphers
Defines the type of cryptographic ciphers available for use with Site HTTPS ports.

site.ssl.protocols
Defines the protocols used for communication with Site HTTPS ports.

tls.default.cipherSuites
Defines the default set of ciphers used for HTTPS communication.

Note: Legacy browsers may require the addition of SHA1-based ciphers to
negotiate a cipher suite with the server. In this case, add the following ciphers to the
run.properties file and restart PingAccess:

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA

tls.default.protocols
Defines the default protocols used for HTTPS communication.

PingAccess for AWS: Solution setup guide

Introduction

This document provides the steps required to perform a variety of tasks related to setting up and configuring the
PingAccess for AWS solution. You can choose to deploy this solution in a demonstration environment that includes a
basic PingFederate instance or you can choose to deploy with an existing PingFederate instance.

Review the prerequisites prior to setting up this solution.

After you have deployed the solution, you can configure an application.

Setup and deployment

In this section, you will perform the tasks required to setup and deploy the PingAccess for AWS solution. Along with
PingAccess, this solution includes the optional deployment and configuration of a basic PingFederate instance.

When setup is complete, you will be able to configure a protected application using PingFederate as the token
provider.

To setup and deploy the solution, you will:

1. Review the setup AWS prerequisites on page 241
2. Obtain the automation ZIP file on page 242
3. Create the PingAccess software repository on page 243
4. Populate the S3 bucket on page 243
5. Create the PingAccess key pair on page 244
6. Create the PingAccess VPC on page 244
7. Configure Security Groups on page 249
8. Access the PingAccess administration console on page 250
9. Access the PingFederate administration console on page 250

https://docs.pingidentity.com/bundle/paaws_m_PingFederateRequirements_paaws/page/paaws_c_PingFedReqIntro.html
https://docs.pingidentity.com/bundle/paaws_m_PAAWSConfigurationApplication_paaws/page/paaws_c_AppDemoIntroduction.html

 | PingAccess for AWS: Solution setup guide | 241

AWS prerequisites

Prior to beginning the setup of this solution, you must first satisfy some prerequisites. These prerequisites will ensure
that you have details and resources that are required for use in the setup phase. You may have one or more of these
items available as part of an existing deployment. Create the items you require.

Prerequisites include the following items:

1. Create an Amazon Web Services account on page 241
2. Choose your region on page 241
3. Choose your AMIs
4. Register domain name with Route53
5. Create a certificate

Create an Amazon Web Services account

To make use of this solution, you need an Amazon Web Services account. Create an account if necessary.

Important: While many of the components required for this solution are Free Tier eligible, following the
steps in this document may lead to incurred costs.

Choose your region

Specify the region in which your AWS environment should reside.

Note: For release 1.0, if your region does not support Signature Version 2, modify templates to support
Signature Version 4. This action is not required for release 1.0.1 and up.

Choose your AMIs

Throughout the setup process, you will be asked to specify the ID of the Amazon Machine Image (AMI) that you
want to use. AMIs are region-specific, so you will require an AMI that is available to your region.

Note: For release 1.0, if your region does not support Signature Version 2, modify templates to support
Signature Version 4. This action is not required for release 1.0.1 and up.

Important: AMIs available from AWS have default configurations that may not meet the security
requirements of some network environments. Administrators are encouraged to assess the default
configurations of the AMIs and make necessary modifications to satisfy the security requirements of their
environment as needed.

At this time, you may only use the AMI types specified in this document. Your configuration may include the use of
only a single Amazon Linux AMI ID for all required AMI IDs, but you may choose a combination where possible
using the following supported types:

Note: Amazon Linux 2 has not been tested with this solution, and is unsupported at this time. When
choosing an Amazon Linux AMI, select the Amazon Linux AMI.

• Bastion host AMI ID: Amazon Linux
• Admin AMI ID: Amazon Linux or RHEL 7.4
• Engine AMI ID: Amazon Linux or RHEL 7.4
• PingFederate AMI ID: Amazon Linux
• Internal CA AMI ID: Amazon Linux

The EC2 instance type is specified by the templates you will use. For optimal performance, use the instance type
specified.

To find the ID of the AMI you want to use:

1. In AWS, navigate to Services > Compute > EC2.
2. On the EC2 Dashboard, click Launch Instance. This page displays the AMIs available in your selected region.

https://aws.amazon.com/
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-free-tier.html

 | PingAccess for AWS: Solution setup guide | 242

3. Make note of the AMIs you want to use, along with their AMI ID. In the following example, the AMI ID is
ami-9fa343e7:

Red Hat Enterprise Linux 7.4 (HVM), SSD Volume Type - ami-9fa343e7

Note: In release 1.0, if you are customizing the AMIs used by the setup templates, you must modify /
pingaccess/templates/security/internal-ca.yaml and /pingaccess/templates/
security/pingfederate-setup.yaml to specify the AMI ID you want to use. By default, the
specified AMI is ami-bf4193c7. If the specified AMI is not available to your region, setup will fail.

For more information on AMIs, see AWS AMI documentation.

Register a domain name with Route53

During configuration, you will be asked to specify a Public hosted zone ID. The public hosted zone ID maps to
a domain registered with AWS Route 53. The domain will be used to form URLs needed for external access to a
variety of components in this solution, including applications, and the PingAccess and PingFederate administration
consoles.

You can purchase a domain name using Route 53, transfer an existing domain to this service, or migrate the DNS
service for a domain.

Important:

The domain you choose to use for PingAccess admin (Admin public host name) and engine nodes
(Applications public host name), as well as the demonstration PingFederate instance (PingFederate DNS
Name), must be registered with and managed by AWS Route 53. Failure to register or transfer a domain to
AWS Route 53 will result in setup failing.

Customers who use an existing PingFederate instance do not need to register the associated domain with AWS
Route 53 if:

1. The PingFederate domain is routable via the internet.
2. PingFederate uses a different domain than will be used for PingAccess in AWS.

If an existing PingFederate instance and your PingAccess instances in AWS will use the same root domain,
that domain must be registered with AWS Route 53.

To learn more about AWS Route 53, including how to register a domain or transfer an existing domain, see AWS
Route 53 documentation.

Tip: When your domain name is available in Route 53, make note of the associated Hosted Zone ID so you
can use it during configuration.

Create a certificate

During configuration, you will be asked to specify a Certificate ID. The certificate ID will map to a certificate issued
for the domain you will use, as specified by the Public hosted zone ID.

You can request a certificate or you can import a certificate using the AWS Certificate Manager.

To learn more about AWS Certificate Manager, including how to request or import a certificate, see AWS Certificate
Manager documentation.

Tip: When your certificate is available in Certificate Manager, make note of the associated ARN for the
certificate so you can use it during configuration.

Obtain the automation ZIP file

The first step in creating your PingAccess environment in AWS is to obtain the ZIP file that includes templates and
scripts used by the automation process.

Contact your Ping Identity sales representative to obtain the automation ZIP file.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/migrate-dns-domain-in-use.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/migrate-dns-domain-in-use.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/registrar.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://aws.amazon.com/documentation/acm/
https://aws.amazon.com/documentation/acm/

 | PingAccess for AWS: Solution setup guide | 243

Create the PingAccess software repository

In order for the automation to run successfully, you must first create a stack that will be referenced by the setup
scripts. You will submit a template to CloudFormation that creates the S3 bucket, and also creates policies that define
access to the bucket that are referenced by provisioning functions.

Important: Do not manually create the S3 bucket. Use the templates described in this document.

Prerequisite: This procedure assumes you have downloaded and unzipped the automation ZIP file.

To create the PingAccess S3 bucket stack and required policies:

1. In the AWS console, navigate to Services > Management Tools > CloudFormation.
2. In the CloudFormation console, click Create Stack.
3. On the Select Template screen, click to select Upload a template to Amazon S3.
4. Click Choose File.
5. Navigate to the root of the unzipped archive, select the create-repo.yaml template, and click Open.
6. Click Next.
7. On the Specify Details screen, specify the Stack Name. For example, pingaccess-s3-stack.
8. Specify the Bucket Name. For example, pingaccess-s3-bucket.

Important: Bucket names must be unique across all of AWS. If your chosen bucket name is in use, the
template will fail.

9. Click Next.
10. On the Options screen, click Next.
11. On the Review screen, click to select the I acknowledge that AWS CloudFormation might create IAM

resources check box.
12. Click Create.
13. When stack creation is complete, view your S3 bucket at Services > Storage > S3.

Populate the S3 bucket

After you create the PingAccess software bucket in S3, you will populate your bucket with the files needed for the
automation process. The automation ZIP file you downloaded contains the required directory structure. You will add
files to this directory structure and upload a set of folders to S3.

Note: Do not modify the directory structure. Modifying the directory structure will cause the setup process to
fail.

Note: If you are planning to redeploy with an existing configuration, see Redeploying with an existing
configuration on page 252.

Add files to the directory structure

Prior to uploading to S3, add files that are required for setup. These files include:

• The Java Server JRE - Copy the Server JRE install package to s3-bucket-root/jre/server-jre-
<version>-linux-x64.tar.gz.

• The PingAccess distribution package - Copy the PingAccess 5.0.0 or higher distribution package to s3-
bucket-root/pingaccess/dist/pingaccess-<version>.zip.

• The PingAccess license file - Copy the PingAccess license file to s3-bucket-root/pingaccess/
licenses/pingaccess.lic.

• The PingFederate distribution package (Optional) - Copy the PingFederate 8.4.1 or higher distribution package
to s3-bucket-root/pingfederate/dist/pingfederate-<version>.zip if you are deploying
the basic PingFederate instance for a demonstration environment.

• The PingFederate license file (Optional) - Copy the PingFederate license file to s3-bucket-root/
pingfederate/licenses/pingfederate.lic if you are deploying the basic PingFederate instance for
a demonstration environment.

https://aws.amazon.com/documentation/cloudformation/
http://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

 | PingAccess for AWS: Solution setup guide | 244

• Additional library JAR files (Optional) - Copy any additional library JAR files (e.g. plugins) that should be
included with the installation to s3-bucket-root/automation-artifacts/<export-prefix>/
pingaccess/lib, where <export-prefix> is the Export name prefix you will supply to the automation
template.

Upload the directory structure to S3

1. In the AWS console, navigate to Services > Storage > S3.
2. Select the bucket you created.
3. Click Upload.
4. In a file window, select the contents of the s3-bucket-root folder. The contents include the following folders

and their contents:

• automation-artifacts
• instance-init-util
• internal-ca
• jre
• pingaccess
• pingfederate

5. Drag and drop the folders into the AWS Upload window.
6. Click Next (x3).
7. On the final screen, click Upload.

Create the PingAccess key pair

This solution will require the use of a key pair for SSH access. You can import an existing key pair, use a key pair that
already exists in your AWS environment, or you can create new key pair.

Create a new key pair

1. In AWS, navigate to Services > Compute > EC2.
2. In the left menu bar, under the Network & Security heading, click Key Pairs.

Tip: To import an existing key pair, select Import Key Pair on the Key Pairs page.

3. Click Create Key Pair.
4. Type the Key pair name and click Create.

The private key is automatically downloaded to your system, while the public key is stored in AWS.

Important: Save the private key to a safe location.

Create the PingAccess VPC

This document provides the steps required to create VPC environment. The automation script includes functions to
create all of the required components for this deployment, including:

• PingAccess Administration instance
• PingAccess Engine instances
• Load balancers
• Routing configuration
• Security groups configuration
• PingFederate instance (Optional)

To deploy into an existing VPC, see Deploy PingAccess into an existing VPC on page 245.

Important: If you are planning to deploy the PingAccess for AWS solution along with an existing
PingFederate instance, your PingFederate configuration must meet the components requirements expected
by the automation. To review the PingFederate configuration requirements, see PingAccess for AWS:
PingFederate environment requirements.

https://docs.pingidentity.com/bundle/paaws_m_PingFederateRequirements_paaws/page/paaws_c_PingFedReqIntro.html
https://docs.pingidentity.com/bundle/paaws_m_PingFederateRequirements_paaws/page/paaws_c_PingFedReqIntro.html

 | PingAccess for AWS: Solution setup guide | 245

Note: If you are redeploying with an existing configuration, see Redeploying with an existing configuration
on page 252.

To create the complete VPC environment:

1. In AWS, navigate to your S3 bucket.
2. Navigate to /pingaccess/templates and click on the create-pingaccess.yaml template.
3. On the Overview tab, copy the template link.
4. Navigate to Services > Management Tools > CloudFormation.
5. Click Create Stack.
6. Select the option to Specify an Amazon S3 template URL and paste the template link you copied.
7. Click Next.
8. On the Specify Details page, provide the required information using the Configuration options table as a guide.
9. Click Next.
10. (Optional) To disable rollback on failure for troubleshooting purposes, on the Options page, expand the

Advanced heading and set Rollback on failure to No.
11. Click Next.
12. On the Review page, scroll to the bottom and select I acknowledge that AWS CloudFormation might create

IAM resources with custom names.
13. Click Create.

You will be taken to the CloudFormation - Stacks page where you can monitor setup progress. When the setup is
successful, the parent stack and all child stacks will show a status of CREATE_COMPLETE.

Deploy PingAccess into an existing VPC

You can deploy PingAccess into an existing VPC. Follow the same general steps as above, making the following
modifications:

Note: To create a standalone base VPC, use the create-base-vpc.yaml template.

1. Use pingaccess-setup.yaml to specify the Existing VPC ID and create an Export Name Prefix for the
PingAccess deployment. This step creates the link between the Export Name Prefix and the existing VPC.

2. Next, use pingaccess-deploy.yaml to configure and deploy PingAccess. Use the Export Name Prefix
you specified in the previous step.

Configuration options

Stack name The name of the parent stack. For example:
pingaccess-demo.

Export name prefix The prefix to be applied to all stack outputs imported and
exported. For example: pingaccess-stack. You can
create multiple clusters by using a unique Export name
prefix for each.

Ping S3 repo stack name The name of the stack used to establish the PingAccess
software repository in S3. Use the Stack Name you
specified in Create the PingAccess software repository
on page 243. For example: pingaccess-s3-
stack.

VPC name The value applied to the VPC Name label. For example:
pingaccess-vpc.

VPC CIDR block The unique network CIDR block to be covered by the
created VPC.

 | PingAccess for AWS: Solution setup guide | 246

Number of public subnets specified The number of public subnet CIDR blocks to be
specified.

Public subnet CIDR blocks A comma-delimited list of public subnet CIDR blocks.
Must be unique subnets of VPC CIDR block.

Availability zones for public subnets A comma-delimited list of Availability Zones per
public subnet. At least two subnets must be in separate
Availability Zones.

Number of private subnets specified The number of private subnet CIDR blocks to be
specified.

Private subnet CIDR blocks A comma-delimited list of private subnet CIDR blocks.
Must be unique subnets of VPC CIDR block.

Availability zones for private subnets A comma-delimited list of Availability Zones per
private subnet. At least two subnets must be in separate
Availability Zones.

The allowed tenancy of instances launched into the
VPC

The allowed tenancy of instances launched into the VPC.

Admin Node Private Host Name The admin node host name to associate with the internal
ELB.

Internal private domain name The domain name to use for the private hosted zone for
Ping Identity infrastructure internal DNS names. For
example: pingaccess.aws.

Public hosted zone ID The public hosted zone for use with external Route 53
DNS. You must have a public domain name registered
with Amazon Route53. For more information, see
Route53 documentation.

For example: my-aws-domain.com.

Admin public host name The fully qualified domain name to associate with the
internet facing ELB for the admin API. This should be
a unique subdomain of the specified Public hosted zone
ID. This entry must be followed by a period.

For example: admin.my-aws-domain.com.

Applications public host name The fully qualified domain name to associate with the
internet facing ELB for the engines. This should be a
unique subdomain of the specified Public hosted zone
ID. This entry must be followed by a period.

For example: app.my-aws-domain.com.

PingAccess Admin API port The TCP/IP port of the PingAccess Admin API listener.
Use the default of 9000.

PingAccess configuration query port The TCP/IP port of the Admin Config Query listener.
Use the default of 9090.

SSH port The TCP/IP port for the VPC bastion host and
PingAccess instance SSH access. Use the default of 22.

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html

 | PingAccess for AWS: Solution setup guide | 247

EC2 keypair name The EC2 Key Pair for SSH access to the VPC bastion
host and PingAccess instances. Use the key pair you
created or imported.

Bastion host AMI ID The Amazon Linux AMI ID for the bastion host. The
default AMI is for US West (Oregon).

Bastion host instance type The EC2 instance type for the bastion host. Use the
default of t2.micro or higher.

Admin AMI ID The Amazon Linux or RHEL 7.4 AMI ID for Admin
instances. The default AMI is for US West (Oregon).

Admin instance type The EC2 instance type for Admin nodes. Use the default
of m3.large or higher.

Administrative node root volume name The root volume device name for the specified Admin
AMI. Commonly, Amazon Linux uses /dev/xvda and
RHEL 7.4 uses /dev/sda1.

Administrative node root volume size The size, in GB, for the root volume on the Admin
instance. Use the default of 15 or higher.

Engine AMI ID The Amazon Linux or RHEL 7.4 AMI ID for Engine
node instances. The default AMI is for US West
(Oregon).

Engine instance type The EC2 instance type for Engine nodes. Use the default
of m3.large or higher.

Engine node root volume name The root volume device name for the specified Engine
AMI. Commonly, Amazon Linux uses /dev/xvda and
RHEL 7.4 uses /dev/sda1.

Engine node root volume size The size, in GB, for the root volume on Engine
instances. Use the default of 16 or higher.

Engine node root volume IOPS The provisioned IOPS for the root volume on Engine
instances. The maximum ratio of IOPS to volume size is
50:1.

Internal CA AMI ID Amazon Linux AMI ID for the Internal CA. The default
AMI is for US West (Oregon).

PingFederate AMI ID Amazon Linux AMI ID for PingFederate. The default
AMI is for US West (Oregon). This parameter is only
used when ProvisionPingFederate is true.

Admin API certificate ID (ARN) The ARN of the certificate to use with Admin API ELB
listener. Use the certificate you created or imported.

Engines application certificate ID (ARN) The ARN of the certificate to use with Engine API ELB
listener. Use the certificate you created or imported.

Internal CA hostname The unqualified hostname for the Internal CA within the
private hosted zone.

Root CA Certificate TTL The amount of time that the Root CA certificate will be
valid before it expires. The default is 20 years (20y).

Certificate Generation Token TTL Time to live for Vault tokens issued for certificate
generation. The default is 1 year (1y).

 | PingAccess for AWS: Solution setup guide | 248

Leaf Certificate Default TTL The default time to live for generated leaf certificates
before they expire. The default is 30 days (30d).

Leaf Certificate Max TTL The maximum time to live allowed for leaf certificate
generation requests.

Certificate Renewal Threshold The number of days before a certificate expires that it
should be renewed.

Certificate Renewal Schedule The schedule expression that determines how often
checks for certificate renewal should occur. For more
information, see AWS documentation for scheduled
events.

Provision PingFederate Specify whether or not you want to provision a
PingFederate instance.

• Select True to provision a PingFederate instance in
the demonstration environment.

• Select False to use an existing PingFederate
instance. If you select False, you must ensure your
PingFederate configuration meets the requirements
expected by the automation. To review the required
PingFederate setup, see PingAccess for AWS:
PingFederate environment requirements.

PingFederate Version Indicates the PingFederate version
expected in the S3 repository file name
pingfederate-<PingFederateVersion>.zip. For
example, pingfederate-8.4.4.zip.

This field is ignored if Provision PingFederate is set to
False.

PingFederate DNS Name The fully qualified domain name to associate with the
internet facing PingFederate instance. This should be a
unique subdomain of the specified Public hosted zone
ID. This entry must be followed by a period.

For example: pf.my-aws-domain.com.

This field is ignored if Provision PingFederate is set to
False.

PingFederate Admin API Port The PingFederate Admin API port. Use the default of
9999.

This field is ignored if Provision PingFederate is set to
False.

PingFederate Runtime Port The PingFederate Runtime port. Use the default of
9031.

This field is ignored if Provision PingFederate is set to
False.

PingAccess Audit Logs Retention The number of days to retain CloudWatch audit logs.

PingAccess Server Logs Retention The number of days to retain CloudWatch server logs.

Lambda Logs Retention The number of days to retain CloudWatch Lambda logs.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html

 | PingAccess for AWS: Solution setup guide | 249

Java version Indicates the Java JRE version expected in the S3
repository file name server-jre-8u<JavaVersion>-
linux-x64.tar.gz. For example, server-jre-8u151-linux-
x64.tar.gz.

PingAccess Version Indicates the PingAccess version
expected in the S3 repository file name
pingaccess-<PingAccessVersion>.zip. For
example, pingaccess-5.0.0.zip.

Configure Security Groups

To access the PingAccess and PingFederate Administration consoles, as well as the PingFederate runtime, AWS
Security Groups must be configured to allow ingress traffic on the required ports. The complete installation provides a
set of Security Groups that you must configure.

You can:

• Configure the included security groups for ingress access
• Create a new Security Group

Important: By default, all security groups created as part of this solution are configured to allow all egress
traffic. Administrators may wish to review egress traffic requirements for their network and modify these
settings. For more information, see AWS documentation for Security Groups.

Configure the included security groups for ingress access:

1. In AWS, navigate to Services > Compute > EC2.
2. In the left menu bar, under Network & Security, click Security Groups.
3. Select the Security Group you want to edit. See the table below for the list of groups.
4. In the bottom pane that appears, select the Inbound tab.
5. Click Edit.
6. In the Edit inbound rules window, click Add Rule.

a. Add a Custom TCP rule.
b. In the Port Range field, enter the port. See the table below for required ports.
c. Enter the CIDR or IP for the machine you want to use for access. For quick access, you can select the Source

of My IP.
7. Click Save.

PingAccess Admin API ingress Port 9000

PingFederate Ports 9999 and 9031

SSH Ingress (Type SSH) Port 22

Note: Configuration of PingFederate Security Groups is only required if you are choosing to deploy with
a demonstration PingFederate instance by selecting "True" for the ProvisionPingFederate parameter in the
PingAccess for AWS CloudFormation template.

Create a new Security Group:

1. In AWS, navigate to Services > Compute > EC2.
2. Create a Security Group and assign it to the VPC that will include the PingAccess and PingFederate installations.
3. Add 3 Custom TCP rules and one SSH rule:

• Port Range: 9000, Source: My IP
• Port Range: 9999, Source: My IP
• Port Range: 9031, Source: My IP
• Post Range: 22, Source My IP

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

 | PingAccess for AWS: Solution setup guide | 250

4. Click Create.

Access the PingAccess administration console

After the automated deployment is complete, you can access the PingAccess administrative console. The PingAccess
administrative console will allow you to configure a token provider, create sites and applications, configure policies,
and perform other related tasks.

Important: The PingAccess for AWS solution protects your admin node availability by ensuring a new
instance of the admin node is created automatically in the event of a failure. This automated process deploys
an instance of the PingAccess admin node based on the settings specified in automation-artifacts/
<export_prefix>/pingaccess/conf/pingaccess.json.

For this reason, it is critical to your deployment that you maintain this file. Any time changes are made
to the PingAccess configuration, you must export the new configuration and replace the existing file at
automation-artifacts/<export_prefix>/pingaccess/conf/pingaccess.json. Failure
to synchronize this file could lead to unexpected results if your admin node should fail for any reason.

Access the PingAccess Administration console

To access the PingAccess Administration console in your browser, use a combination of the Admin public host name
and the PingAccess Administration port.

For example: https://pa-admin.mypublichostname.com:9000

For the demonstration environment, use the following credentials:

Username: joe
Password: 2Federate

If you are using an existing PingFederate instance, login with the credentials you created for use with the Simple
Password Credential Validator in PingAccess for AWS: PingFederate environment requirements.

Access the PingFederate administration console

Note: The following instructions only apply if you have chosen to deploy the PingAccess for AWS solution
with a basic PingFederate instance for demonstration purposes.

After the automated deployment is complete, you can access the PingFederate administrative console. The
PingFederate administrative console will allow you to configure clients and perform other related tasks.

Access the PingFederate Administration console

To access the PingFederate Administration Console in your browser, use a combination of the PingFederate public
host name, the PingFederate Administration port, and the path to the PingFederate application.

For example: https://pf-admin.mypublichostname.com:9999/pingfederate/app

For this demonstration, use the default PingFederate credentials:

Username: Administrator
Password: 2Federate

Configure SSH connectivity

Configure SSH connectivity to the PingAccess Administration and Engine nodes so you can perform tasks such
as viewing logs. The PingAccess Administration and Engine nodes are not exposed directly to the internet, but are
configured to be placed behind a Bastion host through which you can access these resources. You first connect to the
Bastion host, and then establish a connection to the desired resource.

https://docs.pingidentity.com/bundle/paaws_m_PingFederateRequirements_paaws/page/paaws_c_PingFedReqIntro.html

 | PingAccess for AWS: Solution setup guide | 251

The instructions provided here are intended to detail just one of the methods you can use to establish this connectivity.
You may choose to use another method.

Prerequisites

This procedure requires that you have the following:

• The PingAccess private key
• The Public DNS hostname used by the Bastion host. Obtain this in EC2 by selecting the SSH Bastion instance and

viewing the Description tab.
• The Private DNS hostname used by the PingAccess Admin Console and/or Engines. Obtain this in EC2 by

selecting the desired instance and viewing the Description tab.

Configure SSH connectivity

1. Add the PingAccess private key to the SSH authentication agent. Run this command from the directory containing
the private key. For example:

ssh-add -K ~/.ssh/mypingaccesskeypair.pem

2. Add a host entry to your SSH configuration for the Bastion host. You will provide a name for the entry, the public
DNS host name, and the user name used to access the host. For example, use the GNU nano editor to edit the host
file with the following command:

nano ~/.ssh/config

Add an entry with the following information:

Host aws-bastion
 Hostname mypublicbastiondns.compute.amazonaws.com
 User ec2-user

Save the file.
3. Test the connection to the Bastion host:

ssh aws-bastion

4. Add one of more SSH host entries for the Administration or Engine nodes, as required. Use the ProxyCommand
function to route the connection through the Bastion host. For example:

Host aws-console
 Hostname myinternaladmindns.compute.internal
 ProxyCommand ssh -q aws-bastion nc %h 22
 User ec2-user

Save the file.

Establish a connection

Establish a connection to a configured PingAccess Administration or Engine node using the name you configured in
the SSH host file. For example:

ssh aws-console

View PingAccess log files

To assist with troubleshooting, you can view PingAccess Admin and Engine log files. You can view logs related to
the admin or engine nodes, and you can view AWS CloudWatch logs. To view node log files, you must first establish
an SSH connection to the required node.

https://aws.amazon.com/documentation/cloudwatch/

 | PingAccess for AWS: Solution setup guide | 252

On an Admin or Engine node, the PingAccess installation can be found at /usr/local/pingaccess. Log files
are contained in the log directory.

View log files

After you have established a connection to the node, navigate to the proper directory and open the file using an editor
such as GNU nano. For example:

cd /usr/local/pingaccess/log
nano pingaccess.log

Maintaining the S3 bucket

To maintain the S3 bucket for updated files, simply delete the existing files and upload any new files using the steps
found in Populate the S3 bucket on page 243.

Note: If you are planning to redeploy with an existing configuration, see Redeploying with an existing
configuration on page 252.

Delete the PingAccess VPC

If removal of the PingAccess VPC is required, you can perform this task by deleting the top level stack. To do this:

1. In AWS, navigate to Services > Management Tools > CloudFormation.
2. In the CloudFormation console, select the top level template.
3. Click Actions > Delete Stack.
4. When prompted, confirm the operation.

Note: If you are planning to redeploy with an existing configuration, see Redeploying with an existing
configuration on page 252.

Redeploying with an existing configuration

You can redeploy the PingAccess for AWS solution using an existing configuration. You can specify to use an
existing configuration by re-using the Export name prefix. Customers who wish to redeploy while maintaining an
existing configuration should consider the following notes:

• You must first delete the PingAccess VPC
• When redeploying, you must use the same Export name prefix.
• Before you begin, you must delete the engine definitions present at /automation-artifacts/

<exportnameprefix>/pingaccess/engines.
• If you intend to change certificate related parameters, you must delete the /automation-artifacts/

<exportnameprefix>/ca folder.

Troubleshooting setup
For a variety of possible reasons, you can encounter errors or other issues during the creation of the PingAccess
environment. This document is intended to provide guidance on troubleshooting some of these issues.

To troubleshoot setup, you should disable Rollback on Failure so that relevant logs and other helpful information
remain available.

• General
• Viewing logs on EC2 instances

 | PingAccess for AWS: Solution setup guide | 253

• View CloudWatch logs
• View Lambda functions
• Modify templates to support Signature Version 4

General

Some of the more common errors come from the planning and/or preparation process. For your chosen deployment
type, ensure that you have provided and specified:

• Valid license files for PingAccess and, if applicable, PingFederate
• Valid installation packages for PingAccess and, if applicable, PingFederate
• Valid Server JRE install package
• A set of AMIs available to your AWS region that support Signature Version 2
• One or more certificates available to your AWS region
• If you are redeploying and reusing the same Export Name Prefix, ensure you have followed the advice in

Redeploying with an existing configuration on page 252.

Viewing logs on EC2 instances

To view CloudFormation logs on your EC2 instances, SSH to the instance and view logs located at /var/log.
CloudFormation logs begin with the cfn- prefix.

For instances that contain a PingAccess or PingFederate installation, you can view their respective log files at /usr/
local/pingaccess/log and /usr/local/pingfederate/log.

View CloudWatch logs

CloudWatch logs sometimes contain helpful information in the event of a failure. View CloudWatch logs by
navigating to Services > Management Tools > CloudWatch and clicking Logs.

You can filter logs for easier viewing. To find applicable CloudWatch logs, filter using the string /pingidentity/
{ExportNamePrefix} where {ExportNamePrefix} is replaced by the Export name prefix you specified
during VPC creation.

Click on a log group to view available log streams and their contents. To learn more about CloudWatch logs, see AWS
documentation for CloudWatch logs.

View Lambda functions

To help narrow down causes for an issue, it may be helpful to view logged details for the lambda that is producing
the error. To do this, navigate to Services > Compute > Lambda and filter by the VPC name. Locate and click the
lambda function you are investigating. On the Monitoring tab, review the Invocation errors widget and click Jump
to Logs.

Modify templates to support Signature Version 4

Some regions do not support Signature Version 2. In release 1.0, if you select a region that does not support Signature
Version 2, you must to modify the templates to use Signature Version 4 style URLs. Since many templates are
configured to use Signature Version 2 style URLs, the simplest way to make the required change is to find and replace
through all files stored in the automation directory.

Find the string https://${BUCKET_NAME}.s3.amazonaws.com/ and replace it with https://s3-
${AWS::Region}.amazonaws.com/${BUCKET_NAME}/.

Note: This workaround is not required in release 1.0.1 or above.

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://aws.amazon.com/documentation/acm/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

 | PingAccess for AWS: PingFederate environment requirements | 254

PingAccess for AWS: PingFederate environment
requirements

Introduction
In addition to deploying a demonstration environment that includes a basic PingFederate instance, you can configure
the PingAccess for AWS solution to deploy with support for an existing PingFederate environment. You may choose
this installation method for test or production deployments with a PingFederate environment that is external to your
AWS VPC.

This document is a guide for administrators that describes the components the automation process is expecting to be
configured in your PingFederate environment, how to configure those components, and how to include information
about your environment to the automation.

While variations to these PingFederate requirements do exist, and while it is possible to deviate from these
instructions in some cases, this document is intended to describe a minimum configuration and, as such, these
instructions would be outside the scope of this document at this time.

At a minimum, your PingFederate environment requires the following components:

1. Install the AWS Password Credential Validator
2. Configure the AWS PCV instance
3. Configure a Simple Password Credential Validator Instance
4. Create an IdP adapter
5. Add a Persistent Grant Extended Attribute
6. Configure default scope values
7. Configure an Access Token Manager instance
8. Configure an AWS PCV Resource Owner Credentials Mapping
9. Configure an IdP adapter mapping
10. Configure an IdP Adapter Access Token mapping
11. Configure an AWS PCV Access Token mapping
12. Create an OpenID Connect policy
13. Configure the PingAccess Admin SSO OAuth client
14. Configure the Resource Owner API Client OAuth client
15. Create and (optionally) export a PingFederate certificate

Create an IAM User in AWS

This document describes the steps required to create an IAM User that will be used by the AWS Password Credential
Validator.

Note: If your PingFederate instance resides in Amazon EC2, do not use these steps. The preferred method is
instead to create an IAM Role and assign the proper permissions:

1. Navigate to Services > IAM.
2. Click Roles.
3. Click Create role.
4. Select AWS service > EC2 and specify the EC2 use case.
5. Click Next: Permissions.
6. Filter for IAMReadOnlyAccess and select this item.
7. Click Next: Review.

 | PingAccess for AWS: PingFederate environment requirements | 255

8. Provide a Role name and optional Role description.
9. Click Create role.
10. Assign this role to your PingFederate EC2 instance by right clicking the EC2 instance and choosing

Instance Settings > Attach/Replace IAM Role.

1. In AWS, navigate to Services > Security, Identity & Compliance > IAM.
2. Click Users.
3. Click Add User.
4. Specify a User name. For example: awspcv_api
5. For Access type, select Programmatic access.
6. Click Next.
7. Select Attach existing policies directly.
8. Filter the list for IAMReadOnlyAccess and select this item.
9. Click Next.
10. Click Create User.
11. Copy the Access key ID for use with the AWS PCV instance that you will create in PingFederate.
12. In the Secret access key field, click Show.
13. Copy the Secret access key for use with the AWS PCV you will create.

Important: You must copy the Secret access key at this stage. The key will be masked permanently when
you navigate away from this page.

14. Click Close.

PingFederate configuration requirements
The following sections describe the PingFederate configuration elements expected by the automation. At a minimum,
your PingFederate environment should include these components.

Install the AWS Password Credential Validator

The following steps describe how to install the AWS password credential validator (PCV).

1. Obtain the PCV file, aws-password-credential-validator-<version>.jar.
2. Copy the file to your PingFederate installation at %PingFedHome%/pingfederate/server/default/

deploy.
3. Restart PingFederate.

Configure the AWS PCV instance

The following steps describe how to configure the AWS PCV instance.

1. In PingFederate, navigate to Server Configuration > Password Credential Validators.
2. Click Create New Instance.
3. Specify the Instance Name: AWS PCV
4. Specify the Instance ID: AwsPcv
5. Select the Instance Type: AWS Username Password Credential Validator
6. Click Next .
7. Enter the Access Key and Secret Key for the IAM user you created.

Note: If your PingFederate instance is in EC2, and you have created an IAM Role, leave these fields
blank.

Note: If your PingFederate instance is located in the same VPC, you can leave these fields blank.

8. Click Next.
9. Click Done.

 | PingAccess for AWS: PingFederate environment requirements | 256

10. Click Save.

Configure a Simple Password Credential Validator Instance

The following steps describe how to configure the Simple PCV instance. This PCV will be assigned to an IdP adapter
instance.

Note: You can use an existing PCV/Adapter configuration for Admin SSO if it meets these configuration
requirements.

1. In PingFederate, navigate to Server Configuration > Password Credential Validators.
2. Click Create New Instance.
3. Specify the Instance Name: SimplePcv
4. Specify the Instance ID: SimplePcv
5. Select the Instance Type: Simple Username Password Credential Validator
6. Click Next.
7. Click Add a new row to 'Users'.
8. Specify a Username and Password to use for PingAccess Admin SSO, confirm the password, and click Update.

For example: joe/2Federate.
9. Click Next.
10. Click Done.
11. Click Save.

Create an IdP adapter instance

The following steps describe how to create an IdP adapter instance.

1. Navigate to IdP Configuration > Adapters.
2. Click Create New Instance.
3. Specify the Instance Name: HtmlFormIdpAdapter
4. Specify the Instance ID: HtmlFormIdpAdapter
5. Select the Instance Type: HTML Form IdP Adapter
6. Click Next.
7. Click Add a new row to 'Credential Validators'.
8. Select the SimplePcv PCV you created and click Update.
9. Click Next (x2).
10. On the Adapter Attributes screen, select the Pseudonym checkbox.
11. Click Next (x2).
12. Click Done.
13. Click Save.

Add a Persistent Grant Extended Attribute

The following steps describe how to add a Persistent Grant Extended Attribute.

1. Navigate to OAuth Settings > Authorization Server Settings.
2. In the Persistent Grant Extended Attributes section, type ACTIONS and click Add.
3. Scroll to the bottom and click Save.

Configure default scope values

The following steps describe how to add values to the default scope.

1. Navigate to OAuth Settings > Scope Management.
2. Specify a Default Scope Description: Default Permissions
3. Enter the following Scope Value and Scope Description items and click Add with each:

 | PingAccess for AWS: PingFederate environment requirements | 257

Scope Value Scope Description

address Address access

email Email access

offline_access Offline access

openid OpenID Connect login

phone Phone Number access

profile Profile access

4. Click Save.

Configure an Access Token Manager instance

The following steps describe how to create an Access Token Manager instance.

1. Navigate to OAuth Settings > Access Token Management.
2. Click Create New Instance.
3. Enter the Instance Name: Internally Managed Reference Tokens
4. Enter the Instance ID: default
5. Select the Instance Type: Internally Managed Reference Tokens
6. Click Next (x3).
7. On the Access Token Attribute Contract screen, extend the contract by adding attributes Actions and

Username, clicking Add after each.
8. Click Next (x3).
9. Click Done.
10. Click Save.

Configure an AWS PCV Resource Owner Credentials Mapping

The following steps describe how to create an AWS PCV Resource Owner Credentials Mapping.

1. Navigate to OAuth Settings > Resource Owner Credentials Mapping.
2. Select the AWS PCV from the Source Password Validator Instance list and click Add Mapping.
3. Click Next.
4. On the Contract Fulfillment screen, select the Source and Value for each Contract item as follows:

Contract Source Value

ACTIONS Password Credential Validator actions

USER_KEY Password Credential Validator rolename

5. Click Next (x2).
6. Click Done.
7. Click Save.

Configure an IdP adapter mapping

The following steps describe how to configure an IdP adapter mapping.

1. Navigate to OAuth Settings > IdP Adapter Mapping.
2. In the Source Adapter Instance list, select the HtmlFormIdpAdapter you created.
3. Click Add Mapping.
4. Click Next.
5. On the Contract Fulfillment screen, configure entries as follows:

 | PingAccess for AWS: PingFederate environment requirements | 258

Contract Source Value

ACTIONS Text sso

USER_KEY Adapter username

USER_NAME Adapter username

6. Click Next (x2).
7. Click Save.

Configure an IdP Adapter Access Token mapping

The following steps describe how to configure an IdP Adapter Access Token mapping.

1. Navigate to OAuth Settings > Access Token Mapping.
2. Select the IdP Adapter: HtmlFormAdapter from the Context list, Internally Managed

Reference Tokens from the Access Token Manager list, and click Add Mapping.
3. On the Contract Fulfillment screen, configure entries as follows:

Contract Source Value

Actions Persistent Grant ACTIONS

Username Persistent Grant USER_KEY

4. Click Next (x2).
5. Click Save.

Configure an AWS PCV Access Token mapping

The following steps describe how to configure an AWS PCV Access Token mapping.

1. Navigate to OAuth Settings > Access Token Mapping.
2. Select the Validator: AWS PCV from the Context list, Internally Managed Reference Tokens

from the Access Token Manager list, and click Add Mapping.
3. On the Contract Fulfillment screen, configure entries as follows:

Contract Source Value

Actions Persistent Grant ACTIONS

Username Persistent Grant USER_KEY

4. Click Next (x2).
5. Click Save.

Create an OpenID Connect policy

The following steps describe how to create an OpenID Connect policy.

1. Navigate to OAuth Settings > OpenID Connect Policy Management.
2. Click Add Policy.
3. Enter the Policy ID: PA-WAM
4. Enter the Policy Name: PA-WAM
5. Select the Access Token Manager: Internally Managed Reference Tokens
6. Click Next.
7. Delete all items beneath Extend the Contract.
8. Click Next (x2).
9. For the Attribute Contract sub, select a Source of Access Token, and a Value of Username.
10. Click Next (x2).

 | PingAccess for AWS: PingFederate environment requirements | 259

11. Click Done.
12. Click Set as Default.
13. Click Save.

Configure the PingAccess Admin SSO OAuth client

The following steps describe how to create the PingAccess Admin SSO OAuth client that is used by the automation.

1. Navigate to OAuth Settings > Clients and click Create New.
2. Enter the Client ID: pa_sso
3. Enter the Name: PingAccess Admin SSO
4. For Client Authentication, select None.
5. Enter the following Redirect URIs and click Add after each:

• https://*:9000
• https://*:9000/*

6. Select the following Allowed Grant Types:

• Authorization Code
• Refresh Token
• Implicit

7. Click Save.

Configure the Resource Owner API Client OAuth client

The following steps describe how to create the Resource Owner API Client OAuth client that is used by the
automation.

1. Navigate to OAuth Settings > Clients and click Create New.
2. Enter the Client ID: api_ro
3. Enter the Name: Resource Owner API Client
4. For Client Authentication, select Client Secret and specify a Secret of 2Access.
5. Select the following Allowed Grant Types:

• Resource Owner Password Credentials
• Access Token Validation (Client is a Resource Server)

6. Click Save.

Create and (optionally) export a PingFederate certificate

Your PingFederate installation must use a valid certificate that contains the PingFederate hostname as either the
Common Name or Subject Alternative Name. You can import a valid certificate into PingFederate or you can create a
certificate using PingFederate.

The following steps describe how to use PingFederate to create and export a certificate for use with the automation.

1. Navigate to Server Configuration > SSL Server Certificates.
2. Click Create New.
3. Enter a Common Name that matches the URL for the PingFederate server. For example, if your

PingFederate server is hosted at mypingfed.myserver.com:9031, the Common Name will be
mypingfed.myserver.com.

4. Enter appropriate values for Organization and Country.
5. Click Next.
6. Choose to make the certificate active for both the runtime server and the admin console.
7. Click Done.
8. On the Certificate Management screen, locate the certificate you created and click Export.
9. Select Certificate Only and click Next.

 | PingAccess for AWS: PingFederate environment requirements | 260

10. On the Export & Summary screen, click Export to download the certificate.
11. Click Done.
12. Locate the certificate file and open in a text editor.
13. Copy and save the certificate data between the first and last lines. Do not copy the first and last lines that identify

the certificate file. You will add this data to the api.json file used by the automation.

Modify api.json to include details about your environment
Users who wish to deploy the PingAccess for AWS solution with an existing PingFederate instance must edit the
api.json file that is included with the automation package and supply this file to the automation. You will provide
details about your PingFederate environment that will be used to configure the PingAccess token provider and Admin
Authentication components.

The following instructions assume that you have followed and meet the PingFederate configuration requirements on
page 255.

Important: It is important to note that if your AWS deployment fails for any reason while you are using a
modified api.json file, you will need to replace the file in the S3 repository with the modified file. This is
due to changes that are made to the file by the automation, such as the obfuscation of password data.

The api.json file is located in the automation package at <automation package>/s3-bucket-root/
pingaccess/conf.

If you meet the PingFederate configuration requirements, the following changes will need to be made to the api.json
file:

• "pingFederate":"host": - Enter the hostname for your PingFederate server. Do not include ports or
prefixes.

• "pingFederate":"trustedCertificateGroupName": - Enter "Trust Any".
• "pingFederateAdmin":"host": - Enter the hostname for your PingFederate server. Do not include ports

or prefixes.
• "pingFederateAdmin":"trustedCertificateGroupName": - Enter "Trust Any" for testing

or debugging purposes, otherwise Add a PingFederate Certificate object to the automation. Using a PingFederate
certificate object overrides this property.

If your PingFederate server is running on non-default ports, enter the appropriate ports in this file.

(Optional) Add a PingFederate Certificate object to the automation

You can use an existing PingFederate certificate with the automation by adding the following top level object to
api.json:

"pingFederateCertificate": {
 "alias": "PingFederate",
 "fileData": "<certificate_data>"
}

Replace <certificate_data> with the data you copied and saved in Create and (optionally) export a
PingFederate certificate on page 259.

Add the api.json file to the automation

After you have made the appropriate changes to the api.json file, upload the file to your S3 bucket at <S3
bucket>/pingaccess/conf.

 | PingAccess for AWS: Configure an application | 261

PingAccess for AWS: Configure an application

Introduction

You can configure a protected application in the PingAccess for AWS environment. This document will provide
instructions for configuring an application. These instructions are applicable for deployments that include a basic
PingFederate instance, as well as deployments that make use of an existing PingFederate environment.

These instructions assume you have successfully deployed your environment and are able to access the PingAccess
and PingFederate administration consoles.

Important: The PingAccess for AWS solution protects your admin node availability by ensuring a new
instance of the admin node is created automatically in the event of a failure. This automated process deploys
an instance of the PingAccess admin node based on the settings specified in automation-artifacts/
<export_prefix>/pingaccess/conf/pingaccess.json.

For this reason, it is critical to your deployment that you maintain this file. Any time changes are made
to the PingAccess configuration, you must export the new configuration and replace the existing file at
automation-artifacts/<export_prefix>/pingaccess/conf/pingaccess.json. Failure
to synchronize this file could lead to unexpected results if your admin node should fail for any reason.

Protect an application

This document provides the steps required to protect an application using PingAccess and PingFederate in the AWS
environment.

To protect an application, complete the following steps:

1. Configure PingFederate on page 262
2. Configure a PingAccess web application on page 262
3. Configure a PingAccess API application on page 264
4. Test the web application on page 265
5. Test the API application on page 265

Install and access the unprotected PingAccess QuickStart application

After the automated deployment is complete, you can install the PingAccess QuickStart application. The PingAccess
QuickStart application can be used to test a protected PingAccess application.

Install the PingAccess QuickStart application

To install the PingAccess QuickStart application:

1. Download the PingAccess QuickStart application.
2. Unzip the file.
3. Copy \pingaccess-quickstart-<version>\pf-dist\PingAccessQuickStart.war to

<PingFedHome>\pingfederate\server\default\deploy.
4. Restart PingFederate.

Access the unprotected PingAccess QuickStart application

To access the unprotected PingAccess QuickStart application in your browser, use a combination of the PingFederate
public host name, the PingFederate runtime port, and the path to the QuickStart application.

For example: https://pf-admin.mypublichostname.com:9031/PingAccessQuickStart

 | PingAccess for AWS: Configure an application | 262

Configure PingFederate

If you have deployed a basic PingFederate instance as part of the automation process, most of the configuration
is complete. Likewise, if you have deployed with an existing PingFederate instance, and meet the PingFederate
environment requirements, most of the required configuration is complete.

This document describes the steps required to create a client that will be used for the PingAccess Web Session you
will assign to a web based application in PingAccess.

To create the web session client in PingFederate:

1. Log in to the PingFederate administration console.
2. Navigate to Main > OAuth Settings > Clients and click Manage All.
3. Click Add Client.
4. Specify a Client ID. For example:

pa_wam

5. Specify a Name. For example:

PingAccessWebAccessManagement

6. Select Client Secret.
7. Generate a secret by clicking Generate Secret. Copy this secret to a secure location so that you can use it in

PingAccess configuration.
8. In the Redirection URIs field, add the OIDC callback redirect to the PingAccess server, for example:

https://mypingaccessserver.my-aws-domain.com/pa/oidc/cb

9. Click Add.
10. Select the Bypass Authorization Approval check box.
11. For the Allowed Grant Type setting, select the Authorization Code check box.
12. Click Save (x2).

Configure a PingAccess web application

This document provides the steps required to configure the demo web application in PingAccess. In performing the
steps required, you will:

1. Create a web session on page 262
2. Create a virtual host on page 263
3. Create a site on page 263
4. Create an application on page 263
5. Configure resources

Important: The PingAccess for AWS solution protects your admin node availability by ensuring a new
instance of the admin node is created automatically in the event of a failure. This automated process deploys
an instance of the PingAccess admin node based on the settings specified in automation-artifacts/
<export_prefix>/pingaccess/conf/pingaccess.json.

For this reason, it is critical to your deployment that you maintain this file. Any time changes are made
to the PingAccess configuration, you must export the new configuration and replace the existing file at
automation-artifacts/<export_prefix>/pingaccess/conf/pingaccess.json. Failure
to synchronize this file could lead to unexpected results if your admin node should fail for any reason.

Create a web session

Create a web session to control access. For more information, see Web Sessions.

1. Navigate to Settings > Access > Web Sessions

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa43/page/pa_c_WebSessions.html

 | PingAccess for AWS: Configure an application | 263

2. On the Web Session page, click Add Web Session.
3. Enter a unique Name for the web session, up to 64 characters, including special characters and spaces. For

example:

PF_WAM

4. Select Encrypted JWT for Cookie Type.
5. Specify the Audience that the PA Token is applicable to, represented as a short, unique identifier between 1 and

32 characters. For example:

global

6. Specify the OpenID Connect Login Type CODE.
7. Specify the Client ID. For example, the Client ID you created is:

pa_wam

8. Specify the Client Secret you copied in Configure PingFederate on page 262.
9. Click Save.

Create a virtual host

Create a virtual host that PingAccess will respond to. For more information, see Virtual Hosts.

1. Navigate to Settings > Access > Virtual Hosts.
2. Click Add Virtual Host.
3. Enter the Host name for the Virtual Host or specify a wildcard. For example: app.my-aws-

pingaccess.com or *.
4. Enter the Port number for the Virtual Host. In this environment, AWS is expecting a secure connection, so you

must specify the secure port. For example:

443

5. Click Save.

Create a site

Create a site to define the location of the application that PingAccess is protecting. For more information, see Sites.

1. Navigate to Main > Sites > Sites.
2. Click Add Site.
3. Specify a Name. For example:

QuickStart

4. Specify the Target. The format for this is hostname:port. For example:

pf.my-pf-instance.com:9031

5. Select Secure and choose the Trust Any Trusted Certificate Group.
6. Click Save.

Note: If the target site cannot be contacted, the site is saved and a warning is displayed indicating the
reason the site was not reachable.

Create an application

Create an application to define the resource that PingAccess is protecting. For more information, see Applications.

1. Navigate to Main > Applications.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa43/page/pa_c_VirtualHosts.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa43/page/pa_c_Sites2.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa43/page/pa_c_Applications.html

 | PingAccess for AWS: Configure an application | 264

2. Click Add Application.
3. Provide a unique name for the application. For example:

QuickStart

4. Specify the context at which the application is accessed at the site. For example:

/PingAccessQuickStart

5. Specify the virtual host for the application. For example:

*:443

6. Specify the application type Web and select the Web Session for the application. For example:

PF_WAM

7. Specify the application destination type Site and select the Site requests are sent to when access is granted. For
example:

QuickStart

8. Select the Require HTTPS option.
9. Select the Enabled checkbox.
10. Click Save.

Configure resources

Note: This step is only required for the demonstration environment. Your resource access requirements may
differ.

Configure application resources to allow anonymous access to the root resource and authenticated access to the /
headers resource.

1. Navigate to Main > Applications.
2. Expand the QuickStart application and click the edit button.
3. Select the Resources tab.
4. Expand the Root Resource and click the edit button.
5. Select the Anonymous checkbox and click Save.
6. Click Add Resource.
7. Enter a Name for the resource. For example: headers.
8. Enter the Path Prefix of /headers.
9. Click Save.

Configure a PingAccess API application

This document provides the steps required to configure the demo API application in PingAccess. Prior to completing
these steps, ensure you have followed the steps in Configure a PingAccess web application on page 262 to create a
Virtual Host and a Site.

Important: The PingAccess for AWS solution protects your admin node availability by ensuring a new
instance of the admin node is created automatically in the event of a failure. This automated process deploys
an instance of the PingAccess admin node based on the settings specified in automation-artifacts/
<export_prefix>/pingaccess/conf/pingaccess.json.

For this reason, it is critical to your deployment that you maintain this file. Any time changes are made
to the PingAccess configuration, you must export the new configuration and replace the existing file at
automation-artifacts/<export_prefix>/pingaccess/conf/pingaccess.json. Failure
to synchronize this file could lead to unexpected results if your admin node should fail for any reason.

 | PingAccess for AWS: Configure an application | 265

Create an application

Create an application to define the resource that PingAccess is protecting. For more information, see Applications.

1. Navigate to Main > Applications.
2. Click Add Application.
3. Provide a unique name for the application. For example:

QuickStart

4. Specify the context at which the application is accessed at the site. For example:

/PingAccessQuickStart/api

5. Specify the virtual host for the application. For example:

*:443

6. Specify the application type API and ensure the Protected option is selected.
7. Specify the application destination type Site and select the Site requests are sent to when access is granted. For

example:

QuickStart

8. Select the Require HTTPS option.
9. Select the Enabled checkbox.
10. Click Save.

Test the web application

This document describes the steps to test the demo web application.

Tip: For the most visible experience with this demo, perform these steps in a new private or incognito
session to avoid the reuse of an existing session.

To test the web application:

1. Open your browser and navigate to the application using a combination of the Applications public host name
you created in Create the PingAccess VPC on page 244 and the application Context Root. For example:

https://app.my-aws-domain.com/PingAccessQuickStart

2. On the Web Access Management application, click Try it Now.
3. You will be prompted to authenticate. Enter the Username and Password combination included with the

QuickStart demo application: joe/2Federate.

The headers page is displayed.

Test the API application

This document describes the steps to test the demo API application.

Tip: For the most visible experience with this demo, perform these steps in a new private or incognito
session to avoid the reuse of an existing session.

To test the demo API application:

1. Open your browser and navigate to the application using a combination of the Applications public host name
you created in Create the PingAccess VPC on page 244 and the application Context Root. For example:

https://app.my-aws-domain.com/PingAccessQuickStart

2. On the API Access Management application, click Try it Now.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa50/page/pa_c_Applications.html

 | PingAccess release notes | 266

3. Click the Get Token button.
4. You will be prompted to authenticate. Enter the Username and Password combination included with the

QuickStart demo application: joe/2Federate.

The token is obtained and pre-populated along with the URL context.
5. Click Send API Request.

A Response Code of 200 indicates a successful test. Response Headers are displayed.

PingAccess release notes

Release Notes
PingAccess is a centralized point of security and access control for Web applications and APIs, serving applications
and other resources to clients outside an organization while still protecting internal interfaces from unauthorized
access. PingAccess protects applications and APIs, enabling access control and identity-based auditing on incoming
requests. Featuring a lightweight, highly scalable architecture, PingAccess complements PingFederate with
centralized session management and URL-level authorization.

These release notes summarize the changes in current and previous product updates.

PingAccess 5.2.1 - March 2019

PingAccess 5.2.1 is a cumulative maintenance release for PingAccess 5.2, which introduced several new features,
including a customizable reserved application path, support for decrypting ID tokens, and support for PingOne for
Customers as the token provider, along with several other enhancements. For more information, see the release notes
for PingAccess 5.2.

Resolved issues

Ticket ID Description

Multiple Fixed potential security issues.

Known issues and limitations

Known issues
• Use of TLSv1.0 has been maintained for use by

legacy versions of Internet Explorer. Since continued
use of TLSv1.0 is not recommended for security
reasons, users should upgrade to the latest version
of Internet Explorer to make use of the more secure
TLSv1.1 or TLSv1.2.

• Reverse DNS lookup on localhost fails when making
back-channel calls to PingFederate.

• Engines and admin replicas do not connect to admin
console if a combination of IP addresses and DNS
names are used.

• The token processor can't connect to a JWKS
endpoint via SSL when an IP is used rather than
a hostname. To workaround this issue, add the
hostname as the subject alt name on the key pair.

• In some cases, a session may not be invalidated when
the WebSessionManagement issuer is changed.

 | PingAccess release notes | 267

• When using Internet Explorer 11, you may not be
able to view the full application or resource policy
because the scroll bar is missing.

• The Linux installer does not accept a configuration
zip file with a space in the file name. To work around
this issue, remove the space from the file name.

• Log files may contain excessive warnings issued by
Hibernate during startup.

Known limitations
• Internet Explorer and Firefox do not correctly support

the HTML5 time tag. When using the Time Range
rule, enter time in 24-hour format.

• When installing PingAccess as a Windows service
using Windows PowerShell and Java 8, the error
message "Could not find or load main class" can be
safely ignored.

• Request Preservation is not supported with Safari
Private Browsing.

• When using IE 11 to access the PingAccess admin
console remotely, a fully qualified domain name
or IP address must be specified. For example,
https://console.site.com:9000 and
https://172.17.8.252:9000 will work,
while specifying only the host name, https://
console:9000, will not.

• Incorrect handling for IPv6 literals in Host header.
Note that IPv6 is not currently supported.

Previous releases

To access previous release notes, select the applicable version from the table of contents.

PingAccess 5.2 - December 2018

Enhancements
Use PingOne for Customers as the token provider

PingAccess now includes native support for configuring PingOne for Customers as the OpenID
Connect provider.

Support for Java 11
This release of PingAccess includes support for Oracle JDK 11 and Open JDK 11 in addition
to support for Java 8. As of version 11, Server JRE is no longer available. Note that while other
combinations may function as expected, the only tested and supported cluster configurations are
those where each node utilizes the same JDK distribution.

Configure the reserved application path
You can now use the PingAccess Admin API to configure the reserved application path (/pa). This
feature is useful for customers who need to protect application resources that natively use the default
PingAccess reserved application path.

Decrypt encrypted ID tokens

 | PingAccess release notes | 268

To reduce backchannel communication between PingAccess and the token provider, PingAccess is
now able to decrypt ID tokens that have been encrypted by the token provider using a public key
that the token provider obtains from PingAccess.

Local validation of JWT OAuth 2.0 Bearer Access Tokens
To reduce backchannel communication between PingAccess and the token provider, PingAccess can
locally validate signed (JWS) and/or encrypted (JWE) access tokens for API calls.

Read and use PingFederate metadata
PingAccess reads metadata from PingFederate and uses the information to build authorization,
token, and other endpoints.

API to retrieve resource path pattern evaluation order
An API endpoint is now available to retrieve application resource path pattern evaluation order.

Dynamically populate PingFederate token generator IDs
If PingFederate Administration is configured , PingAccess now populates available Token
Generator IDs while configuring a Token Mediator Site Authenticator.

Groovy enhancements
Enhancements to Groovy script functionality have been included that allow you to get all values for
any header field and to dump headers via Groovy script to aid with debugging.

Resolved issues

Ticket ID Description

N/A Fixed potential security issues.

PA-10325 Fixed an issue where engine requests to sync configuration based on a configurable
interval were timing out.

PA-10259 Fixed an issue where PingAccess was not properly encoding ampersand after post
preservation.

PA-10335 Fixed an issue where evaluation of nested RuleSetGroups were failing for agent
requests.

PA-10463 Fixed an issue where references to AuthnRequirement IDs were not being retained
across an upgrade, resulting in an impact to Admin SSO functionality.

PA-10281 Fixed an issue that caused interoperability problems when using a Site Authenticator
Token Mediator for a resource specified as being globally unprotected.

PA-10304 Fixed an issue where, in some cases, engine key data was not being migrated
successfully for older versions of PingAccess.

PingAccess 5.1.3 - March 2019

PingAccess 5.1.2 is a cumulative maintenance release for PingAccess 5.1, which introduced several new features,
including Custom OIDC Scopes, SPA Support, improved Redirect and Rejection handling, Unprotected Resources
and Enhanced Path Matching patterns, along with several other enhancements. For more information, see the release
notes for PingAccess 5.1.

Resolved issues

Ticket ID Description

 | PingAccess release notes | 269

Multiple Fixed potential security issues.

PA-10281 Fixed an issue where access to a globally unprotected resource would cause an error if
a token mediator site authenticator was associated with the site.

PA-10305 Fixed a threading issue in caching implementation.

PA-10325 Fixed an issue where engine nodes stopped polling for configuration.

PA-10335 Fixed an issue where Rule Set Group evaluation was failing for agent requests.

PA-10463 Fixed an issue where Authentication Requirement IDs were not updated on upgrade.

PingAccess 5.1.2 - October 2018

PingAccess 5.1.2 is a cumulative maintenance release for PingAccess 5.1, which introduced several new features,
including Custom OIDC Scopes, SPA Support, improved Redirect and Rejection handling, Unprotected Resources
and Enhanced Path Matching patterns, along with several other enhancements. For more information, see the release
notes for PingAccess 5.1.

Resolved issues

Ticket ID Description

PA-9874 Fixed an issue where a Web Session Attribute rule would fail if the attribute name was
formatted as a URI.

PA-9983 Fixed an issue where PingAccess was converting site hostnames to IP addresses when
being sent to a forward proxy in a CONNECT request.

PA-9990 Fixed an issue where an upgrade would fail if API applications were being migrated
and an appropriate OAuth token provider was not configured.

PA-10021 Fixed an issue where errors were being generated and stack traces were being logged
when policy evaluation succeeded.

PA-10035 Fixed an issue where path patterns were not allowing for trailing whitespace.

PA-10179 Fixed a potential security issue.

PingAccess 5.1.1 - August 2018

PingAccess 5.1.1 is a cumulative maintenance release for PingAccess 5.1, which introduced several new features,
including Custom OIDC Scopes, SPA Support, improved Redirect and Rejection handling, Unprotected Resources
and Enhanced Path Matching patterns, along with several other enhancements. For more information, see the release
notes for PingAccess 5.1.

Resolved issues

Ticket ID Description

PA-9806 Fixed an issue where PingAccess did not honor enabled TLS protocol version(s)
configuration when acting as a TLS server.

PA-9808 Fixed an issue where an invalid TLS cipher specified in run.properties would lead to
connectivity issues.

PingAccess 5.1 - June 2018

Enhancements
Custom OIDC scopes

 | PingAccess release notes | 270

Explicitly specify the scopes you want to obtain when requesting the ID token. If a token provider is
configured, select published scopes from a list based on the client ID you specify. You can specify
an unverified scope by entering the scope value in the field provided.

For more information, see Create a Web Session and Configure Admin UI SSO Authentication.

Single Page Application (SPA) support
SPA support merges the conventional 401 unauthorized response of an API application with the
traditional 302 redirect response of a web application when a client request does not contain an
authentication token. The SPA supported result is a 401 response containing a JavaScript body that
can initiate a 302 redirect.

SPA support is useful for protected applications that may receive requests in which the client type is
unknown, and no token nor cookie is present. SPA support provides a combined response containing
information that both web and API clients can act upon.

For more information, see About SPA support.

Redirects
Globally redirect the host:port of specific incoming requests to that of a different target. This
feature is useful in redirecting HTTP requests to an equivalent HTTPS URL.

For more information, see Redirects.

Redirect rule
Use a redirect rule with an application to specify a fixed URL that a user agent should request in
response to being denied access to the requested resource. Redirect rules can be applied to one or
more applications.

For more information, see Redirect rule.

Rejection handlers
Define the action to take when a request to an application or resource is rejected by policy
evaluation. This feature allows you to decide if you want to display an error template or redirect
the user to another URL for error details, instructions, or additional actions. You can specify the
response status code that you want to send if policy evaluation rejects access.

For more information, see Manage Rejection Handlers.

Rejection rule
Use a rejection rule with an application to specify the action to take when a request to an application
or resource is rejected by policy evaluation. A rejection rule uses Rejection Handlers to define
which action you want to take, either rejecting the request and displaying an error template, or
redirecting the user to another URL for error details, instructions, or additional actions.

For more information, see Rejection rule.

Server-side cipher ordering
Define the order for cipher suite usage to help ensure the most secure cipher suites are used first,
regardless of the client request. On new installs, or in the case of an upgrade to release 5.1, this
behavior is the default.

For more information, see Cipher Suite ordering for HTTPS Listeners.

Global unprotected resources
Specify resources to be unprotected at a global level for all applications. This feature allows you to
indicate certain resources that have no authentication requirements. These entries must start with a
slash (/) and may contain one or more wildcard characters (*). Examples include:

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Create_a_Web_Session.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_Configure_SSO_Authentication_in_PingAccess.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_Applications.html#concept_fds_ss5_vz__section_cwr_4dm_d2b
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_Redirects.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_RedirectRule.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_manageRejectionHandlers.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_manageRejectionHandlers.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_t_RejectionRule.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_Listeners.html

 | PingAccess release notes | 271

• /*.jpg
• /resources/*.css
• /*/resources/favicon.ico

Use Global unprotected resources when you want to allow unauthenticated access to a particular
resource for all applications.

To configure a global unprotected resource, see Manage Global Unprotected Resources.

Application unprotected resources
Specify resources to be unprotected at the application level. This feature allows you to indicate
certain resources within an application that have no authentication requirements. Processing rules
are applied to unprotected resources where applicable. No application or resource access control
policy is applied.

Use Application unprotected resources when you want to allow unauthenticated access to a
particular resource for a single application.

To configure an application unprotected resource, see Manage Application Resources.

Enhanced path-matching patterns
PingAccess now supports the use of regular expressions as path patterns for a resource. The
supported syntax is that documented by the RE2 wiki .

To use regular expressions as path matching patterns, you must enable Resource Ordering. For
more information on using regular expressions, see Manage Application Resources.

Resource ordering
Manually specify the order in which path patterns are evaluated for an application. This allows more
explicit control of the policies that are applied to a request for a resource. Resource ordering also
enables the use of regex path patterns.

For more detailed information on resource ordering and using regex path patterns, see Resource
ordering.

Third-party services
Create third-party services to define the destination for HTTPS outbound calls. Third-party services
are used by custom plugins to indicate how the HTTP client will communicate with the destination.
The configuration of a third-party service is similar to that of a site.

For more information on configuring third-party services, see Manage Third-Party Services..

For more information on creating custom plugins to use these third-party services, see Integrating
with third-party services.

HTTPS Client SDK Support
Integrate custom plugins with external third-party services via HTTP. Example services may include
those for authorization or auditing. For more information, see Integrating with third-party services.

In-Use Information for Key Pairs, Trusted Certificate Groups, and Third-Party Services

Easily see which plugins are using key pairs, trusted certificate groups, and third party services. To
see where these components are being used, navigate to:

• Main > Sites > Third-Party Services. Expand the third-party service and click the References
tab.

• Settings > Security > Certificates. Expand the trusted certificate group and click Show
References.

• Settings > Security > Key Pairs. Expand the key pair and click the References tab.

https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ManageGlobalUnprotectedResources.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ManageAppResources.html
https://github.com/google/re2/wiki/Syntax
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ManageAppResources.html
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ManageAppResources.html#section_ys3_mhr_ddb
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ManageAppResources.html#section_ys3_mhr_ddb
https://docs.pingidentity.com/bundle/pa_m_PAUIReferenceGuide_pa51/page/pa_c_ManageThirdPartyServices.html
https://docs.pingidentity.com/bundle/pa_sm_PAAddonSDKforJava_pa51/page/pa_c_integratingWithThirdPartyServices.html
https://docs.pingidentity.com/bundle/pa_sm_PAAddonSDKforJava_pa51/page/pa_c_integratingWithThirdPartyServices.html
https://docs.pingidentity.com/bundle/pa_sm_PAAddonSDKforJava_pa51/page/pa_c_integratingWithThirdPartyServices.html

 | PingAccess release notes | 272

Removal of SHA1-based cipher suites
Usage of SHA1-based cipher suites has been deprecated in PingAccess 5.1. Legacy browsers may
require the addition of SHA1-based ciphers to negotiate a cipher suite with the server. In this case,
add the following ciphers to the engine.ssl.ciphers property in run.properties and
restart PingAccess:

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA

Resolved issues

Ticket ID Description

PA-8754 Modified engine log error output to include rule and class name details when a
configuration update fails due to a missing JAR.

PingAccess 5.0.6 - March 2019

PingAccess 5.0.5 is a cumulative maintenance release for PingAccess 5.0, which introduced several new features,
including Ping Identity Cloud Automation Repo, Zero downtime upgrades, a new application type (Web +API), along
with several other enhancements. For more information, see the release notes for PingAccess 5.0.

Important: For customers upgrading to the 5.0 release from an earlier version, please note that there are
potentially breaking changes to plugins and Groovy scripts. Plugins built with JDK 7 may not function as
expected and should be reviewed for migration to JDK 8. For more information, see the PingAccess Addon
SDK for Java Migration Guide.

Likewise, the Groovy API is enhanced for the addition of some objects. Groovy scripts should be reviewed
for necessary changes. For more information on these changes, see the Groovy Development Reference
Guide.

Previous functionality that allowed Groovy scripts to leverage an undocumented capability to use the Addon
SDK APIs has been removed. Methods and types added to the Groovy API align with the previous version of
the Addon SDK. As a result, if existing Groovy scripts leverage Addon SDK APIs that are not available in the
new Groovy API, they will need to be ported to only use the methods and types available in the new Groovy
API before upgrading to PingAccess 5.0.

Resolved issues

Ticket ID Description

Multiple Fixed potential security issues.

PingAccess 5.0.5 - August 2018

PingAccess 5.0.5 is a cumulative maintenance release for PingAccess 5.0, which introduced several new features,
including Ping Identity Cloud Automation Repo, Zero downtime upgrades, a new application type (Web +API), along
with several other enhancements. For more information, see the release notes for PingAccess 5.0.

Important: For customers upgrading to the 5.0 release from an earlier version, please note that there are
potentially breaking changes to plugins and Groovy scripts. Plugins built with JDK 7 may not function as
expected and should be reviewed for migration to JDK 8. For more information, see the PingAccess Addon
SDK for Java Migration Guide.

Likewise, the Groovy API is enhanced for the addition of some objects. Groovy scripts should be reviewed
for necessary changes. For more information on these changes, see the Groovy Development Reference
Guide.

https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html

 | PingAccess release notes | 273

Previous functionality that allowed Groovy scripts to leverage an undocumented capability to use the Addon
SDK APIs has been removed. Methods and types added to the Groovy API align with the previous version of
the Addon SDK. As a result, if existing Groovy scripts leverage Addon SDK APIs that are not available in the
new Groovy API, they will need to be ported to only use the methods and types available in the new Groovy
API before upgrading to PingAccess 5.0.

Resolved issues

Ticket ID Description

PA-9806 Fixed an issue where PingAccess did not honor enabled TLS protocol version(s)
configuration when acting as a TLS server.

PA-9876 Fixed an issue where engines would take an excessive amount of time to start due to
unbounded database growth.

PingAccess 5.0.4 - June 2018

PingAccess 5.0.4 is a cumulative maintenance release for PingAccess 5.0, which introduced several new features,
including Ping Identity Cloud Automation Repo, Zero downtime upgrades, a new application type (Web +API), along
with several other enhancements. For more information, see the release notes for PingAccess 5.0.

Important: For customers upgrading to the 5.0 release from an earlier version, please note that there are
potentially breaking changes to plugins and Groovy scripts. Plugins built with JDK 7 may not function as
expected and should be reviewed for migration to JDK 8. For more information, see the PingAccess Addon
SDK for Java Migration Guide.

Likewise, the Groovy API is enhanced for the addition of some objects. Groovy scripts should be reviewed
for necessary changes. For more information on these changes, see the Groovy Development Reference
Guide.

Previous functionality that allowed Groovy scripts to leverage an undocumented capability to use the Addon
SDK APIs has been removed. Methods and types added to the Groovy API align with the previous version of
the Addon SDK. As a result, if existing Groovy scripts leverage Addon SDK APIs that are not available in the
new Groovy API, they will need to be ported to only use the methods and types available in the new Groovy
API before upgrading to PingAccess 5.0.

Resolved issues

Ticket ID Description

PA-9475 Fixed an issue where a change to the SDK disallowed the use of the
com.pingidentity.policy.error.info Exchange property in Groovy
scripts.

PA-9529 Fixed an issue where an exception occurred while parsing an access token that
contains integers as attribute values.

PA-9632 Fixed an issue where, under certain conditions, policy rules were not being evaluated
as expected.

PingAccess 5.0.3 - March 2018

PingAccess 5.0.3 is a cumulative maintenance release for PingAccess 5.0, which introduced several new features,
including Ping Identity Cloud Automation Repo, Zero downtime upgrades, a new application type (Web +API), along
with several other enhancements. For more information, see the release notes for PingAccess 5.0.

Important: For customers upgrading to the 5.0 release from an earlier version, please note that there are
potentially breaking changes to plugins and Groovy scripts. Plugins built with JDK 7 may not function as

https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html

 | PingAccess release notes | 274

expected and should be reviewed for migration to JDK 8. For more information, see the PingAccess Addon
SDK for Java Migration Guide.

Likewise, the Groovy API is enhanced for the addition of some objects. Groovy scripts should be reviewed
for necessary changes. For more information on these changes, see the Groovy Development Reference
Guide.

Previous functionality that allowed Groovy scripts to leverage an undocumented capability to use the Addon
SDK APIs has been removed. Methods and types added to the Groovy API align with the previous version of
the Addon SDK. As a result, if existing Groovy scripts leverage Addon SDK APIs that are not available in the
new Groovy API, they will need to be ported to only use the methods and types available in the new Groovy
API before upgrading to PingAccess 5.0.

Resolved issues

Ticket ID Description

PA-9318 Fixed an issue where an incorrect database password could corrupt the database.

PA-9335 Fixed an issue when upgrading from release 4.3.x or lower, where the upgrade may
have failed due to a Java comparison method contract violation, as indicated in the
upgrade log.

PA-9350

PA-9356

Fixed an issue where the Narrow By filtering functions for rules, rule sets, and rule set
groups were not functioning properly.

PA-9359 Fixed an issue where the user interface may not function correctly after an application
has been deleted.

PingAccess 5.0.2 - March 2018

PingAccess 5.0.2 is a cumulative maintenance release for PingAccess 5.0, which introduced several new features,
including Ping Identity Cloud Automation Repo, Zero downtime upgrades, a new application type (Web +API), along
with several other enhancements. For more information, see the release notes for PingAccess 5.0.

Important: For customers upgrading to the 5.0 release from an earlier version, please note that there are
potentially breaking changes to plugins and Groovy scripts. Plugins built with JDK 7 may not function as
expected and should be reviewed for migration to JDK 8. For more information, see the PingAccess Addon
SDK for Java Migration Guide.

Likewise, the Groovy API is enhanced for the addition of some objects. Groovy scripts should be reviewed
for necessary changes. For more information on these changes, see the Groovy Development Reference
Guide.

Previous functionality that allowed Groovy scripts to leverage an undocumented capability to use the Addon
SDK APIs has been removed. Methods and types added to the Groovy API align with the previous version of
the Addon SDK. As a result, if existing Groovy scripts leverage Addon SDK APIs that are not available in the
new Groovy API, they will need to be ported to only use the methods and types available in the new Groovy
API before upgrading to PingAccess 5.0.

Resolved issues

Ticket ID Description

PA-9200 Fixed an issue where a retry triggered by the availability profile HTTP status codes
configuration used the target IP address rather than the IP of a configured proxy.

PA-9201 Fixed an issue where, under some conditions, the read timeout was not being enforced
for an availability profile.

https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html

 | PingAccess release notes | 275

PingAccess 5.0.1 - December 2017

PingAccess 5.0.1 is a cumulative maintenance release for PingAccess 5.0, which introduced several new features,
including Ping Identity Cloud Automation Repo, Zero downtime upgrades, a new application type (Web +API), along
with several other enhancements. For more information, see the release notes for PingAccess 5.0.

Important: For customers upgrading to the 5.0 release from an earlier version, please note that there are
potentially breaking changes to plugins and Groovy scripts. Plugins built with JDK 7 may not function as
expected and should be reviewed for migration to JDK 8. For more information, see the PingAccess Addon
SDK for Java Migration Guide.

Likewise, the Groovy API is enhanced for the addition of some objects. Groovy scripts should be reviewed
for necessary changes. For more information on these changes, see the Groovy Development Reference
Guide.

Previous functionality that allowed Groovy scripts to leverage an undocumented capability to use the Addon
SDK APIs has been removed. Methods and types added to the Groovy API align with the previous version of
the Addon SDK. As a result, if existing Groovy scripts leverage Addon SDK APIs that are not available in the
new Groovy API, they will need to be ported to only use the methods and types available in the new Groovy
API before upgrading to PingAccess 5.0.

Resolved issues

Ticket ID Description

PA-8706 Fixed a performance issue that is encountered when you create and assign a large
number of virtual hosts to an application.

PA-7936 Fixed an issue in the Upgrade Utility.

PingAccess 5.0 - December 2017

Enhancements
PingIdentity Cloud Automation Repo

An automated cloud deployment of PingAccess for Amazon Web Services. This solution, both for
customers with and without existing AWS resources, allows administrators to easily configure a
functioning environment using PingAccess and an optional basic PingFederate deployment. The
templates included with the package will guide you through the setup of all necessary components,
including the S3 bucket, EC2 instances, routing and security parameters, and naming conventions.

For more information on deploying this solution, see the PingAccess for AWS: Solution setup
guide.

Note: The PingAccess for AWS solution does not yet support agent deployments. For
more information, see Known limitations on page 267.

Zero downtime upgrades
Upgrade a cluster to PingAccess 5.0 with no downtime. This updated procedure takes advantage
of new functionality that ensures availability during the entire upgrade process without impacting
existing user sessions.

To learn about the updated Zero Downtime Upgrade process, see PingAccess: Zero Downtime
Upgrade.

Web + API applications
PingAccess now supports the concept of a heterogeneous application that allows configuration of
both Web and API settings. The PingAccess runtime inspects the inbound request for the presence
of a web session cookie or an OAuth token and applies the access control policy defined for the
type of authentication token in the request. Administrators can specify a default fallback type for
application requests that do not include a web session cookie or OAuth token.

https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/paaws_m_PAAWSSolutionSetupGuide_paaws/page/paaws_c_ConfigGuideIntro.html
https://docs.pingidentity.com/bundle/paaws_m_PAAWSSolutionSetupGuide_paaws/page/paaws_c_ConfigGuideIntro.html
https://docs.pingidentity.com/bundle/pa_sm_ZeroDowntimeUpgrades_pa50/page/pa_c_PAZDUIntroduction.html
https://docs.pingidentity.com/bundle/pa_sm_ZeroDowntimeUpgrades_pa50/page/pa_c_PAZDUIntroduction.html

 | PingAccess release notes | 276

Security enhancements for exported configuration data
By default, all sensitive configuration data exported from PingAccess is now encrypted with the
system master key (the "host key"), helping to ensure confidentiality of data at rest. Additionally,
when a MasterKeyEncryptor plugin is configured, the host key will be encrypted and
included in the exported data in order to support export/import of configuration data across
clusters with different host keys. Administrators still have the less secure option of including
a generated encryption key in the exported data. This feature can be configured using the
admin.export.encryption.mode property in run.properties.

Configurable values for this property are:

• MASTER_KEY - The host key is encrypted and included in exported data. This option requires
that you have a master key encryptor configured to encrypt and decrypt the necessary data.
Customers using this option must supply and configure the master key encryptor.

• PORTABLE_INSECURE - The encrypted host key is included in exported data. In this case,
the host key should be manually removed from data and stored safely to prevent unauthorized
usage of the host key.

Java Addon SDK modifications
Plugins built against the Java Addon SDK for PingAccess 5.0 are now required to be built with JDK
8, as the SDK for PingAccess 5.0 uses Java 8 features. Previously, plugins could be built with either
JDK 7 or JDK 8.

Important: There are potentially breaking changes with this release. Plugins built
with JDK 7 may not function as expected and should be reviewed for migration to
JDK 8. For more information, see the PingAccess Addon SDK for Java Migration
Guide.

Groovy API enhancements
The Groovy API is enhanced for the addition of some objects. Groovy scripts should be reviewed
for necessary changes. For more information on these changes, see the Groovy Development
Reference Guide.

Note:

Previous functionality that allowed Groovy scripts to leverage an undocumented
capability to use the Addon SDK APIs has been removed. Methods and types added
to the Groovy API align with the previous version of the Addon SDK. As a result, if
existing Groovy scripts leverage Addon SDK APIs that are not available in the new
Groovy API, they will need to be ported to only use the methods and types available
in the new Groovy API before upgrading to PingAccess 5.0.

Enhanced engine and replica admin trusted certificate functionality
This release introduces enhanced engine and replica admin trusted certificate functionality that
allows an administrator to choose the Trusted Certificate that gets exported for an engine or replica
admin in the configuration zip file.

Administrative API version 3
PingAccess Admin REST APIs have been updated to version 3 with several changes, including
the addition and removal of some fields that may warrant a migration of existing code. For
more information about these changes and information on how to migrate existing code, see
Administrative API updates on page 277.

Improved upgrade support for custom plugins

https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_sm_AddonSDKJavaMigrationGuide_pa50/page/pa_c_AddonSDKJavaMigrationGuide.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html
https://docs.pingidentity.com/bundle/pa_m_GroovyDevelopment_pa50/page/pa_c_Groovy.html

 | PingAccess release notes | 277

This feature adds a new -i command-line option to the PingAccess Upgrade Utility, as well as
support by installers, that allows an administrator to specify a directory containing custom plugins
compiled against the new SDK.

If you have custom plugins and wish to perform an upgrade, you will need to rebuild the plugins
against the new Java SDK, then run the Upgrade Utility manually with the new -i command-line
option to include their directory.

Resolved issues

Ticket ID Description

PA-6272 Fixed an issue where the installers did not validate administrator credentials before
continuing.

PA-6975 Fixed an issue where, during active sessions, PingAccess did not enforce the presence
of an access token in the PingAccess cookie when a web session configuration was
modified to require the access token.

PA-7618 Fixed an issue where the Windows installer failed to install PingAccess as a service
during an upgrade.

PA-7629 Fixed an issue where, during an upgrade, the Linux installer showed a status of
FAILED if you chose not to replace the existing service.

PA-7931 Fixed an issue where PingAccess X-Forwarded-For IP address validation was not
allowing port numbers.

PA-7958 Fixed an issue where a race condition would cause the engine to miss the auth token
key roll.

PA-7971 Fixed an issue where, during an upgrade on RHEL 7 using the Linux installer, the
install may show as FAILED due to an error starting the systemd PingAccess service.

PA-7975 Fixed an issue where Auth token management settings were not being properly
migrated during an upgrade.

PA-8056 Fixed an issue where a race condition would cause the engine to miss configuration
updates.

PA-8250 Fixed an issue where PingAccess was failing on a call to retrieve a token from the
token provider.

PA-8380 Fixed a potential security issue.

PA-8382 Fixed an issue where the upgrade would fail if a third party token provider was
enabled but not configured.

PA-8477 Fixed an issue where a disabled Site send token would cause the replaced
Authorization header field to be removed.

Administrative API updates

With PingAccess 5.0, the administrative API interface is updated to version 3. This update includes changes to some
API endpoints.

Administrators who have written code that uses the API endpoints to automate administrative tasks will need to
update their code to use the new endpoints.

Note: The fundamental change in all administrativie API calls will be a change in the endpoint URI from /
pa-admin-api/v2 to /pa-admin-api/v3. For example, if you made a call to /pa-admin-api/
v2/pingfederate/admin, your code would need to be updated to point to /pa-admin-api/v3/
pingfederate/admin

 | PingAccess release notes | 278

The following table identifies specific API changes that may need more updates than just the path to the API
endpoint.

Endpoint Change Description

/applications This endpoint will now prevent creation of protected
Applications if the corresponding token provider
configuration is not set. For a protected Web
Application, the PingFederate Runtime or the OpenID
Connect provider must be configured to be able to
create or update a protected Web Application via the
/applications endpoint. For a protected API
Application, the PingFederate OAuth Resource Server
or OAuth Authorization Server must be configured to
be able to create or update a protected API Application
vis the /applications endpoint. The token provider
configuration can still be cleared via the appropriate
DELETE endpoints if protected Applications are
configured but disabled. However, doing so will prevent
future updates to existing protected Applications until
the corresponding token provider configuration is set.

The applicationType field has been updated to
add support for Dynamic (Web + API) applications.
Additionally, the defaultAuthType and
identityMappingIds fields have been added in
support of Web + API applications.

The format of the policy field has been updated to
include the application type. For example:

{
 ...
 "policy": {
 "Web": [
 {
 "type": "Rule",
 "id": 20
 }
],
 "API": []
 }
 ...
}

 | PingAccess release notes | 279

Endpoint Change Description

/applications/[id}/resources This endpoint has been updated to include the
defaultAuthTypeOverride field in support of
Web + API application types. Use this field to override
the default of an application for a resource. A value of
null indicates no override.

The format of the policy field has been updated to
include the application type. For example:

{
 ...
 "policy": {
 "Web": [
 {
 "type": "Rule",
 "id": 20
 }
],
 "API": []
 }
 ...
}

/adminConfig/replicaAdmins/{id}/key/
{keyId}

and

/engines/{id}/key/{keyId}

The DELETE operation has been removed because the
keyId field for public keys is no longer available.

Public keys can be deleted by removing them from
the keys field of a ReplicaAdmin or an Engine
entity supplied to the PUT /adminConfig/
replicaAdmins/{id} or PUT /engines/{id}
operations, respectively.

/adminConfig/replicaAdmins

and

/engines

For all GET, PUT, and POST operations that return a
ReplicaAdmin or an Engine entity, the PublicKey objects
contained in the keys field no longer contain an id
field.

In addition, the value field of PublicKey has been
renamed to jwk to better represent the fact that the
data is a JSON Web Key. The field type has also been
changed from a string to a JSON object.

/ruleSets The RuleSet type field has been renamed to
elementType to better reflect the fact that the type
represents what sort of elements are contained in the
RuleSet.

/rulesets/types This endpoint has been renamed to /rulesets/
elementTypes to better reflect the fact that the types
represent what sort of elements can be included in a
RuleSet.

/config/export The configuration data returned by a GET operation no
longer contains an encryptionKey field (by default).
Instead, the system master encryption key is used to
encrypt sensitive data. If a MasterKeyEncryptor plugin is
configured, a new masterKeys field will be included,
which contains the encrypted master key.

 | PingAccess release notes | 280

Endpoint Change Description

/webSessions The consultServerDurationInSeconds field
has been removed as it is no longer used by PingAccess.
The length of time an Agent caches WebSession policy
decisions is dependent on the lifetime of the sessions
as determined by idleTimeoutInMinutes and
sessionTimeoutInMinutes and the intervals
defined by refreshUserInfoClaimsInterval
and pfsessionStateCacheInSeconds.

/auth/oidc The clientId and clientSecret fields have been
removed. Instead, use the clientCredentials
object contained in the object oidcConfiguration
to set the clientId and clientSecret fields.
Further, the oidcConfiguration field is now
required. Previously, it was optional.

/identityMappings The identityMappingPairs field has been
removed. In PingAccess 4.1, /identityMappings
was converted to support custom IdentityMappings
and as a result, uses an extensible configuration
model to support arbitrary configuration for
custom IdentityMappings. With this change, the
IdentityMapping from previous versions become the
HeaderIdentityMapping. The schema for configuring
a HeaderIdentityMapping can be retrieved from the /
identityMappings/descriptors/headeridentitymapping
endpoint. The data previously contained in a
identityMappingPair will map to an element in
the attributeHeaderMappings array. Specifically,
the IdentityMappingPair.nameToExtractValueFrom
field will map to the attributeName field
in an attributeHeaderMapping, the
IdentityMappingPair.nameToInjectValueInfo
field will map to the headerName field in an
attributeHeaderMapping, and the
IdentityMappingPair.subject field will map to the subject
field in an attributeHeaderMapping.

/webSessionManagement The maxNumberOfKeys field has been removed.
Previously, this field is no longer exposed in the Admin
API.

PingAccess 4.3.6 - March 2019

PingAccess 4.3.5 is a cumulative maintenance release for PingAccess 4.3, which introduced several new features,
including client certificate authentication, admin session revocation, support for PostgreSQL audit logging, and
support for standards based OIDC single logout. For more information, see the release notes for PingAccess 4.3.

Resolved issues

Ticket ID Description

Multiple Fixed potential security issues.

 | PingAccess release notes | 281

PingAccess 4.3.5 - August 2018

PingAccess 4.3.5 is a cumulative maintenance release for PingAccess 4.3, which introduced several new features,
including client certificate authentication, admin session revocation, support for PostgreSQL audit logging, and
support for standards based OIDC single logout. For more information, see the release notes for PingAccess 4.3.

Resolved issues

Ticket ID Description

PA-9806 Fixed an issue where PingAccess did not honor enabled TLS protocol version(s)
configuration when acting as a TLS server.

PA-9876 Fixed an issue where engines would take an excessive amount of time to start due to
unbounded database growth.

PingAccess 4.3.4 - December 2017

PingAccess 4.3.4 is a cumulative maintenance release for PingAccess 4.3, which introduced several new features,
including client certificate authentication, admin session revocation, support for PostgreSQL audit logging, and
support for standards based OIDC single logout. For more information, see the release notes for PingAccess 4.3.

Resolved issues

Ticket ID Description

PA-8706 Fixed a performance issue that is encountered when you create and assign a large
number of virtual hosts to an application.

PA-7936 Fixed an issue in the Upgrade Utility.

PingAccess 4.3.3 - October 2017

PingAccess 4.3.3 is a cumulative maintenance release for PingAccess 4.3, which introduced several new features,
including client certificate authentication, admin session revocation, support for PostgreSQL audit logging, and
support for standards based OIDC single logout. For more information, see the release notes for PingAccess 4.3.

Resolved issues

Ticket ID Description

PA-8380 Fixed a potential security issue.

PingAccess 4.3.2 - September 2017

PingAccess 4.3.2 is a cumulative maintenance release for PingAccess 4.3, which introduced several new features,
including client certificate authentication, admin session revocation, support for PostgreSQL audit logging, and
support for standards based OIDC single logout. For more information, see the release notes for PingAccess 4.3.

Resolved issues

Ticket ID Description

PA-7629 Fixed an issue where, during an upgrade, the Linux installer showed a status of
FAILED if you chose not to replace the existing service.

PA-8205 Fixed a potential security issue.

PA-8248 Fixed an issue where dbuserpasswd and dbfilepasswd .sh and .bat files would fail.

 | PingAccess release notes | 282

Ticket ID Description

PA-8253 Fixed an issue where a race condition would cause the engine or admin replica to miss
an auth token key roll or a web session key roll

PA-8254 Fixed an issue where a race condition would cause the engine to miss configuration
updates.

PA-8255 Fixed an issue where an engine data.zip could not be downloaded after a configuration
import.

PingAccess 4.3.1 - August 2017

PingAccess 4.3.1 is a cumulative maintenance release for PingAccess 4.3, which introduced several new features,
including client certificate authentication, admin session revocation, support for PostgreSQL audit logging, and
support for standards based OIDC single logout. For more information, see the release notes for PingAccess 4.3.

Resolved issues

Ticket ID Description

PA-7632 Fixed an issue where, during an upgrade on RHEL 7 using the Linux installer, the
install may show as FAILED due to an error starting the systemd PingAccess service.

PA-7931 Fixed an issue where PingAccess X-Forwarded-For IP address validation was not
allowing port numbers.

PA-7975 Fixed an issue where Auth token management settings were not being properly
migrated during an upgrade.

PingAccess 4.3 - June 2017

Enhancements
PingAccess for Azure AD

A version of the PingAccess license is available for premium users of Microsoft's Azure AD. This
license permits the use of a limited feature set supporting integration with the Azure AD Application
Proxy and provides secure access for up to 20 legacy on-premises applications. Users are able to
take advantage of the full PingAccess feature set by purchasing a full license. To learn more, see:

• PingAccess for Azure AD overview
• Getting started with PingAccess for Azure AD

Token provider specific attribute transformation
PingAccess provides a mechanism that transforms incompatible attribute payload data received
from Azure AD's OIDC UserInfo endpoint and retrieves the display names for groups from the
Azure AD Graph API.

Client certificate authentication
PingAccess now facilitates client certificate authentication with protected applications that
accept client certificates as HTTP headers. This feature works by retrieving client certificates
sent by the browser during the SSL/TLS handshake with PingAccess and adding them, through
the use of identity mappings, (JWT and Header), to the HTTP request headers sent to a site.
An example scenario is using PingAccess to protect the public interfaces of PingFederate when
user authentication requires a certificate to authenticate. For more information on PingFederate
configuration, see Defining Proxy Options.

Administrator session revocation
PingAccess now supports full administrator SSO session revocation. When using PingFederate
as the token provider, PingAccess can be configured to utilize admin SLO functionality that

https://docs.pingidentity.com/bundle/paaad_m_PingAccessOverview_paaad43/page/pa_c_PingAccessforAzureAD.html
https://docs.pingidentity.com/bundle/paaad_m_GettingStartedWithPAAzure_paaad43/page/paaad_c_GettingStartedWithPAAzure.html
https://documentation.pingidentity.com/pingfederate/pf83/index.shtml#concept_definingProxyOptions.html

 | PingAccess release notes | 283

redirects PingAccess to the SLO endpoint to initiate the sign-out process. When using PingAccess
basic authentication, server side session tracking is used to verify the session and deny access for
invalidated cookies after sign-out.

Support for systemd services
The Linux installer now supports installation of systemd services on RHEL 7, while maintaining
System V service support on RHEL 6. The systemd init system offers more robust service
management and a simpler configuration. When upgrading PingAccess on a system that supports
systemd, you will be given the option to replace an existing System V service with a newer systemd
service. A template service unit configuration file is also provided for manual installation of
systemd services on non-RHEL systems.

PingAccess support for PostgreSQL audit logging
In addition to existing audit logging options for Oracle and MS SQL Server databases, PingAccess
now supports database audit logging for the API, engine, and agent to PostgreSQL databases.
Configure PostgreSQL audit logging using the /conf/log4j2.db.properties and /config/log4j2.xml
files available in the PingAccess installation directory.

Support for standards based OIDC single logout
Support has been added for administrator single logout when using a compatible third party OpenID
Connect provider. A compatible provider supports OpenID Connect Session Management 1.0.

Improved configuration export and import
The format of the exported configuration data has been modified to more closely align with the
PingAccess REST API and to provide a more user-friendly JSON structure. In addition, sensitive
data is now obfuscated to help protect data at rest.

PingAccess support on additional operating systems
PingAccess Server is now supported on the following systems:

• SUSE Linux Enterprise Server v12
• RedHat Enterprise Linux 7.3
• Windows Server 2016

Resolved issues

Ticket ID Description

Various This release contains multiple UI improvements and enhancements.

PA-5208 Fixed an issue where reverse DNS lookup was failing on PingAccess startup.

PA-5683 Fixed an issue where authentication requirements rules were not processing in the
correct order.

PA-6332 Fixed an issue where an OAuth scope and attribute policy would succeed on an
unprotected application when negate is set to true.

PA-6396 Fixed an issue where logouts were not being handled correctly when using a third
party token provider.

PA-6582 Fixed an issue where a warning was not issued when a rule that requires an identity
was assigned to an unprotected application.

PA-6585 Fixed an issue where nonce cookies were not being removed after unsuccessful
requests.

PA-6776 Fixed an issue where an admin was taken to the basic authentication page after their
session expired if using admin SSO.

PA-6884 Fixed an issue where the policy screen did not allow scrolling when using Internet
Explorer 11.

 | PingAccess release notes | 284

Ticket ID Description

PA-6900 Fixed an issue where a value of 0 was not accepted as a valid Session Poll Interval.

PA-6965 Fixed an issue where the upgrade utility was failing when there are spaces in the path.

PA-6973 Fixed an issue where PingAccess was calculating the agent token cache TTL for a web
session incorrectly which may have resulted in an agent not consulting the PingAccess
policy server when either the PingFederate Session State Cache Interval or the Refresh
User Attributes Interval as configured for the web session had elapsed.

PA-6981 Fixed an issue where sessions were not being invalidated after changing the Web
Session Issuer.

PA-7033 Fixed an issue where no warning was displayed when modifying the Admin SSO
configuration that may have resulted in unexpected lockout.

PA-7040 Fixed an issue where a JWT identity mapping attribute with a period in its name was
not being mapped into a claim.

PA-7151, PA-7190 Fixed issues with the encoding of special characters used in searches.

PA-7350 Fixed an issue where a Client Certificate JWT claim name didn't support nested (dot
notated) formatting.

PA-7603 Fixed an issue where the installer was hanging during upgrade because the service had
not yet stopped.

PingAccess 4.2.4 - March 2019

PingAccess 4.2.3 is a cumulative maintenance release for PingAccess 4.2, which introduced several new features,
including improved admin UI workflow, certificate trust chains, event storage in MS SQL, agent policy server
failover, unknown resource handling, forward proxy handling, and installer support for upgrades. For more
information, see the release notes for PingAccess 4.2.

Resolved issues

Ticket ID Description

Multiple Fixed potential security issues.

PingAccess 4.2.3 - April 2017

PingAccess 4.2.3 is a cumulative maintenance release for PingAccess 4.2, which introduced several new features,
including improved admin UI workflow, certificate trust chains, event storage in MS SQL, agent policy server
failover, unknown resource handling, forward proxy handling, and installer support for upgrades. For more
information, see the release notes for PingAccess 4.2.

Resolved issues

Ticket ID Description

PA-6929 Fixed an issue where multiple nonce cookies were created during abandoned
authentication attempts.

PA-6943 Fixed an issue where PingAccess was not encoding some data correctly when
communicating with the token endpoint.

PA-6978 Fixed an issue where rate limiting rules were not correctly enforcing the application
scoped rate limit.

 | PingAccess release notes | 285

Ticket ID Description

PA-7035 Fixed an issue where identities were being associated with authentication requests to
anonymous resources.

PA-7038 Fixed an issue where there was no redirect or success banner following successful
object creation.

PA-7042 Fixed an issue where warnings were being included in logs when an HTTP response
write error occurs.

PingAccess 4.2.2 - February 2017

PingAccess 4.2.2 is a cumulative maintenance release for PingAccess 4.2, which introduced several new features,
including improved admin UI workflow, certificate trust chains, event storage in MS SQL, agent policy server
failover, unknown resource handling, forward proxy handling, and installer support for upgrades. For more
information, see the release notes for PingAccess 4.2.

Resolved issues

Ticket ID Description

PA-6437 Fixed an issue where some velocity variables were not present in some conditions.

PA-6551 Fixed an issue where ID Token attributes were incorrectly included in the PingAccess
cookie if Include User Info in ID Token was enabled and Cache User
Attributes is enabled in the web session.

PA-6577 Fixed an issue in Basic Administrator Authentication where the "Password change
failed" message was being displayed even when the password change succeeded.

PA-6602 Fixed an issue where some Warning messages were not being displayed on the Policies
page.

PA-6695 Fixed an issue where PingAccess was using the incorrect proxy to communicate with
PingFederate.

PA-6877 Fixed an issue where a PingAccess upgrade from release 4.0 to release 4.2.1 was
failing.

PingAccess 4.2.1 - December 2016

PingAccess 4.2.1 is a cumulative maintenance release for PingAccess 4.2, which introduced several new features,
including improved admin UI workflow, certificate trust chains, event storage in MS SQL, agent policy server
failover, unknown resource handling, forward proxy handling, and installer support for upgrades. For more
information, see the release notes for PingAccess 4.2.

Resolved issues

Ticket ID Description

PA-6436 Fixed an issue where configured sites were unreachable after upgrade to PingAccess
4.2, build 4.2.0.6.

PA-6317 Fixed an issue where, in a clustered environment using admin SSO, if the admin
console is configured to use a proxy, and if the admin replica is not configured to use a
proxy, admin SSO would not succeed in a failover situation.

PA-6408 Fixed an issue where you could not add a new row to a content rewrite rule via the UI.

 | PingAccess release notes | 286

PingAccess 4.2 - December 2016

Enhancements
Improved Admin UI workflow

Improved configuration workflow that allows you to easily configure required elements without
navigating away from a page or losing information.

Certificate trust chains
This feature allows you to add or modify a certificate chain by adding or removing intermediate and
root certificates.

Audit event storage in MS SQL 2012 & 2016
Configure PingAccess to store logs in MS SQL Server 2012 & 2016.

Agent policy server failover
Configure a failover host and port on an agent definition to enable agent failover to a backup policy
server in the event of a failure of the primary policy server.

Unknown resource handling
Specify handling of resources for which there is no configured application. This feature allows you
to customize error pages for unknown resources and to enable request pass-through for PingAccess
agents. This feature is useful when specifying a policy for an agent protected resource that has both
secure and public content within the scope of the agent.

Forward proxy support for outbound calls
Specify and configure a forward proxy that may be required to make outbound calls.

Installer support for upgrades
You can now install and upgrade PingAccess on Windows and RHEL using the applicable installer
package.

Resolved issues

Ticket ID Description

PA-3407 Fixed an issue that caused poor performance on reload when there are applications
with many groovy script rules.

PA-4671 Improved handling of unsupported Content-Types during POST preservation.

PA-5400 Fixed an issue where an exception was incorrectly added to logs during evaluation of
an OAuth Attribute Rule on an unprotected API application.

PA-5405 Fixed an issue where an exception was encountered by the error response handler if
the connection to PingFederate is misconfigured.

PA-5448 Fixed an issue where a session cookie was not reissued if a transaction failed.

PA-5500 Fixed an issue with the display of values when viewing an Identity Mapping in
expanded view.

PA-5502 Fixed an issue that caused upgrades to fail under certain conditions.

PA-5538 Fixed an issue where Save and Discard Changes buttons were not visible when adding
or making changes to IP Source or Host Source settings on the HTTP Requests page.

PA-5644 Fixed an issue where expired tokens were logging incorrect error messages.

PA-5791 Improved handling of errors that were occurring when trying to decrypt a state
parameter with a key that no longer exists.

PA-6027 Fixed an issue where warning messages weren't being parsed correctly.

 | PingAccess release notes | 287

Ticket ID Description

PA-6271 Fixed an issue where upgrades were failing because the target instance admin console
was not responding.

PA-6273 Fixed an issue where runtime requests were failing when using Internet Explorer 9 or
10.

PingAccess 4.1.4 - March 2019

PingAccess 4.1.3 is a cumulative maintenance release for PingAccess 4.1, which introduced several new features,
including support for standards-based OpenID Connect provider login, JWT based identity mapping, OAuth 2.0 token
introspection, and session timeout synchronization with PingFederate. For more information, see the release notes for
PingAccess 4.1.

Resolved issues

Ticket ID Description

Multiple Fixed potential security issues.

PingAccess 4.1.3 - November 2016

PingAccess 4.1.3 is a cumulative maintenance release for PingAccess 4.1, which introduced several new features,
including support for standards-based OpenID Connect provider login, JWT based identity mapping, OAuth 2.0 token
introspection, and session timeout synchronization with PingFederate. For more information, see the release notes for
PingAccess 4.1.

Resolved issues

Ticket ID Description

PA-6014 Fixed an issue where the Upgrade Utility was not migrating the configuration for 3rd
party OAuth server or 3rd party OIDC provider.

PA-6213 Fixed a potential security issue.

PingAccess 4.1.2 - October 2016

PingAccess 4.1.2 is a cumulative maintenance release for PingAccess 4.1, which introduced several new features,
including support for standards-based OpenID Connect provider login, JWT based identity mapping, OAuth 2.0 token
introspection, and session timeout synchronization with PingFederate. For more information, see the release notes for
PingAccess 4.1.

Resolved issues

Ticket ID Description

PA-5681 Fixed an issue where Heartbeat URL displays a blank page when Detailed Response is
disabled.

PA-5828 Fixed an issue where agents using the same agent certificate would generate an
IllegalStateException when replicating to a cluster of engines.

PA-5830 Fixed an issue where Identity Mappings no longer shows multiple attributes with the
same name when there is a only difference in case.

 | PingAccess release notes | 288

Ticket ID Description

PA-5876 Fixed an issue where the agentCacheInvalidatedResponseDuration field is incorrectly
set to 0, causing the vnd-pi-cache-invalidated header to be missing from the agent
response.

PA-5879 Fixed an issue where the vnd-pi-sub header is missing from the agent response.

PingAccess 4.1.1 - September 2016

PingAccess 4.1.1 is a cumulative maintenance release for PingAccess 4.1, which introduced several new features,
including support for standards-based OpenID Connect provider login, JWT based identity mapping, OAuth 2.0 token
introspection, and session timeout synchronization with PingFederate. For more information, see the release notes for
PingAccess 4.1.

Resolved issues

Ticket ID Description

PA-5665 Fixed an issue where you could not save changes to a Trusted Certificate Group.

PA-5654 Fixed an issue where upgrade would fail to migrate Authentication Requirements
Rules.

PA-5651 Fixed an issue where a new Authentication Requirements Rule could not be created
after upgrading to version 4.1.

PA-5646 Fixed an issue where RuleSets were always evaluated before Rules.

PA-5563 Fixed an issue where Admin API transaction logs were appearing in agent_audit_log
and engine_audit_log tables when using the Log4j2 JDBCAppender.

PA-5556 Fixed an issue with Log4j2 JDBCAppender where a memory leak would create out of
memory issues and log events were not added to the failover log file.

PA-5547 Fixed an issue with Engine and Agent Audit Logging where FailedRule entries were
not appearing in logs.

PA-5451 Fixed an issue where a change to enable Skip Hostname Verification would not take
effect until a restart of PingAccess.

PingAccess 4.1 - August 2016

Enhancements

Support for standards-based OpenID Connect
provider login

PingAccess 4.1 introduces support for the use of a
standards-based OpenID Connect provider as a source
for authentication tokens.

There are several requirements and prerequisites that
must be fulfilled before enabling this feature, including:

• All existing applications must be disabled prior to
changing the token provider

• Only Basic Authentication for the administrator
console must be enabled. Administrator SSO must be
disabled.

• The third-party OpenID Connect token provider must
support OpenID Connect issuer discovery

 | PingAccess release notes | 289

Once the token provider is switched, applications can be
re-enabled, and Administrator SSO can be re-enabled.
We recommend that if Administrator SSO is provided,
you enable administrative roles on the Single Sign-On
tab of the Admin Authentication configuration page
and configure required Administrator Attributes to
ensure that only administrators are permitted access to
the administrative console.

To change the token provider type, navigate to Settings
> System > Token Provider, then click Change Token
Provider Type.

Note: This feature only works with web
applications protected by PingAccess; API
applications are not supported, and cannot be
enabled if they exist in the configuration.

Ability to create identity mappings based on contents
of a JWT

Identity mappings can now be added as claims to a
signed JWT as well as in HTTP request headers to the
back-end server. These JWTs are signed using the issuer
information set in Settings > Access > Auth Token
Management. The token itself can be validated using the
/pa/authtoken/JWKS endpoint.

OAuth 2.0 Token Introspection RFC7662 introduced a standard for querying an OAuth
authorization server about the state of an OAuth 2.0
token and to determine meta-information about it.

This release of PingAccess provides an option to use the
PingFederate 8.2 introspection endpoint.

Note: This feature requires the use of
PingFederate 8.2, and it only applies to API
applications.

Enable Token Introspection by navigating to Settings >
System > Token Provider > OAuth Resource Server >
Use Token Introspection Endpoint.

PingFederate session timeouts can be synchronized
with PingAccess

PingAccess now provides a means for PingFederate 8.2
to synchronize its session timeouts with PingAccess.

Resolved issues

Ticket ID Description

PA-4886 Fixed an issue when trying to generate a CSR for a certificate that includes a DNS
name subject alternative name that starts with a wildcard (*).

PA-4230 Fixed an issue where Agent name can be invalid Unicode characters in HTTP headers.

PA-5306 Fixed an issue when configuring sites with MutualTlsSiteAuthenticator.

PA-5303 Fixed an issue where the status icon no longer appears for the replica administrative
node.

PA-4892 Fixed an issue where a socket is not properly closed on error.

PA-4891 Fixed an issue where a socket is not properly closed on error.

http://tools.ietf.org/html/rfc7662

 | PingAccess release notes | 290

Ticket ID Description

PA-4882 Fixed an issue where the callback endpoint always returns a Forbidden when
combining a Code WebSession and the use of X-Forwarded-Host.

PA-4878 Removed libraries that are no longer in use.

PA-4866 Fixed an issue where some plugin fields were not accepting input.

PA-4610 Modified run scripts to use /dev/random for cryptographic processing.

PA-4581 Fixed an issue where a slow backend site causes PingAccess to throw an OOM (Out of
memory) exception.

PA-3429 Fixed an issue where local DB was not being set to a known state before applying
replicated configuration.

PingAccess 4.0.5 - March 2019

PingAccess 4.0.4 is a cumulative maintenance release for PingAccess 4.0, which introduced many new features, such
as contextual authentication, WebSocket support, and a new administrative UI. For more information, see the release
notes for PingAccess 4.0.

Resolved issues

Ticket ID Description

Multiple Fixed potential security issues.

PingAccess 4.0.4 - July 2016

PingAccess 4.0.4 is a cumulative maintenance release for PingAccess 4.0, which introduced many new features, such
as contextual authentication, WebSocket support, and a new administrative UI. For more information, see the release
notes for PingAccess 4.0.

Resolved issues

Ticket ID Description

PA-5115 Resolved an issue with the automatic creation of configuration archives when the
administrator logged in if the admininstrator authentication used Admin SSO.

PA-5189 The PingAccess Upgrade Utility no longer overwrites the certificate alias attribute
with a GUID during an upgrade.

PingAccess 4.0.3 - May 2016

PingAccess 4.0.3 is a cumulative maintenance release for PingAccess 4.0, which introduced many new features, such
as contextual authentication, WebSocket support, and a new administrative UI. For more information, see the release
notes for PingAccess 4.0.

Resolved issues

Ticket ID Description

PA-4862 Corrected an issue where upgrading an environment that has Admin SSO enabled
could result in an admin authentication loop.

PA-4867 Addressed a potential security issue.

 | PingAccess release notes | 291

Ticket ID Description

PA-4875 Fixed an issue where paginated collections of entities (sites, applications, etc.) could
cause the administrative UI to hang while reloading.

PA-4877 Addressed an issue in the Windows service configuration that could impact
performance.

PA-4889 Resolved a conflict between using the code OpenID Connect Login Type setting and
the use of X-Forwarded-Host headers. In this situation, the X-Forwarded-
Host value was not matching the PingFederate redirect_uri tied to the
authorization code, and authentication would fail.

PingAccess 4.0.2 - April 2016

PingAccess 4.0.2 is a cumulative maintenance release for PingAccess 4.0, which introduced many new features, such
as contextual authentication, WebSocket support, and a new administrative UI. For more information, see the release
notes for PingAccess 4.0.

Resolved issues

Ticket ID Description

PA-4639 Fixed a defect that prevented database audit logging from working.

PA-4635 Corrected an issue where changes to the Update Token Window(s) setting in the web
sessions configuration did not persist.

PA-4627 Addressed an issue that could cause the logging buffer to fill, preventing PingAccess
from processing requests.

PA-4604 For backchannel OAuth validation requests to PingFederate, the effective URL of the
request is used. This effective URL now includes the URL scheme.

PA-4423 When parsing Set-Cookie header values, PingAccess now uses the pa.uri.strict
property in run.properties in determining whether to allow or deny invalid
characters in the query.

PingAccess 4.0.1 - March 2016

PingAccess 4.0.1 is a cumulative maintenance release for PingAccess 4.0, which introduced many new features, such
as contextual authentication, WebSocket support, and a new administrative UI. For more information, see the release
notes for PingAccess 4.0.

Resolved issues

Ticket ID Description

PA-4602 Fixed an issue where editing a resource would remove policies assigned to that
resource.

PA-4598 Addressed an issue where the PingAccess Upgrade Utility would reset agent shared
secrets.

PA-4416 Modified logging so expired tokens do not generate ERROR or WARN level log
messages, since token expiration is an expected and normal operational condition.

PA-4415 Modified logging so responses from the Token Mediator Site Authenticator do not
generate an INFO level message for every transaction.

 | PingAccess release notes | 292

Ticket ID Description

PA-4232 When a % character appears in a URI processed in some way by PingAccess, if the
character is not clearly part of a URL-encoded string, PingAccess treats it as a literal %
character, and URL-encodes it as %25 for processing.

PingAccess 4.0 - February 2016

Enhancements

Contextual authentication PingAccess 4.0 introduces the Authentication
Requirements rule type. Authentication Requirements
rules define the type of authentication required to
gain access to a web application, allowing for step-
up authentication for access to more sensitive parts
of an application. Additionally, requirements can
be combined with other access control criteria to
enable contextual authentication use cases, such as re-
evaluating a user's authentication status if they move to
an untrusted network, or using attribute values to trigger
a requirement for a stronger form of authentication.

WebSocket security Applications that use the WebSocket protocol can now
be protected by PingAccess, allowing PingAccess
access control policies and processing rules to be used
to enhance security. WebSocket-based applications are
supported by PingAccess as a gateway or when using
PingAccess agents.

New administrative user interface PingAccess 4.0 includes a completely redesigned
administrative user interface, providing a uniform
administration experience for PingAccess, PingFederate,
and PingOne administrators..

Auditor and administrator roles PingAccess 4.0 introduces role-based access control
for administrative interfaces. Users can be assigned to
the Administrator role, allowing full access to view and
change the PingAccess configuration, or they can be
assigned to the Auditor role, which allows read-only
access to the configuration. Role-based access control is
applied for both Admin SSO to the administrative UI or
OAuth authentication to access the administrative API.

New REST API version The PingAccess REST APIs have been updated to
version 2, bringing a number of enhancements to that
administrative interface. See Administrative API updates
on page 296 for detailed information about these
changes and how to migrate to the new API version.

New logging system PingAccess now uses log4j2 as the logging engine. As
a consequence, you will need to migrate your existing
blitz4j configuration to log4j2.

This change also brings several other enhancements,
such as failover logging capabilities, improved logging

 | PingAccess release notes | 293

performance, and the ability to have changes to the log
level applied without requiring a restart of PingAccess.

Oracle JRE support PingAccess 4.0 removes the need to deploy the full
Oracle JDK on runtime servers. Oracle JRE provides all
required services.

Windows and RHEL installers We've now created an MSI-based installer for Windows
and a CLI-based installation script for RedHat Enterprise
Linux to simplify the installation of PingAccess.

Both installers guide you through the installation
decision points with a wizard-style interface, and update
the PingAccess configuration based on those decisions.

Upgrade utility The Upgrade Utility is now the only tool required for
performing upgrades, regardless of the source and target
versions of PingAccess.

The PingAccess Upgrade Utility has also been enhanced
to support migrating plugins developed with the Addon
SDK.

Other enhancements There are numerous other usability and functionality
enhancements in this release of PingAccess, including:

• In the PingAccess administrative user interface,
Description fields have been added or modified such
that they are now available and consistent across
agent, engine, and application entities. These fields
all support multi-line values, and entering their values
is optional.

• In the PingAccess administrative console UI, the Use
Target Host Header field is now cleared by default.
The recommended practice is to send the public host
header to the backend site.

• The administrator is now notified in the
administrative user interface when PingAccess needs
to be restarted after certain configuration changes.

• The Windows service name and description
properties in PA_HOME/sbin/windows/
PingAccessService.conf is now in the
following format:

Display name of the service

 wrapper.ntservice.displayname=PingAccess
 Service
 # Description of the
 service

 wrapper.ntservice.description=PingAccess
 Service

• PingAccess validates the web session's configured
cookie domain to ensure it does not conflict with
any virtual hosts associated with the applications the
session assigned to.

 | PingAccess release notes | 294

• A unique nonce cookie name is now generated, rather
than reusing the same name, resolving a potential
issue if multiple authentication requests are generated
prior to being handled by PingFederate.

• URI fragments are now preserved through the
authentication process when a user is forced to re-
authenticate to a resource.

• Administrators can now create localized error
messages for user-facing error pages displayed by
PingAccess.

• For the Rewrite Cookie Domain rule and the Rewrite
Response Header rule, administrators can now
specify that the public-facing cookie domain or URI
path be rewritten for all site target hosts, rather than
needing to create a rule for each target host.

• The Content Rewrite rule now supports rewriting
content from applications that do not specify a
Content-Type header.

• The OAuth Attribute Value rule now supports
multiple attributes and values, making it consistent
with the Web Session Attribute rule.

• Error messages can now be defined based on the
application the user accessed in addition to a generic
system-wide message being used.

• Added validation to prevent a misconfiguration that
could result in an authentication loop. Administrators
need to be aware that the web session cookie will
be sent to the configured domain. As part of the
feature, validation is done in the admin console to
prevent administrators from defining an invalid
cookie domain.

Resolved issues

Ticket ID Description

PA-242 Validation for Groovy Rules that use inapplicable matchers

PA-1099 Fixed Database decryption bug

PA-1900 Fixed PingAccess Agent Protocol compliance issue

PA-1903 Scripts not using JAVA_HOME to locate Java installation

PA-2362 Token Mediation deleting 3rd party cookies

PA-2419 Fixed session expiration response

PA-2430 Fixed upgrade utility NPE when target PingAccess fails to start

PA-2696 OAuth Groovy Script Rule Is Not Executing During Response Processing

PA-2727 Improved PingAccess core processing to increase server stability.

PA-2815 Fixed Admin API validation issue

PA-2897 Stale post preservation cookie results in Internal Server Error from PA

PA-2899 Backup on authentication not created when using Admin SSO

 | PingAccess release notes | 295

Ticket ID Description

PA-2900 Improved behavior when empty post body is sent to agent

PA-2907 Fixed error when OIDC token is revoked

PA-2926 Fixed admin re-authentication handling

PA-2950 Fixed NPE caused by specific Admin API call

PA-2972 Fixed NPE caused by specific Admin API call

PA-2974 PingAccess fails to start (on first attempt) on Windows

PA-2979 Fixed Admin UI NPE when importing CSR

PA-3008 Enhanced handling of values in imported keypairs to handle non-string SANs.

PA-3039 POST preservation fails with exception if *:3000 virtual host not defined

PA-3053 PingAccess linux service script doesn't work with non-root user

PA-3054 ehcache WARN level log messages in pingaccess.log on startup

PA-3101 PingFederate authorization server showing up as blank in admin UI

PA-3205 PUT requests where the request body is no longer available after an initial failure are
no longer retried.

PA-3217 Admin replica failover does not take effect until after replica restart

PA-3224 OAuth Rule Deny Returns 401 to Client but Logs in Audit Log as 403

PA-3227 Unauthenticated response connection is not closed properly

PA-3253 Web session cookie domain needs validation against associated application / virtual
hosts

PA-3293 The PingAccess Upgrade Utility now uses the address defined in the source
PingAccess server's admin.bindAddress configuration.

PA-3329 Web Session edit requires re-entry of Client Secret

PA-3359 Secrets in /sharedSecrets not obfuscated by Admin API

PA-3398 Improvements have been made to the API responses so that they're not HTML-
escaped, resolving occasional issues encountered with the configuration import and
export functionality.

PA-3454 Web Session Data integrity violation when trying to change a web session name with
one that already exists

PA-3469 500 internal server error returned if Protocol Source Header Name too long

PA-3480 Editing Rule Sets allows OAuth rules to be applied to Web Application

PA-3509 vnd-pi-resource cache grows unbounded

PA-3574 Reload race condition causes intermittent failure of reload

PA-3635 Off-by-one errors in header size and count limits

PA-3663 NPE if you try to save Rule with empty error response code

PA-3669 Introduced the pa.site.tls.sni.legacyMode configuration parameter to give the
administrator control over how SNI server_name is set.

PA-3692 PingAccess no longer throws an exception when POST preservation data cannot be
retrieved.

PA-4160 User is able to add the same cert multiple times to same Trusted Cert Group

 | PingAccess release notes | 296

Ticket ID Description

PA-4197 Inline field error message not displayed

PA-4215 NPE when trying to Import CSR Response

PA-4219 Resolved an issue where POST Preservation used in conjunction with the Rewrite
Content rule, a null pointer exception could occur.

PA-4234 RuleSet allows SuccessCriteria of SuccessIfAnyOneSucceedsLastHandlesError

PA-4244 Network Range Plugin: Error Response Content-Type should be required

PA-4453 PostPreservation pi.postsrv claim is not being cleared after encoded post

PA-4504 On startup, PF back-channel failover is broken

Administrative API updates

With PingAccess 4.0, the administrative API interface has been updated to version 2. This means there were some
fairly significant changes in some of the API endpoints.

Administrators who have written code that uses the API endpoints to automate administrative tasks will need to
update their code to use the new endpoints.

Note: The fundamental change in all administrativie API calls will be a change in the endpoint URI from /
pa-admin-api/v1 to /pa-admin-api/v2. For example, if you made a call to /pa-admin-api/
v1/pingfederate/admin, your code would need to be updated to point to /pa-admin-api/v2/
pingfederate/admin

The following table identifies specific API changes that may need more updates than just the path to the API
endpoint.

Endpoint Change Description How to Update

/pingFederateAdmin/
accessTokens

This endpoint now accepts an
encryptedvalue or a value.
The encryptedvalue is a
string that contains an obfuscated
value, as obfuscated when using the
obfuscate.sh script.

In the v1 API, the model template
includes a clientSecret
property. This is now replaced with
a clientSecret property with
a subschema that can contain either
an encryptedValue string or a
value string.

/webSession The name of this endpoint has been
changed to /webSessions

Modify any code that accesses the v1
/webSession endpoint to point to
/webSessions instead.

/webSessions As with the /
pingFederateAdmin/
accessTokens endpoint,
the /webSessions endpoint
now supports either an
encryptedValue or a value.

This change is the same as for
the /pingFederateAdmin/
accessTokens endpoint.

/auth/oauth As with the /
pingFederateAdmin/
accessTokens endpoint,
the /auth/oauth endpoint
now supports either an
encryptedValue or a value.

This change is the same as for
the /pingFederateAdmin/
accessTokens endpoint.

 | PingAccess release notes | 297

Endpoint Change Description How to Update

/auth/basic When the GET method is used with
this endpoint, it now returns whether
basic authentication is enabled or
disabled. Deprecated fields are no
longer returned.

If your code performs actions based
on the v1 response body for GET
requests, it will need to be modified.

/applications/{id} Removed the resourceIds array,
as they are not managed as part of
the applications endpoint,
but instead are managed through
the /applications/{id}/
resources endpoint.

Code that depends on the
resourceIds array returned by
the GET method will need to be
updated.

/applications The virtualHostId property has
been removed.

Use the first value in the
virtualHostIds array instead.

/sites The host and port fields have
been combined into the targets
array. These values were used in
older versions of PingAccess, when
a single target was defined for a Site
object.

Update your code to use the
targets array. Each element in this
array is a host:port pair.

/sharedSecrets, /
engines, and /adminConfig/
replicaAdmins

These three endpoints have been
updated to allow their respective
configurations to be individually
exported and imported.

This is new functionality; no changes
to existing code is required.

 | PingAccess release notes | 298

Endpoint Change Description How to Update

/users This endpoint has been updated
to facilitate future use of multiple
users for basic authentication.
In the v1 API, changes made
through this endpoint applied to
the Administrator user, as
that was the only user. Changing
passwords or toggling the
slaAccepted, firstLogin,
and showTutorial settings were
handled through this endpoint.

In the v2 API, the GET method on
/users returns a user list, but the
following additional endpoints have
been created:

• /users/{id}
• /users/{id}/password

A GET request to the first of these
returns information for the specified
user.

A PUT to the first allows the user
flags to be manipulated as they
would have been in the /users
endpoint in v1 of the API.

To change the user password,
use a PUT request on the second
endpoint, specifying the old and new
passwords in the payload.

Code that uses the /users endpoint
will need to be updated to use
the new endpoints. Where it was
possible in the v1 API to change the
flags and the password with a single
API call, two calls now will need to
be used - the first to /users/{id},
and the second to /users/{id}/
password.

PingAccess 3.2.6 - February 2016

PingAccess 3.2.6 addresses the following issues:

POST Preservation PingAccess no longer throws an exception when POST
preservation data cannot be retrieved.

PUT requests with On-Demand availability profiles PUT requests where the request body is no longer
available after an initial failure are no longer retried.

Server Name Indication Corrected a server_name and host data/header
mismatch when using SNI.

Non-string Subject Alternative Name values in
imported keypairs

Enhanced handling of values in imported keypairs to
handle non-string SANs.

Admin console not accessible after upgrade Corrected an issue where an upgrade could result in the
administrative console not being accessible.

Security fix Fixed a security vulnerability (SECADV012).

PingAccess 3.2.5 - December 2015

PingAccess 3.2.5 addresses the following issue:

 | PingAccess release notes | 299

Issues resolved: Corrected a resource allocation issue when using
PingAccess agents configured with caching enabled in
the agent.

PingAccess 3.2.4 - December 2015

PingAccess 3.2.4 addresses the following issues:

Authentication loop with cached user attributes Resolved an issue where a misconfiguration in the web
session user attribute caching settings could cause an
authentication loop.

Security updates Fixed a few minor potential security issues.

Improved expiration handling for AccessToken
validation during API flow

When validating an access token in the API flow which
did not contain an expires_in value, a null pointer
exception would be thrown.

PingAccess 3.2.3 - October 2015

PingAccess 3.2.3 addresses the following issues:

Security issues Two minor potential security issues are addressed in this
release.

Fixed upgrade utility SSLHandShakeException
failures with Java 8 update 51 or later

When updating from versions of PingAccess that use
deprecated RC4 ciphers, the PingAccess Upgrade Utility
would fail.

Fixed potential issues with POST preservation in
certain configuration scenarios

In certain rare cases, POST preservation would fail as a
result of a configuration error. Additional checks have
been added to prevent these configuration errors from
occurring.

Fixed issue that could lead to unexpected request
failures when using token mediation

If a protected application relies on cookies being sent
with the mediated token, if the token mediation flow
needed to retry, the additional cookies delivered with
the token would be removed, resulting in unexpected
application failures.

Fixed issue where the Subject Alternative Name
is missing from the CSR for key pairs created in
PingAccess

When a key pair was generated in PingAccess and a
Certificate Signing Request was issued, the CSR was
missing the Subject Alternative Names.

Improvements to the install-service.bat
script

When executed from a directory with a space in the path,
the install-service.bat script would fail. This
script has been updated to correct the issue.

Made the dbfilepasswd and dbuserpasswd
scripts more robust

These scripts now run from paths containing spaces, and
use the Java executable identified by JAVA_HOME.

Added validation to prevent a potential redirect loop When a web session cookie domain is configured
incorrectly, a user's browser could end up in an endless
redirection loop. PingAccess now includes additional
validation to prevent this misconfiguration.

PingAccess 3.2.2 - August 2015

PingAccess 3.2.2 addresses the following issues:

The Admin API should require authnReqListId be set
to 0 for an anonymous user

Authentication requirements should not be allowed to
be added to an anonymous resource. The PingAccess UI

 | PingAccess release notes | 300

enforces this constraint, but previously the Admin API
did not.

Configuration backup archive not created when using
Admin SSO

When an administrator user logs into the administrative
console using SSO authentication, PingAccess does not
create a configuration archive. The archive is created
successfully when the administrator logs in using basic
authentication.

Unable to reorder PingAccess rules inside Rule Sets in
UI

Making a change in the order of rules within a Rule
Set produces a success message, but after navigating to
another page and returning to the Policy page, the rules
are displayed in the previous order, as it was before the
change.

JWT signature error produced when integrating with
PingFederate 7.2

When using unsigned access tokens with PingAccess 3.2,
authentication using the OpenID Connect authentication
flow may fail, logging the following message in
<PA_HOME>/log/pingaccess.log when logging
is set to DEBUG:

The JWT has no signature but the JWT
 Consumer is configured to require
 one

After Admin Console cookie expiration, the
administrator is prompted for basic authentication
instead of SSO

The problem occurs when Admin SSO is enabled and the
administrator is logged into the Admin Console, but the
access cookie has expired, for example, due to no user
activity for a certain time period. In this case, the Admin
Console directs the user to the basic login prompt instead
of to PingFederate for reauthentication using SSO.

Concealed plugin fields are not handled correctly in
the PingAccess UI

When entering values in the Basic Authentication Site
Authenticator form, if username and password values
are filled and then the username is edited again, the
password value is saved as null rather than the password
value entered. This issue affects any plugin with a
concealed field such as a password field.

New login required after change to the Admin SSO
page even though SSO is disabled

If the administrator changes the Client ID value in
the Admin SSO page, but does not select the Enabled
checkbox, the administrator is required to authenticate
again. A new login should be required only if Admin
SSO is enabled.

Admin SSO authentication fails when PingAccess 3.2
is installed with PingFederate 7.2

When PingAccess 3.2 is used with PingFederate 7.2,
Admin SSO does not work.

PingAccess load balancing not enforcing stickiness In some cases, PingAccess sticky sessions do not work
with PingAccess load balancing.

Corrected a potential security vulnerability Refer to the Security Advisory SECADV010 on the
Customer Portal for more information.

PingAccess 3.2.1 - July 2015

PingAccess 3.2.1 includes the following fixes:

Stale postprsv Cookie Causes PingAccess Internal
Server Error Response

In certain circumstances when using POST Preservation,
the postprsv cookie was not properly maintained,

https://ping.force.com/Support

 | PingAccess release notes | 301

resulting in the cookie not containing the expected
information.

Intermittent 403 Forbidden Responses when
Browser Pre-fetches favicon.ico

In some instances, a browser might attempt to retrieve
favicon.ico before a session cookie was issued,
resulting in access being denied to the resource.

PingAccess 3.2 - June 2015

PingAccess 3.2 includes the following enhancements and new functionality:

Access Control Enhancements

Rate Limiting The Rate Limiting rule enables administrators to control
the allowed request rate to a protected API or Web
Application based on the identity, source IP address,
OAuth client, or resource being accessed.

New HTTP Request Rules The HTTP Request Rule has been refactored into
two rules: The HTTP Request Header and HTTP
Request Parameter rules. These rules provide additional
flexibility for making policy decisions based on values
passed either in HTTP headers sent by a client, or based
on form data submitted by a client. Both of these new
rule types can be configured to require multiple value
matches.

Cross-Origin Resource Sharing (CORS) Cross-Origin Resource Sharing is a method for allowing
restricted resources on a web page to be requested from
a domain that is different from the domain that hosts the
requested web page. This release of PingAccess adds an
access control rule that can be used to control this type of
access request.

Engine Enhancements

HTTP and HTTPS Engine Listeners When multiple engine listeners are defined, PingAccess
now allows the administrator to define, on a per-engine
listener basis, whether the listener uses HTTP or HTTPS.

Multiple Access Token Manager Support In instances where multiple Access Token Managers
are configured in PingFederate to provide OAuth
access tokens for API applications, the aud OAuth
parameter is populated with the user-requested URI to
enable PingFederate to select the proper Access Token
Manager when PingAccess makes a validation request to
PingFederate.

POST Preservation When a user submits a POST form and the authentication
session has timed out, the user is redirected to
PingFederate in order to re-authenticate. The POST
form data is now preserved through this redirection, and
the submitted form is automatically resubmitted after
successful authentication. The preserved POST form data
can optionally be encrypted in the user's browser with
this feature.

HTTP Header-Based Load Balancing In addition to the Round Robin load balancing strategy,
PingAccess now includes a header-based load balancing

 | PingAccess release notes | 302

strategy. This feature allows an external load balancer
in the infrastructure to inject a header (such as X-
Target-Host) with a value for a hostname or IP
address (defined as a target in the Site configuration)
where the request should be routed after PingAccess
processes it.

Improvements to HTTP Security Headers Set for
PingAccess Admin/Engine/Agent Listeners

PingAccess now includes a number of HTTP Security
Headers for connections to the Administrative User
Interface, Engine, and Agents. These headers are defined
using options in run.properties, and additional
headers can be added if desired.

Auditing Enhancements

Auditing of Unknown Resource Requests When a client requests a resource that is not
known, PingAccess does not record the request
in the audit log for performance reasons. In
PingAccess 3.2, the optional configuration property
pa.auditing.unknown.resource can be enabled
in order to help troubleshoot resource definition issues.

Request Tracking Audit logging now includes a default option to include
either a Tracking ID or an Access Token ID along with
an Exchange ID to make it easier to follow the audit
information for a particular session and exchange in the
log files.

Administrative Enhancements

JSON-Based Export/Import of PingAccess
Configuration

The existing Backup section for the administrative user
interface has been replaced with a JSON-based export/
import capability, making it simpler to duplicate an
environment for development purposes. The JSON-
based import functionality also simplifies the procedure
to restore an environment's backup by allowing the
administrator to use the administrative user interface.

Support for Wildcards in Virtual Hosts Earlier releases of PingAccess permitted the use of a
wildcard virtual host that would match any host (for
example, *:443), but wildcards used in conjunction
with an existing domain name were not supported. This
feature adds the ability to specify a wildcard host with a
domain (for example, *.example.com:443).

Usability Enhancements Several administrative interface usability enhancements
are in this release, including:

• Moved Options to Advanced Sections on Some
Configuration Pages

• Restructured the Settings Page
• Added Pagination, List View, and Filtering Options to

Improve Administrative UI Scalability
• Test Connections to Sites and PingFederate When

Saving Related Configuration
• Added Cluster Status Display Information to

Clustering Configuration Page

 | PingAccess release notes | 303

Administrative API Name-Based Search When using the Administrative API at /pa-admin-
api/v1/ to retrieve information about named objects
(for example, Agents or Engines), a name parameter can
be specified to retrieve the object with the exact name
specified.

PingAccess 3.1 - February 2015

PingAccess 3.1 includes enhancements and new functionality for the Session Management capabilities, the
PingAccess Engine, and the Administrative interface.

Session Management

Session Attribute Updates and Revocation Administrators can now configure PingAccess to
periodically query PingFederate to update attributes
associated with the session, and to terminate the session
based on a determination by PingFederate that the user
no longer meets the criteria used to issue a token. For
example, if PingFederate is configured to return the
user's attributes only if the user account is enabled,
disabling the user account can now trigger a session
revocation. Additionally, if a user is removed from a
group that grants them access to an application, access
can be denied for a current session.

Support for Large Attribute Data PingAccess now has the ability to cache user attribute
data that previously was limited to the browser maximum
cookie size. When this feature is enabled, potentially
large attribute values - such as group memberships - can
be used in policy decisions.

OpenID Connect / OAuth 2.0 Form Post Response
Mode

Support has been added for the emerging OAuth
V2 Form Post Response Mode standard. If you are
upgrading from an earlier release of PingAccess,
web sessions using the existing POST method will be
migrated to x_post.

Engine

HTTP Request Configuration Source Handling To better integrate PingAccess with configurations using
reverse proxies and external load balancers, support has
been added to support arbitrary IP Source, Host Source,
and Protocol Source headers. This allows headers such
as the X-Forwarded-For header to be injected by those
reverse proxies in order to preserve information about
the originating host IP address, hostname, and protocol
source, in order to be able to use that information to
make policy decisions. In addition, the originating host
IP address is recorded in the audit logs.

HTTP Response Body Content Rewriting The new Rewrite Content Rule allows arbitrary content
rewriting to be performed on outbound content. The
content rewriting functionality can be used, for example,
to rewrite URL text in HTTP responses so links a user
might click on will use the external hostname for the
Application rather than an internal name. This feature
can also be constrained to particular content-types,

http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

 | PingAccess release notes | 304

allowing different rules to be tailored to the response
Content-Type header.

Multiple Engine Ports The PingAccess Engine listener can now listen on
multiple ports, providing greater configuration flexibility.

Specify Different PingFederate Runtime Engines for
Backchannel Calls

PingAccess can now use separate hostnames and
ports to perform behind-the-scenes communication
with PingFederate, providing greater flexibility in
managing traffic between the two products. If more than
one backchannel communication is set up, a built-in
availability profile is used to provide failover.

Administration

Configurable Signature Algorithm Generated Key
Pairs

When generating a key pair, the Signature Algorithm
can now be selected, and the options available are based
on the chosen Key Algorithm.

Remove Resource Ordering The determination of the "most specific" match of an
application resource path has been simplified, removing
the need for manual ordering of resources within an
application. PingAccess now evaluates this based on
the length of the path requested and matching that
to the Path Prefixes defined in the Application. This
change also removes the PATCH method from the /
applications/{id}/resources Administrative
API endpoint, since that method was used to update the
order of Resources in an Application.

Authentication Requirements for Admin SSO Authentication Requirements can now be specified
for administrator Single Sign-On. This can be used to
ensure administrative users log in with stronger forms of
authentication than just a username and password.

PingAccess 3.0 R2 - October 2014

This release introduces the following new features:

Backup Admin Console Nodes Provides the ability, in a clustered environment, to create
a backup administrative node that the administrator can
manually fail over to in the event of a catastrophic failure
of the primary administrative node.

Failover and Load Balancing for Sites Adds new functionality to provide failover and load
balancing to multiple backend target servers without
requiring a load balancer.

Ability to Ignore HTTPS Certificate Errors Reduces certificate management burden for internal
servers in a controlled environment by allowing the
administrator to ignore certificate errors for backend
connections, such as connections to Site targets.

Heartbeat Endpoint Enhancements Enhances the monitoring capabilities by adding
functionality to the heartbeat to return a configurable
list of performance metrics as a JSON payload for
consumption by third party monitoring tools.

 | PingAccess release notes | 305

Logging Enhancements Adds logging options for rewritten cookies as well
as cookies passed or proxied, and realign logged
information with appropriate log levels.

PingAccess 3.0.3 - November 2014

This release addresses the following issue:

• Corrected a potential security issue in Identity Mappings (SECBL006)

PingAccess 3.0.2 - September 2014

This release addresses the following issue:

• Resolved an issue with Session Validation causing the token mediator to stop working.

PingAccess 3.0.1 - August 2014

This release addresses the following issues:

• Resolved an issue with token validation when using OAuth Admin API Authentication
• Corrected handling of PingFederate Runtime Base Path setting
• OIDC callback endpoint improvements to support front-end load balancers listening on a different port than the

PingAccess Engine

PingAccess 3.0 - July 2014

PingAccess Agents Added PingAccess Agents to provide additional
architectural flexibility with an agent based deployment
model.

Session Management enhancements Web session management has been enhanced to offer
additional security for end user-driven logout use cases.

Add-on Java SDK New PingAccess add-on Java SDK has been introduced.

TLS Server Name Indication support HTTPS listener configuration has been extended
to support the TLS Server Name Indication (SNI)
extension.

Request/Response Time Auditing Additional fields have been added to the engine audit
logs for performance monitoring and capacity planning
purposes - total request processing time and back-end
proxy response time.

Administration enhancements Many enhancements have been made to improve
the administration and modeling of configuration in
PingAccess.

PingAccess 2.1.4 – June 2014

• Resolved an issue with Resource Ordering in the Administrative Console.
• improved interoperability with backend applications introduced by URL filtering in PingAccess 2.1.3.

PingAccess 2.1.3 - May 2014

• Fix a potential security issue that affects deployments that have varying policy applied across a single virtual
server.

PingAccess 2.1.2 – April 2014

• Allow for specifying the base path for PingFederate. Useful when PingFederate is behind a reverse proxy.

 | PingAccess release notes | 306

PingAccess 2.1.1 – March 2014

• Fix Identity Mediation back channel communication issue.
• Fix Web Session cookie attribute handling.

PingAccess 2.1 - December 2013

• Ability to encrypt the PA session token.
• Sites can have multiple Site Authenticators configured.
• Added Authentication Requirements policy to allow step-up authentication to a Resource.
• Ability to specify “Any” or “All” processing to policy rules within a rule set.
• Multiple Web Sessions can be configured to scope a PingAccess session for a specific set of Resources.
• Added OpenID Connect Basic Profile flow for obtaining claims from PingFederate.
• Enhanced Audit log options to database and Splunk.

PingAccess 2.0.1 - October 2013

• Fixed well-known HTTP/S port issue
• Fixed a potential security issue with the Web Session Header Site Authenticator

PingAccess 2.0 - September 2013

• Initial General Availability (GA) release

PingAccess 1.0 - April 2013

• Limited release

	Contents
	PingAccess overview
	PingAccess overview
	What is PingAccess?
	PingAccess for Azure AD
	What can I do with PingAccess?
	How does PingAccess work?
	WAM session initiation
	Token mediation

	What can I configure with PingAccess?

	PingAccess user interface reference guide
	PingAccess User Interface Reference Guide
	Applications
	Applications
	Manage Applications
	Manage Applications - Field Descriptions
	Manage Application Resources
	Manage Application and Resource Policies

	Global unprotected resources
	Manage Global Unprotected Resources

	Redirects

	Sites
	Sites
	Manage Sites
	Manage Sites - Field Descriptions

	Site Authenticators
	Manage Site Authenticators
	Basic authentication site authenticator
	Mutual TLS site authenticator
	Token mediator site authenticator

	Third-Party Services
	Manage Third-Party Services
	Manage Third-Party Services - Field Descriptions

	Agents
	Manage Agents
	Manage Agents - Field Descriptions

	Rules
	Manage Rules
	Authentication requirements rule
	Cross-origin Request rule
	Rewrite rules overview
	Rewrite Content rule
	Rewrite Cookie Domain rule
	Rewrite Cookie Path rule
	Rewrite Response Header rule
	Rewrite URL rule

	Groovy script rule
	HTTP Request Header rule
	HTTP Request Parameter rule
	Network Range rule
	OAuth Attribute Value rule
	OAuth Groovy Script rule
	OAuth Scope rule
	OAuth Token Cache Time To Live rule
	Rate Limiting rule
	Redirect rule
	Rejection rule
	Time Range rule
	Web Session Attribute rule
	WebSocket Handshake rule

	Manage Rule Sets
	Manage Rule Set Groups
	Manage Rejection Handlers

	Access
	Authentication Requirements
	Configure an authentication requirements list
	Edit an authentication requirements list
	Delete an authentication requirements list

	Identity Mappings
	Configure Auth Token Management
	Create a new identity mapping
	Header identity mapping
	JWT identity mapping

	Edit an identity mapping
	Delete an identity mapping

	Virtual Hosts
	Create a new virtual host
	Configure virtual host trusted certificate groups
	Edit a virtual host
	Delete a virtual host

	Web Sessions
	Configure Web Session Management settings
	Create a Web Session
	Edit a Web Session
	Delete a Web Session

	Unknown Resources
	Configure unknown resource management

	Networking
	Availability Profiles
	Create an availability profile
	Edit an availability profile
	Delete an availability profile

	HTTP Requests
	Configure an alternative IP Source header
	Configure an alternative Host Source header
	Configure an alternative Protocol Source header

	Listeners
	HTTPS listeners
	Assign a Key Pair to a Listener

	Engine key pairs
	Assign a Key Pair to a Virtual Host

	Engine listeners
	Define an engine listener
	Edit an engine listener
	Delete an engine listener

	Load Balancing Strategies
	Configure a Load Balancing Strategy
	Edit a Load Balancing Strategy
	Delete a load balancing strategy

	Proxies
	Add a proxy
	Edit a proxy
	Delete a proxy

	Security
	Certificates
	Import a certificate
	Delete a certificate
	Create a Trusted Certificate Group
	Add a certificate to a Trusted Certificate Group
	Edit a Trusted Certificate Group
	Remove a Certificate from a Trusted Certificate Group
	Delete a Trusted Certificate Group

	Key Pairs
	Import an existing key pair
	Generate a new key pair
	Generate a Certificate Signing Request
	Import a Certificate Signing Request Response
	Add a certificate to a key pair
	Remove a certificate from a key pair
	Download a Certificate
	Delete a key pair

	System
	Admin Authentication
	Configure Basic Authentication
	Configure Admin UI SSO Authentication
	Configure API Authentication

	Configuration Export/Import
	Export PingAccess configuration
	Import PingAccess configuration

	Clustering
	Engines
	Configure an engine
	Edit an engine
	Remove an engine

	Administrative nodes
	Configure the primary administrative node
	Configure the Replica Administrative Node

	License
	Upload or view a PingAccess license

	Token Provider
	Manage Token Provider
	PingFederate
	Configure PingFederate runtime
	Configure PingFederate Administration
	Configure the OAuth Resource Server
	Configure PingFederate for PingAccess SSO

	PingOne
	Configure PingOne

	Common
	Configure OpenID Connect
	Configure token provider specific options

	Configure OAuth Authorization Server

	Token Validation
	Manage Access Token Validators
	Configure OAuth Key Management

	Install PingAccess
	Install PingAccess
	Installation requirements
	System requirements
	Hardware Requirements
	Port requirements

	Install PingAccess on Linux
	Install PingAccess on Red Hat Enterprise Linux
	Install PingAccess for Windows

	Start PingAccess
	Access the admin console for the first time
	Access the PingAccess administrative API
	Access the interactive administrative API documentation

	Change configuration database passwords
	Stop PingAccess
	Run PingAccess as a service
	Configure PingAccess to run as a Linux systemv service
	Configure PingAccess to run as a Linux systemd service
	Configure Multiple Instances of PingAccess as Linux services
	Remove the PingAccess Linux service
	Configure PingAccess to run as a Windows service
	Remove the PingAccess Windows service

	Uninstall PingAccess

	Upgrade PingAccess
	Upgrade a PingAccess standalone version
	Upgrade a PingAccess cluster
	Upgrade Windows using the installer
	Upgrade RHEL using the installer
	Complete the upgrade
	Restore a PingAccess configuration backup

	Configure session management
	Configure session management
	Configure server-side session management
	Configure PingFederate for session management
	Configure PingFederate for user-initiated single logout
	Configure PingAccess for server-side session management

	Configure logging
	Configure logging
	Security audit logging
	Logging
	Configure log levels
	Configure a class or package log level
	Enable cookie logging
	Append log messages to syslog and the console
	Write logs to other formats
	Write logs to databases
	Write audit logs for Splunk

	Manage APIs
	PingAccess endpoints
	Heartbeat endpoint
	OpenID Connect endpoints
	Auth Token Management endpoint
	Administrative API endpoints

	Perform a zero downtime upgrade
	Introduction
	Step 1: Disable key rolling
	Step 2: Upgrade the Admin node
	Step 3: Upgrade engines
	Remove the engine from the load balancer configuration
	Upgrade the engine
	Resume configuration replication
	Add the engine to the load balancer configuration

	Step 4: Enable key rolling
	Recovering from a failed upgrade

	Protect a web-based application using PingFederate and PingAccess in a proxy deployment
	Protect a web-based application in a proxy deployment
	Configure PingFederate for PingAccess connectivity
	Connect to PingFederate and configure an application in PingAccess
	Test the configuration

	Customize and localize PingAccess
	Customization of user-facing pages
	Localization of user-facing pages

	Groovy development guide
	Groovy
	Groovy scripts
	Body object
	Exchange object
	Headers object
	Identity object
	JsonNode object
	Logger object
	MediaType object
	Method object
	OAuth Token object
	PolicyContext object
	Request object
	Response object
	SslData object
	Groovy script examples
	Matchers

	Addon SDK for Java
	Preface
	Introduction
	Get started with the SDK
	SDK directory structure
	SDK prerequisites
	How to install the SDK samples

	Create your own plugins
	Integrating with third-party services
	Implementation guidelines

	Agent SDK for Java
	Preface
	Introduction
	Agent SDK directory structure
	Agent SDK prerequisites
	How to install the servlet filter sample
	PingAccess Agent SDK for Java Release History

	Agent SDK for C
	Preface
	Introduction
	Getting Started with the PingAccess Agent SDK for C
	Agent SDK for C directory structure
	Agent SDK for C sample code

	Release notes

	Addon SDK for Java migration guide
	PingAccess Addon SDK for Java Migration Guide

	Performance tuning guide
	Performance tuning
	Java tuning
	Configure JVM crash log in Java startup
	Configure memory dumps in Java startup
	Modify the Java heap size

	Operating system tuning
	Linux tuning
	Windows tuning

	Garbage collector configuration
	Acceptor threads
	Worker threads
	Backend server connections
	Logging and Auditing
	Logging
	Auditing

	Agent tuning

	Clustering reference guide
	Clustering
	Configure cluster prerequisites
	Configure a PingAccess cluster
	Configure the primary administrative node
	Configure PingAccess subclusters
	Configure the Replica Administrative Node
	Manual fail over to the replica administrative node
	Reinstate a replica administrative node after failing over
	Configure an engine
	Edit an engine
	Remove an engine's access to the Administrative Console
	Remove an engine

	Deployment guide
	PingAccess deployment guide
	Use cases and deployment architecture
	Deploy for Gateway Web Access Management
	Deploy for Agent Web Access Management
	Deploy for Gateway API Access Management
	Deploy for auditing and proxying

	Configuration by use case
	Web Access Management Gateway deployment
	Web Access Management Agent deployment
	API Access Management Gateway deployment
	Auditing and proxying Gateway deployment

	Web Access Management
	Choose Between an Agent or Gateway deployment
	Web Access Management Gateway proof of concept deployment architecture
	Web Access Management Gateway production deployment architecture
	Web Access Management Agent proof of concept deployment architecture
	Web Access Management Agent production deployment architecture

	API Access Management proof of concept deployment architecture
	API Access Management production deployment architecture
	Auditing and proxying proof of concept deployment architecture
	Auditing and proxying production deployment architecture

	Configuration file reference guide
	Configuration file reference

	PingAccess for AWS: Solution setup guide
	Introduction
	Setup and deployment
	AWS prerequisites
	Obtain the automation ZIP file
	Create the PingAccess software repository
	Populate the S3 bucket
	Create the PingAccess key pair
	Create the PingAccess VPC
	Configure Security Groups
	Access the PingAccess administration console
	Access the PingFederate administration console

	Configure SSH connectivity
	View PingAccess log files
	Maintaining the S3 bucket
	Delete the PingAccess VPC
	Redeploying with an existing configuration
	Troubleshooting setup

	PingAccess for AWS: PingFederate environment requirements
	Introduction
	Create an IAM User in AWS
	PingFederate configuration requirements
	Modify api.json to include details about your environment

	PingAccess for AWS: Configure an application
	Introduction
	Protect an application
	Install and access the unprotected PingAccess QuickStart application
	Configure PingFederate
	Configure a PingAccess web application
	Configure a PingAccess API application
	Test the web application
	Test the API application

	PingAccess release notes
	Release Notes
	PingAccess 5.2.1 - March 2019
	Known issues and limitations
	Previous releases
	PingAccess 5.2 - December 2018
	PingAccess 5.1.3 - March 2019
	PingAccess 5.1.2 - October 2018
	PingAccess 5.1.1 - August 2018
	PingAccess 5.1 - June 2018
	PingAccess 5.0.6 - March 2019
	PingAccess 5.0.5 - August 2018
	PingAccess 5.0.4 - June 2018
	PingAccess 5.0.3 - March 2018
	PingAccess 5.0.2 - March 2018
	PingAccess 5.0.1 - December 2017
	PingAccess 5.0 - December 2017
	Administrative API updates

	PingAccess 4.3.6 - March 2019
	PingAccess 4.3.5 - August 2018
	PingAccess 4.3.4 - December 2017
	PingAccess 4.3.3 - October 2017
	PingAccess 4.3.2 - September 2017
	PingAccess 4.3.1 - August 2017
	PingAccess 4.3 - June 2017
	PingAccess 4.2.4 - March 2019
	PingAccess 4.2.3 - April 2017
	PingAccess 4.2.2 - February 2017
	PingAccess 4.2.1 - December 2016
	PingAccess 4.2 - December 2016
	PingAccess 4.1.4 - March 2019
	PingAccess 4.1.3 - November 2016
	PingAccess 4.1.2 - October 2016
	PingAccess 4.1.1 - September 2016
	PingAccess 4.1 - August 2016
	PingAccess 4.0.5 - March 2019
	PingAccess 4.0.4 - July 2016
	PingAccess 4.0.3 - May 2016
	PingAccess 4.0.2 - April 2016
	PingAccess 4.0.1 - March 2016
	PingAccess 4.0 - February 2016
	Administrative API updates

	PingAccess 3.2.6 - February 2016
	PingAccess 3.2.5 - December 2015
	PingAccess 3.2.4 - December 2015
	PingAccess 3.2.3 - October 2015
	PingAccess 3.2.2 - August 2015
	PingAccess 3.2.1 - July 2015
	PingAccess 3.2 - June 2015
	PingAccess 3.1 - February 2015
	PingAccess 3.0 R2 - October 2014
	PingAccess 3.0.3 - November 2014
	PingAccess 3.0.2 - September 2014
	PingAccess 3.0.1 - August 2014
	PingAccess 3.0 - July 2014
	PingAccess 2.1.4 – June 2014
	PingAccess 2.1.3 - May 2014
	PingAccess 2.1.2 – April 2014
	PingAccess 2.1.1 – March 2014
	PingAccess 2.1 - December 2013
	PingAccess 2.0.1 - October 2013
	PingAccess 2.0 - September 2013
	PingAccess 1.0 - April 2013

