
PingDataGovernance

PingDataGovernance | Contents | ii

Contents

PingDataGovernance Server Release Notes.. 5
PingDataGovernance Server 8.0.0.5 release notes... 5
PingDataGovernance Server Release Notes archive...5

PingDataGovernance Server 8.0.0.4 Release Notes...5
PingDataGovernance Server 8.0.0.3 Release Notes...5
PingDataGovernance Server 8.0.0.2 Release Notes...6
PingDataGovernance Server 8.0.0.1 Release Notes...7
PingDataGovernance Server 8.0.0.0 Release Notes...10
PingDataGovernance Server 7.3.0.10 release notes...17
PingDataGovernance Server 7.3.0.9 Release Notes...18
PingDataGovernance Server 7.3.0.8 Release Notes...18
PingDataGovernance Server 7.3.0.7 Release Notes...19
PingDataGovernance Server 7.3.0.6 Release Notes...20
PingDataGovernance Server 7.3.0.5 Release Notes...20
PingDataGovernance Server 7.3.0.4 Release Notes...21
PingDataGovernance Server 7.3.0.3 Release Notes...21
PingDataGovernance Server 7.3.0.2 Release Notes...22
PingDataGovernance Server 7.3.0.1 Release Notes...23
PingDataGovernance Server 7.3.0.0 Release Notes...24

PingDataGovernance Server Administration Guide...............................31
PingDataGovernance

™
 Product Documentation... 31

Introduction to PingDataGovernance Server.. 31
Key components... 32

Explore PingDataGovernance Server... 32
Install and configure PingDataGovernance Server.. 32
Install and configure the PingDataGovernance Policy Administration GUI............................ 35
Import default policies...37
Create the first API policy.. 39
Create the first SCIM policies.. 53

Install PingDataGovernance Server.. 68
Before you begin.. 71
Installing PingDataGovernance Server...76
Running PingDataGovernance Server... 91

About the API security gateway..94
Request and response flow..94
Gateway configuration basics...95
API security gateway authentication.. 96
API security gateway policy requests.. 97
About error templates...102

About the Sideband API..104
API gateway integration..104
Sideband API configuration basics...106
Sideband API authentication.. 106
Sideband API policy requests.. 109
Error templates... 114

About the SCIM service.. 115
Request and response flow..116

Copyright ©2022

PingDataGovernance | Contents | iii

SCIM configuration basics..118
SCIM endpoints.. 120
SCIM authentication... 121
SCIM policy requests..122
Lookthrough limit.. 127
Disable the SCIM REST API..127

About the PDP API... 127
Request and Response Flow... 128

Policy administration..132
Create policies in a development environment.. 132
Use policies in a production environment.. 133
Environment-specific Trust Framework attributes.. 134

Advice.. 142
Add Filter.. 143
Allow Attributes... 143
Combine SCIM Search Authorizations...144
Denied Reason... 144
Exclude Attributes...144
Filter Response...145
Include Attributes.. 145
Modify Attributes... 146
Modify Query.. 146
Prohibit Attributes... 146

Access token validators...146
About access token validator processing...147
Access token validator types..148

Server configuration.. 151
Administration accounts..151
About the dsconfig tool...151
PingDataGovernance Administration Console.. 152
About the configuration audit log... 152
About the config-diff tool.. 153
Certificates.. 153

Manage monitoring..161
StatsD monitoring endpoint.. 161
Sending metrics to Splunk... 162

Capture debugging data..163
Export policy data...163
Enable detailed logging.. 163
Trace a policy-decision response...165
Capture debugging data with the collect-support-data tool..167

Upgrade PingDataGovernance Server..167
Upgrade overview and considerations... 167
Upgrading PingDataGovernance Server.. 167
Reverting an update... 168
Upgrade the PingDataGovernance Policy Administration GUI...168

PingDataGovernance Policy Administration Guide............................. 171
Getting started... 171

Introduction... 171
Version control...173

Branches... 173
Snapshots... 174

Trust framework...177
Trust Framework overview... 177

Copyright ©2022

PingDataGovernance | Contents | iv

Domains (PDP API only)..177
Services.. 178
Attributes... 183
Actions.. 188
Identity classifications and IdP support..188
Named conditions... 190
Testing.. 191

Policy management... 192
Policy management overview...192
Policy sets, policies, and rules...192
Policies and policy sets.. 192
Testing.. 202
Analysis...203
Change control... 204
Deployment packages.. 205

Advice types.. 205
Advice types overview..205
Add Filter.. 206
Allow Attributes... 206
Combine SCIM Search Authorizations...206
Denied Reason... 206
Exclude Attributes...207
Filter Response...207
Include Attributes.. 208
Modify Attributes... 208
Modify Query.. 208
Prohibit Attributes... 209

REST API.. 209
REST API documentation...209

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 5

PingDataGovernance Server Release Notes

PingDataGovernance Server 8.0.0.5 release notes

Critical fixes

This release of the Data Governance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

No critical issues have been identified.

PingDataGovernance Server Release Notes archive
Release Notes for earlier versions of PingDataGovernance Server are included for reference.

PingDataGovernance Server 8.0.0.4 Release Notes

Critical fixes

This release of the PingDataGovernance addresses critical issues from earlier versions. Update all
affected servers appropriately.

▪ Fixed an issue where mirrored subtree polling could produce config archive files that were identical or
ignored the configured insignificant attributes list.

▪ Fixed in: 8.0.0.4
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-41762 SF#00675207 SF#00683777

Resolved issues

The following issues have been resolved with this release of the PingDataGovernance:

Ticket ID Description

DS-41762 Fixed an issue where mirrored subtree polling could
produce config archive files that were identical or
ignored the configured insignificant attributes list.

PingDataGovernance Server 8.0.0.3 Release Notes

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 6

Ticket ID Description

DS-43288 Updated setup and the replace-certificate tool to improve the way we generate self-
signed certificates and certificate signing requests to make them more palatable to clients.

To reduce the frequency with which administrators had to replace self-signed certificates, we
previously used a very long lifetime for self-signed certificates generated by setup or the
replace-certificate tool. However, some clients (especially web browsers and other
HTTP clients) have started more strenuously objecting to certificates with long lifetimes, so we
now generate self-signed certificates with a one-year validity period. The inter-server certificate
(which is used internally within the server and does not get exposed to normal clients) is still
created with a twenty-year lifetime.

Also, the replace-certificate tool's interactive mode has been updated to improve the
process that it uses to obtain information to include in the subject DN and subject alternative
name extension for self-signed certificates and certificate signing requests. The following
changes have been made in accordance with CA/Browser Forum guidelines:

▪ When selecting the subject DN for the certificate, we listed a number of common attributes
that might be used, including CN, OU, O, L, ST, and C. We previously indicated that
CN attribute was recommended. We now also indicate that the O and C attributes are
recommended as well.

▪ When obtaining the list of DNS names to include in the subject alternative name extension,
we previously suggested all names that we could find associated with interfaces on the local
system. In many cases, we now omit non-qualified names and names that are associated
with loopback interfaces. We will also warn about any attempts to add unqualified or invalid
names to the list.

▪ When obtaining the list of IP addresses to include in the subject alternative name extension,
we previously suggested all addresses associated with all network interfaces on the system.
We no longer suggest any IP addresses associated with loopback interfaces, and we
no longer suggest any IP addresses associated in IANA-reserved ranges (for example,
addresses reserved for private-use networks). The tool now warns about attempts to add
these addresses for inclusion in the subject alternative name extension.

DS-43480 Updated the system information monitor provider to restrict the set of environment variables
that can be included. Previously, the monitor entry included information about all defined
environment variables, which can be useful for diagnostic purposes. However, some
deployments might include credentials, secret keys, or other sensitive information in
environment variables, and that should not be exposed in the monitor. The server now only
includes values from a predefined set of environment variables that are expected to be the most
useful for troubleshooting problems and are not expected to contain sensitive information.

DS-38535 Fixed an issue that could cause the server to generate an administrative alert about an
uncaught exception when trying to send data on a TLS-encrypted connection that is no longer
valid.

DS-43632 Fixed an issue where the "format" field is omitted from the list of operational attribute schemas
in the Directory REST API.

PingDataGovernance Server 8.0.0.2 Release Notes

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-40551 Fixed an issue that could prevent some tools from running properly with an encrypted
tools.properties file.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 7

Ticket ID Description

DS-41332 The use of an internal ScimInterface for Server SDK extensions is now deprecated. Support
for this was removed from PingDataGovernance Server 8.1.0.0. This was previously available
using the getInternalScimInterface() method of the BrokerContext class.

DS-40828 Fixed an issue where some state associated with a JMX connection was not freed after the
connection was closed. This led to a slow memory leak in servers that were monitored by an
application that created a new JMX connection each polling interval.

DS-42609 Fixed an issue in which the Directory REST API could fail to decode certain credentials when
using basic authentication.

DS-41289 Fixed an issue that prevented password changes for topology administrators unless their
password policy was configured to allow pre-encoded passwords.

DS-41236 To avoid inconsistencies, changing clustered configuration now requires all servers in the
cluster to be on the same product version. Servers will not pull any clustered configuration from
the master of the cluster if they are on a different product version.

DS-41235 Updated the cn=Cluster subtree to prevent clustered configuration changes when servers
in the cluster have mixed versions. To make clustered configuration changes, either update
all servers in the cluster to the same version, or temporarily create separate clusters by server
version by changing the cluster-name property on the server instance configuration objects.

DS-41261 Fixed an issue with manage-profile replace-profile where certain configuration
changes for recurring task chains were not being applied.

DS-41126 Updated the server to make the general monitor entry available to JMX clients.

DS-41054 Fixed an issue that stopped new extensions from being installed.

DS-42812 Upgraded to jetty 9.4.30.

DS-41074 Fixed an issue with the way the server reports memory usage after completing an explicitly
requested garbage collection.

DS-42218,
DS-42232

Fixed an issue in which the PingDataGovernance Gateway generated error responses that did
not include a correlation ID.

DS-41234,
DS-41264

Fixed an issue where the SCIM Impacted Attributes Provider would return all the attributes of a
SCIM PUT request instead of only those that have been modified.

PingDataGovernance Server 8.0.0.1 Release Notes

Upgrade Consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 8.0.0.1, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Critical Fixes

This release of the Data Governance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 8

▪ Addressed an issue that could lead to slow, off-heap memory growth. This only occurred on servers
whose cn=Version,cn=monitor entry was retrieved frequently.

▪ Fixed in: 8.1.0.0
▪ Introduced in: 5.2.0.0
▪ Support identifiers: DS-41301

▪ The following enhancements were made to the topology manager to make it easier to diagnose
connection errors:

▪ Added monitoring information for all the failed outbound connections (including the time since it ha
been failing and the last error message seen when the failure occurred) from a server to one of its
configured peers and the number of failed outbound connections.

▪ Added alarms/alerts for when a server fails to connect to a peer server within a configured grace
period.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38334 SF#00655578

▪ The topology manager now raises a mirrored-subtree-manager-connection-asymmetry
alarm when a server can establish outbound connections to its peer servers but those peer servers
cannot establish connections back to the server within the configured grace period. The alarm is
cleared as soon as there is connection symmetry.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38344 SF#00655578

▪ Fixed two issues in which the server could have exposed some clear-text passwords in files on the
server file system.

▪ When creating an encrypted backup of the alarms, alerts, configuration, encryption settings,
schema, tasks, or trust store backends, the password used to generate the encryption key (which
may have been obtained from an encryption settings definition) could have been inadvertently
written into the backup descriptor.

▪ When running certain command-line tools with an argument instructing the tool to read a password
from a file, the password contained in that file could have been written into the server's tool
invocation log instead of the path to that file. Affected tools include backup, create-initial-
config, ldappasswordmodify, manage-tasks, manage-topology, reload-http-
connection-handler-certificates, remove-defunct-server, restore, rotate-
log, and stop-server. Other tools are not affected. Also note that this only includes passwords
contained in files that were provided as command-line arguments; passwords included in the
tools.properties file, or in a file referenced from tools.properties, would not have been
exposed.

In each of these cases, the files would have been written with permissions that make their contents
only accessible to the system account used to run the server. Further, while administrative
passwords might have been exposed in the tool invocation log, neither the passwords for regular
users, nor any other data from their entries, should have been affected. We have introduced new
automated tests to help ensure that such incidents do not occur in the future.

We recommend changing any administrative passwords you fear might have been compromised as
a result of this issue. If you are concerned that the passphrase for an encryption settings definition
might have been exposed, then we recommend creating a new encryption settings definition that
is preferred for all subsequent encryption operations. You also might want to re-encrypt or destroy
any existing backups, LDIF exports, or other data encrypted with a compromised key, and you

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 9

might want to sanitize or destroy any existing tool invocation log files that might contain clear-text
passwords.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38897 DS-38908

Known Issues/Workarounds

The following item is a known issue in the current version of PingDataGovernance Server:

▪ The internal SCIM interface in the BrokerContext class of the Server SDK has been deprecated. It will
be removed in a future version of the product. Extensions that need to interact with the SCIM service
should use an HTTP client SDK or other means.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance.

Ticket ID Description

DS-40532 Added a logging-error-behavior property
to the log publisher, periodic stats logger plugin,
and monitor history plugin configuration that you
can use to specify the behavior the server should
exhibit if an error occurs while attempting logging-
related processing. By default, the server preserves
its previous behavior of writing a message to
standard error; however, you can configure it to
enter lockdown mode on a logging error. In this
mode, the server reports itself as unavailable and
only accepts requests from accounts with the
lockdown-mode privilege and only from clients
communicating over a loopback interface.

DS-40767, DS-41229 Fixed an issue in which a PingDataGovernance
Server could return an HTTP 500 error while
logging the policy decision response if using these
items:

▪ External PDP mode
▪ The Policy Decision Service with a "decision-

tree" decision response view
▪ A policy that uses a service with HTTP

authentication

Also, the Policy Decision Logger now records
external policy decisions to the policy decision
log as a single line for easier use with the Policy
Administration GUI Log Visualizer.

DS-40980 PingDataGovernance Server no longer prevents a
server with an expired license from restarting.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 10

Ticket ID Description

DS-41087 The Policy Administration GUI now includes
decision evaluation details in the decision-
audit.log by default. With this change, policy
writers can visualize decisions by copying and
pasting the JSON into the Log Visualizer.

DS-41301 Addressed an issue that could lead to slow, off-
heap memory growth. This only occurred on
servers whose cn=Version,cn=monitor entry
was retrieved frequently.

PingDataGovernance Server 8.0.0.0 Release Notes

PingDataGovernance 8.0.0.0 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of the PingDataGovernance Server:

▪ Changes have been made to the Trust Framework in the default policies shipped with
PingDataGovernance Server. Refer to the PingDataGovernance Server Administration Guide for
instructions on updating existing policy deployments.

▪ Token Resource Lookup Methods, which are invoked after access token validation to obtain an access
token owner's attributes from an external identity store, have been updated so that they do not strictly
require SCIM. In this release, the existing SCIM-based method is provided, in addition to a new ability
to create custom Token Resource Lookup Methods using the Server SDK.

▪ Token Resource Lookup Methods which were configured in existing deployments will be automatically
migrated as SCIM Token Resource Lookup Methods during upgrade. Any existing dsconfig scripts that
create Token Resource Lookup Methods should be updated to specify the --type parameter with the
value "scim" before using these scripts with an upgraded server.

▪ An issue has also been fixed in which Token Resource Lookup Methods were not invoked after
validating an access token with an Access Token Validator which was created using the Server SDK.
The TokenValidationResult object returned by third-party Access Token Validators no longer includes
the tokenOwner field, and extensions that set this field must be updated.

▪ API Endpoints, which were introduced in 7.3.0.0, have been renamed to Gateway API endpoints as of
version 7.3.0.2.

WARNING: When performing an update, existing API Endpoint configuration objects are migrated
automatically. To reflect this change, manually update your dsconfig scripts and other automated
deployments or configurations.

▪ The Allow Attributes and Prohibit Attributes advices have been deprecated. If a deployment requires the
behavior that these advices provided, use the Server SDK to implement the appropriate behavior.

▪ Changes to the server configuration in this release of PingDataGovernance are incompatible with
previous releases. This entails special consideration when upgrading a topology of servers that were
set up using the setup tool's peer setup option. Once a server has been upgraded to the new version,
an admin must manually apply configuration changes that could not be automatically applied by the
update tool. The update tool will print out the instructions on how to do this.

▪ Changes to the server configuration in this release of PingDataGovernance are incompatible with
previous releases. This entails special consideration when reverting a topology of servers to their

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 11

previous versions. All servers must be put into their own cluster before running revert-update using a
dsconfig command like the following:

dsconfig set-server-instance-prop --instance-name <server-instance-name>
 \
--set cluster-name:<unique-cluster-name>

In the above command, it is recommended that the cluster name be set to the server instance name,
which is guaranteed to be unique.

▪ If you are upgrading from PingDataGovernance 7.3.0.x to 8.0.0.0, an updated version of the Policy
Administration GUI is required

▪ Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance
9.0. We encourage deployers to manage server configuration using server profiles, which support
deployment best practices such as automation and Infrastructure-asCode (IaC). For more information
about server profiles, see the PingDataGovernance Server Administration Guide.

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 8.0.0.0, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

What's New

These are new features for this release of the PingDataGovernance Server:

▪ Use Server Profiles to reduce risk and improve consistency following the DevOps principle of
infrastructure-as-code. Administrators can export the configuration of a PingDataGovernance instance
to a directory of text files called a Server Profile, track changes to these files in version control like Git,
and install new instances of PingDataGovernance or update existing instances of PingDataGovernance
from a Server Profile. Server Profiles support variable substitution in order to remove the settings
unique to each pre-production or production environment from the Server Profile that is stored in
version control.

▪ Use PingDataGovernance with existing API Lifecycle Gateways. Previously, the PingDataGovernance
Server functioned only as a reverse proxy. A new Sideband API introduces an alternate deployment
mode in which PingDataGovernance Server uses a plugin to connect to an existing API Lifecycle
Gateway. In sideband deployment, the API Lifecycle Gateway handles requests between API clients
and backend API services. The integration plugin intercepts all data and passes it through the
PingDataGovernance Sideband API. PingDataGovernance continues to enforce policy, authorizing
requests and responses, and filtering or modifying request and response data.

▪ Improved handling of sensitive data through API Lifecycle Gateways. The Sideband API, which is
the integration method between API Lifecycle Gateways and PingDataGovernance (introduced in
7.3.0.2), now supports filtering and modifying of API responses, in addition to authorizing requests.
In this configuration, the integration plugin intercepts all response data, and passes it through the
PingDataGovernance server, which filters and modifies the response data based on policies.

▪ Use external authorization in non-API use cases. Organizations can now externalize the authorization
logic from other enforcement points, like legacy web applications, and manage these authorization
policies centrally in PingDataGovernance. With this licensing option, other authorization enforcement
points can call into the core policy engine of PingDataGovernance via a Policy Decision Point API (PDP
API) that complies with the XACML JSON Profile Request API.

▪ More API request and response modification capabilities. Policy administrators can take advantage of
new advice to replace JSON data values, even attributes that are deeply nested within API requests or
responses. Also, administrators can define policy to manipulate the query string of API requests, useful
for limiting upstream API calls based on the attributes of the caller or context.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 12

▪ Additional HTTP request/response data is now provided to policies when an outbound response is
processed by either the API Security Gateway or the Sideband API. A policy request for an outbound
response may now include the following attributes, in addition to those already supported:

▪ HttpRequest.Response
▪ HttpRequest.RequestHeaders
▪ HttpRequest.RequestBody
▪ HttpRequest.ResponseHeaders
▪ HttpRequest.AccessToken
▪ TokenOwner

The existing HttpRequest.Headers policy request attribute is deprecated and will be removed in a
future release of PingDataGovernance.

Known Issues/Workarounds

The following are known issues in the current version of the PingDataGovernance Server:

▪ When the PDP API receives a valid request, it first authorizes the client request itself before sending
the client's policy request to the decision engine. As currently implemented, the PDP API ignores any
advices in the decision, so the policy writer has no control over either the HTTP status code or the error
message.

▪ The following are suggested solutions for problems with slow DNS:

▪ Maintain a connection pool in the client app rather than opening new connections for each bind.
▪ Add appropriate records, including PTR records, to DNS.
▪ Add options timeout:1 in the /etc/resolv.conf file and/or options single-request
▪ If IPv6 requests specifically are causing issues, add -Djava.net.preferIPv4Stack=true to

the start-server.java-args line in PingDirectory’s config/java.properties file, run bin/
dsjavaproperties, and restart the server to stop the issuance of IPv6 PTR requests.

▪ Some server tools, such as collect-support-data and rebuild-index, will fail with errors if
they are run with an encrypted tools.properties file.

Workaround: Add the --noPropertiesFile argument to the server tools to prevent them from
pulling information from the encrypted file.

▪ The working directory value used by exec tasks is not implemented for recurring exec tasks.
▪ Deploying the Admin Console to an external container using JDK 11 requires downloading the following

dependencies and making them available at runtime (for example, by copying them to the WEB-INF/
lib directory of the exploded WAR file).

▪ groupId:jakarta.xml.bind, artifactId:jakarta.xml.bind-api, version:2.3.2
▪ groupId:org.glassfish.jaxb, artifactId:jaxb-runtime, version:2.3.2

Workaround: Deploy the Console in an external container using JDK 8.

Resolved Issues

The following issues have been resolved with this release of the PingDataGovernance Server:

Ticket ID Description

DS-17278 Added a cn=Server Status Timeline,cn=monitor monitor
entry to track a history of the local server's last 100 status changes and
their timestamps. Updated the LDAP external server monitor to include
attributes tracking health check state changes for external servers. The
new attributes include the number of times a health check transition
has occurred, timestamps of the most recent transitions, and messages
associated with the most recent transitions.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 13

Ticket ID Description

DS-37504, DS-38765,
DS-39011

Fixed an issue in the Passthrough SCIM resource type that could cause
an access token validator's token subject lookup to fail if the user store
was unavailable when PingDataGovernance Server was started. This
issue would typically manifest as a SCIM schema error in the debug
trace log, such as "Attribute uid in path uid is undefined."

DS-37565 A new advice type has been added, modify-attributes, which can
modify the values of attributes.

DS-37720 Added Token Resource Lookup Methods as a new type of Server SDK
extension. A Token Resource Lookup Method can be used to customize
the way that PingDataGovernance looks up access token owners to
populate the TokenOwner attribute used to make policy decisions.

For example, a developer could build a Token Resource Lookup Method
that maps an access token subject to an identity stored in an RDBMS or
an arbitrary REST API.

DS-37881 The PingFederate Access Token Validator will now refresh its cached
value of the PingFederate server's token introspection endpoint. A
new attribute, endpoint-cache-refresh, has been added to the
PingFederate Access Token Validator, which will determine how often
this refresh occurs.

DS-37955 To support multiple trace loggers, each trace logger now has its own
resource key, which is shown in the Resource column in the output of
status. This key allows multiple alarms, due to sensitive message types
for multiple trace loggers.

DS-38053 The JWT Access Token Validator no longer requires a restart after a
change to one of its signing certificates.

DS-38515 The requestURI, requestQueryParams, headers, and
correlationID attributes of the HTTP request have been made
available when constructing an Error Template.

DS-38560 Updated manage-profile replace-profile to apply configuration
changes directly, when possible. If the new server profile used by
replace-profile has changed only the dsconfig batch files from
the original profile, then only the dsconfig files are applied. If no
changes are detected between profiles, replace-profile takes no
action. If changes other than dsconfig are detected, the full replace-
profile process is followed.

DS-38597 The Policy Administration GUI setup has been redesigned, allowing
users to generate configuration through a command line tool more
consistent with other Ping products.

DS-38777 Added support for updating the server version during manage-profile
replace-profile. The server must have been originally set up with a
server profile.

DS-38832 Fixed an issue that could cause the server to leak a small amount of
memory each time it failed to establish an LDAP connection to another
server.

DS-38832 A property has been added to Advice types that can limit their
application to PERMIT or DENY decisions.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 14

Ticket ID Description

DS-38863 Updated the manage-profile setup subcommand to set a server's
cluster name to match its instance name by default. This prevents
servers in the same replication topology from being in the same
cluster, reducing the risk of unintentionally overwriting parts of an
existing server's configuration in a DevOps environment. The --
useDefaultClusterName argument can be used to leave the cluster
name unchanged.

DS-38867 Updated the PBKDF2 password storage scheme to add support
for variants that use the 256-bit, 384-bit, and 512-bit SHA-2 digest
algorithms. At present, the SHA-1 variant remains the default to
preserve backward compatibility with older versions.

Also, in accordance with the recommendations in NIST SP 800-63B, we
have increased the default iteration count from 4096 to 10,000, and the
default salt length from 64 bits to 128 bits.

DS-38869 Updated the remove-defunct-server tool's --ignoreOnline
option. When using --ignoreOnline in a mixed-version environment,
all servers must support the option.

DS-38968 A new advice type, modify-query, has been added which can modify
the request query parameters before the request to the upstream server
is made.

DS-39037 The provided PingDataGovernance policies and deployment packages
now apply access token validation policies to inbound, SCIM, and
OpenBanking requests only. With this change, an access token is no
longer required to issue a Sideband API response request.

DS-39176, DS-39308 Updated the Groovy scripting language version to 2.5.7. For a list of
changes, go to groovy-lang.org and view the Groovy 2.5 release notes.

As of this release, only the core Groovy runtime and the groovy-json
module are bundled with the server. To deploy a Groovy-scripted
Server SDK extension that requires a Groovy module not bundled
with the server, such as groovy-xml or groovy-sql, download the
appropriate jar file from groovy-lang.org and place it in the server's lib/
extensions directory.

DS-39253 Added a replace-certificate tool, which can help an administrator
replace the listener or inter-server certificate for a server instance.

DS-39322 Added support for PingDataGovernance to the manage-profile tool
and its subcommands.

DS-39490, DS-39616 The API Endpoint configuration type has been renamed to Gateway API
Endpoint.

Any existing dsconfig scripts referencing an API Endpoint should
be updated. For example, a dsconfig command of create-api-
endpoint would need to be changed to create-gateway-api-
endpoint.

DS-39518 Fixed an issue in which escaped characters in schema extensions may
not be handled properly. If used in attribute type constraints (such as X-
VALUE-REGEX), this could cause unexpected or incorrect behavior.

Copyright ©2022

http://groovy-lang.org
http://groovy-lang.org

PingDataGovernance | PingDataGovernance Server Release Notes | 15

Ticket ID Description

DS-39564 Fixed an issue in which the Gateway would respond with a 404 for
requests handled by an API Endpoint with an inbound-base-path of "/".

DS-39592 HTTP External Servers have a new attribute, ssl-cert-nickname,
which defines the alias of a specific certificate within their keystore to be
used as a client certificate.

DS-39593 Fixed an issue where policy decision logs contained content that was
considered invalid by the Policy Administration GUI Log Visualizer.

DS-39603 Fixed an issue where Server SDK extensions could not be configured by
dsconfig batch files in the manage-profile tool.

DS-39626, DS-40357 The trace log publisher will now record an access token's scopes after
the token is successfully validated.

DS-39643 Fixed an issue where a PUT request that attempted to delete less
than 50 percent of the total items of a multivalued sub-attribute object
resulted in the deletion of all items for that object.

DS-39654 Added support for the --topologyFilePath argument to the
manage-topology add-server subcommand.

DS-39671 Updated the manage-topology add-server subcommand to require
being run from the older server in a mixed-version environment.

DS-39681 When PingDataGovernance receives a 401 Unauthorized response from
an external policy decision server, it will now convert the status to a 503
Service Unavailable for the upstream client.

DS-39715 Updated the Server SDK to add support for sending email messages.

DS-39735 The Server SDK's Advice API has been updated to provide the ability to
modify multiple attributes of an HTTP request/response rather than just
the body. Existing Advice extensions must be updated to use the new
API.

DS-39857 Added the StatsD monitoring endpoint. When the Stats Collector Plugin
is enabled, this endpoint sends metric data from the server in StatsD
format to the configured destination.

DS-39877 Fixed an issue in which using an empty Error Template would cause the
Sideband API to respond with a 500 Internal Server Error.

DS-39908 Added a new JVM-default trust manager provider that can be used to
automatically trust any certificate signed by an authority included in the
JVM's default set of trusted issuers. Also, updated other trust manager
providers to offer an option to use the JVM-default trust addition to the
trust that they normally provide.

DS-39913 Fixed a rare NullPointerException that could occur when recording
advice metadata to the policy decision log.

DS-40114 Added a new cn=Status Health Summary,cn=monitor monitor
entry that provides a summary of the server's current assessment of
its health. This simplifies monitoring with third party tools that support
retrieving monitoring data over JMX. The Periodic Stats Logger has also
been updated to allow some of this monitoring information to be logged.
No new information is logged by default.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 16

Ticket ID Description

DS-40234 The Open Banking account request endpoint no longer requires the
x-fapi-financial-id to be present. Instead, it now includes
the configured fapi-financial-id value in policy requests via
Gateway.FapiFinancialId attribute. A policy can choose to deny
account requests based on the presence and value of this attribute.

DS-40332 A check has been added to all DataGovernance policy requests which
will cause them to fail if the version of the configured external Ping
DataGovernance Policy Administration Point is not the same as the
DataGovernance server. This will prevent potential errors that may
otherwise arise from mismatched versions.

DS-40344 The API security gateway no longer forwards CORS-related request
headers to upstream API servers. Likewise, it no longer forwards CORS-
related response headers to clients. To use CORS with an API protected
by the API security gateway, assign an HTTP Servlet Cross Origin
Policy to the Gateway HTTP Servlet Extension.

DS-40354 Fixed a problem with config-diff when writing properties that span
multiple lines using the --prettyPrint argument.

DS-40360 A new gauge has been created, DataGovernance Servlet Average
Response Time (Milliseconds), which watches the average response
time from Ping DataGovernance servlets, and can generate alarms
and/or affect the server's available or degraded state. This gauge must
be configured before it will have any effect; see the DataGovernance
Administration Guide for details.

DS-40366 Fixed an issue where the server was attempting to connect by an IP
address rather than a hostname when DNS lookup was successful.

DS-40371, DS-40382,
DS-40427

SCIM 2 search responses can now be authorized and filtered with
an optimized authorization mode that uses a single policy request to
process the entire result set. This authorization mode is optional; by
default, the server will continue to create a policy request for each
member of a result set.

This authorization mode is enabled on a per-request basis. To
enable, a policy that targets the 'SCIM2' service and the search
action must provide an advice with the ID combine-scim-search-
authorizations but with no payload. The subsequent search
response is then authorized using a single policy request with the
'SCIM2' service and the search-results action. Any advices returned
in the policy results are applied iteratively to each SCIM resource in the
result set.

For more information, see the PingDataGovernance Server
Administration Guide.

DS-40372 Added a new PDP API endpoint servlet extension. The PDP API
endpoint accepts XACML-JSON requests and hands them off to the
policy decision engine. It then converts the resulting policy decision to
a XACML-JSON response for consumption by the client. To use this
feature, customers must configure their PingDataGovernance servers
with PDP API-enabled licenses.

DS-40377 Added support for logging to a JSON file in the Periodic Stats Logger
Plugin.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 17

Ticket ID Description

DS-40517 Added metrics for status summary, replication database, and LDAP
changelog to the Stats Collector Plugin.

DS-40542, DS-40554 Because the API Security Gateway may alter requests and responses
as a result of policy processing, it no longer forwards request and
response headers used for HTTP resource versioning and conditional
requests. This includes the following headers: If-None-Match, If-
Modified-Since, If-Unmodified-Since, ETag, and Last-
Modified.

DS-40543 Updated manage-profile replace-profile to copy the tool log
file to the server being updated.

DS-40556 Added support for specifying a working directory for exec tasks.

DS-40730 Updated the encrypt-file tool to prevent using the same path for
both the input file and the output file.

DS-40771 Added a --duration argument to collect-support-data. When used,
only the log files covering the specified duration before the current time
will be collected.

DS-40784 Access Token Validator extensions built with the Server SDK may now
provide the original access token value in addition to parsed claims
when building a TokenValidationResult object. This access token value
may be used by Token Resource Lookup Method extensions that do not
need the parsed token claims to perform a subject lookup.

PingDataGovernance Server 7.3.0.10 release notes

Critical fixes

This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

▪ Fixed an issue where mirrored subtree polling could produce config archive files that were identical or
ignored the configured insignificant attributes list.

▪ Fixed in: 7.3.0.10
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-41762 SF#00675207 SF#00683777

Resolved issues

The following issues have been resolved with this release of the Data Governance Server.

Ticket ID Description

DS-41762 Fixed an issue where mirrored subtree polling could
produce config archive files that were identical or
ignored the configured insignificant attributes list.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 18

PingDataGovernance Server 7.3.0.9 Release Notes

Upgrade Considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0. If
you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server profiles to manage
server configuration. Introduced in PingDataGovernance 8.0, server profiles support deployment best
practices such as automation and Infrastructure-asCode (IaC). For more information about server profiles,
see the PingDataGovernance Server Administration Guide for PingDataGovernance 8.0 or later

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-38535 Fixed an issue that could cause the server to
generate an administrative alert about an uncaught
exception when trying to send data on a TLS-
encrypted connection that is no longer valid.

DS-43480 Updated the system information monitor provider
to restrict the set of environment variables that can
be included. Previously, the monitor entry included
information about all defined environment variables,
as that information can be useful for diagnostic
purposes. However, some deployments might
include credentials, secret keys, or other sensitive
information in environment variables, and that
should not be exposed in the monitor. The server
now only includes values from a predefined set of
environment variables that are expected to be the
most useful for troubleshooting problems, and that
are not expected to contain sensitive information.

PingDataGovernance Server 7.3.0.8 Release Notes

Upgrade Considerations

This upgrade moves to Jetty 9.4. As a result, the HTTPS connection handler will no longer support
TLS_RSA ciphers by default. If you use any legacy HTTPS clients that still require TLS_RSA ciphers,
modify the ssl-cipher-suite property of the HTTPS Connection Handler to include them.

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0. If
you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server profiles to manage
server configuration. Introduced in PingDataGovernance 8.0, server profiles support deployment best
practices such as automation and Infrastructure-asCode (IaC). For more information about server profiles,
see the PingDataGovernance Server Administration Guide for PingDataGovernance 8.0 or later

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-40551 Fixed an issue that could prevent some tools from
running properly with an encrypted tools.properties
file.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 19

Ticket ID Description

DS-41126 Updated the server to make the general monitor
entry available to JMX clients.

DS-41235 Updated the cn=Cluster subtree to prevent
clustered configuration changes when servers in
the cluster have mixed versions. To make clustered
configuration changes, either update all servers
in the cluster to the same version, or temporarily
create separate clusters by server version by
changing the cluster-name property on the server
instance configuration objects.

DS-41236 To avoid inconsistencies, changing clustered
configuration will now require all servers in the
cluster to be on the same product version. Servers
will not pull any clustered configuration from the
master of the cluster if they are on a different
product version.

DS-41261 Fixed an issue with manage-profile replace-profile
where certain configuration changes for recurring
task chains were not being applied.

DS-41289 Fixed an issue that prevented password changes
for topology administrators unless their password
policy was configured to allow pre-encoded
passwords.

DS-42687 Upgrade to Jetty 9.4.30.

PingDataGovernance Server 7.3.0.7 Release Notes

Upgrade considerations

▪ Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance
9.0. If you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server
profiles to manage server configuration. Introduced in PingDataGovernance 8.0, server profiles
support deployment best practices such as automation and Infrastructure-asCode (IaC). For more
information about server profiles, see the PingDataGovernance Server Administration Guide for
PingDataGovernance 8.0 or later

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.7, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 20

Ticket ID Description

DS-37955 To support multiple trace loggers, each trace logger
now has its own resource key, which is shown in
the "Resource" column in the output of "status".
This key allows multiple alarms, due to sensitive
message types for multiple trace loggers.

DS-39799 Allows users who were migrated from the admin
backend to the topology to manage the topology.
Migrated users are granted the "manage-topology"
privilege if they do not already have it.

DS-40366 Fixed an issue where the server was attempting to
connect by an IP address rather than a hostname
when DNS lookup was successful.

DS-40771 Added a --duration argument to collect-
support-data. When used, only the log files
covering the specified duration before the current
time are collected.

DS-41054 Fixed an issue that stopped new extensions from
being installed.

PingDataGovernance Server 7.3.0.6 Release Notes

Upgrade considerations

▪ Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance
9.0. If you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server
profiles to manage server configuration. Introduced in PingDataGovernance 8.0, server profiles
support deployment best practices such as automation and Infrastructure-asCode (IaC). For more
information about server profiles, see the PingDataGovernance Server Administration Guide for
PingDataGovernance 8.0 or later

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.6, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Critical fixes

This release has no critical fixes.

PingDataGovernance Server 7.3.0.5 Release Notes

Upgrade considerations

▪ Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance
9.0. If you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server
profiles to manage server configuration. Introduced in PingDataGovernance 8.0, server profiles
support deployment best practices such as automation and Infrastructure-asCode (IaC). For more
information about server profiles, see the PingDataGovernance Server Administration Guide for
PingDataGovernance 8.0 or later

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 21

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.5, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Critical fixes

This release has no critical fixes.

PingDataGovernance Server 7.3.0.4 Release Notes

Upgrade consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.4, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Resolved issue

The following issue has been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-40828 Fixed an issue where some state associated with a JMX connection was not freed after the
connection was closed. This led to a slow memory leak in servers that were monitored by an
application that created a new JMX connection each polling interval.

PingDataGovernance Server 7.3.0.3 Release Notes

Upgrade Consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.3, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

PDSTAGING-840 Fixed an issue that could cause the server to leak
a small amount of memory each time it failed to
establish an LDAP connection to another server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 22

Ticket ID Description

DS-40371, DS-40382, DS-40427 SCIM 2 search responses can now be authorized
and filtered with an optimized authorization mode
that uses a single policy request to process
an entire result set. This authorization mode is
optional. By default, the server creates a policy
request for each member of a result set.

This authorization mode is enabled on a per-
request basis. To enable, a policy that targets
the SCIM2 service and the search action must
provide an advice with the ID combine-scim-
search-authorizations but with no payload.
The subsequent search response is then authorized
by using a single policy request with the 'SCIM2'
service and the 'search-result' action. If advices
are returned in the policy results, they are applied
iteratively to each SCIM resource in the result set.

For more information, refer to the
PingDataGovernance Server Administration Guide.

PingDataGovernance Server 7.3.0.2 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of PingDataGovernance Server:

▪ If you are upgrading from PingDataGovernance 7.3.0.0 to 7.3.0.1 or 7.3.0.2, an updated version of the
Policy Administration GUI is required.

▪ The Allow Attributes and Prohibit Attributes advices have been deprecated. If a deployment requires the
behavior that these advices provided, use a Server SDK to implement the appropriate behavior.

▪ API Endpoints, which were introduced in 7.3.0.0, have been renamed to Gateway API endpoints.

i Warning: When performing an update, existing API Endpoint configuration objects are migrated
automatically. To reflect this change, manually update your dsconfig scripts and other automated
deployments or configurations.

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.2, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

What's New

As a gateway, PingDataGovernance Server functions as a reverse proxy while in deployment mode.
With 7.3.0.2, the Sideband API introduces an alternate deployment mode in which PingDataGovernance
Server uses a plugin to connect to an existing API Lifecycle Gateway. In sideband deployment, the API
Lifecycle Gateway handles requests between API clients and backend API services. The integration plugin
intercepts all request data and passes it through PingDataGovernance Server, which authorizes requests
and responses, and modifies request and response data.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 23

Resolved Issues

The following table identifies issues that have been resolved with this release of PingDataGovernance
Server.

Ticket ID Description

DS-38832 Added a property to Advice types that limits their
application to PERMIT or DENY decisions.

DS-39037 The provided PingDataGovernance policies and
deployment packages now apply access token
validation policies only to the following requests:

▪ Inbound
▪ SCIM
▪ OpenBanking

DS-39490, DS-39616 The API Endpoint configuration type has been
renamed to Gateway API Endpoint.

Update any existing dsconfig scripts that
reference an API Endpoint. For example, a
dsconfig command of create-api-endpoint
must be changed to create-gateway-api-
endpoint.

DS-39592 HTTP External Servers feature a new attribute,
certificate-alias, which defines the alias of a
specific certificate within the keystore to be used as
a client certificate.

DS-39681 When PingDataGovernance Server receives a
401 – Unauthorized response from an external
policy decision server, it converts the status to
503 – Service Unavailable for the upstream
client.

DS-40234 The Open Banking account request endpoint no
longer requires a value for x-fapi-financial-
id. Instead, it now includes the configured fapi-
financial-id value in policy requests through
the Gateway.FapiFinancialId attribute. A
policy can deny account requests based on the
presence and value of this attribute.

PingDataGovernance Server 7.3.0.1 Release Notes

Upgrade Consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.1, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 24

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

DS-17278 Added a cn=Server Status
Timeline,cn=monitor monitor entry to track a
history of the local server's last 100 status changes
and their timestamps.

Updated the LDAP external server monitor to
include attributes that track health-check state
changes for external servers. The new attributes
include the following information:

▪ Number of times a health-check transition has
occurred

▪ Timestamps of the most recent transitions
▪ Messages associated with the most recent

transitions

DS-37504, DS-38765, DS-39011 Fixed an issue in the Passthrough SCIM
resource type that could cause an access token
validator's token subject lookup to fail if the user
store was unavailable when PingDataGovernance
Server was started. This issue typically manifested
as a SCIM schema error in the debug trace log,
such as "Attribute uid in path uid is undefined."

DS-39176, DS-39308 Updated the Groovy scripting language version to
2.5.7. For a list of changes, go to groovy-lang.org
and view the Groovy 2.5 Release Notes.

As of this release, only the core Groovy runtime
and the groovy-json module are bundled with
the server. To deploy a Groovy-scripted Server
SDK extension that requires a Groovy module not
bundled with the server, such as groovy-xml or
groovy-sql, download the appropriate JAR file
from groovy-lang.org and place it in the server's
lib/extensions directory.

DS-39564 Fixed an issue in which the gateway responded
with a 404 for requests that were handled by a
Gateway API Endpoint with an inbound-base-
path of "/".

DS-39593 Fixed an issue in which policy decision logs
contained content that the Policy Administration
GUI Log Visualizer considered invalid.

PingDataGovernance Server 7.3.0.0 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of PingDataGovernance Server:

▪ WARNING: OAuth scope configurations for resource access control, including fine-grained access
control, and JEXL-based policies are no longer supported. Manual steps are necessary to migrate

Copyright ©2022

http://www.groovy-lang.org/
http://www.groovy-lang.org/

PingDataGovernance | PingDataGovernance Server Release Notes | 25

configuration and policies in order to restore the functionality of SCIM APIs. Please contact your
account executive to schedule time for migration assistance.

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.0, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

What's New

These are new features for this release of PingDataGovernance Server:

▪ New features for data encryption in transit and at rest: added support for TLS 1.3, ability to encrypt and
automatically decrypt sensitive files such as tools.properties and keystore pin files using the server data
encryption keys, and the ability to more easily and securely separate master keys from data encryption
keys by protecting the server encryption settings database using either Amazon Key Management
Service (AWS KMS) or HashiCorp Vault.

▪ Added support for Amazon Corretto JDK 8, Windows Server 2019, Red Hat Enterprise Linux 7.6,
CentOS 7.6, Amazon Linux 2, and Docker 18.09.0 on Ubuntu 18.04 LTS.

▪ Fine-grained data access control for JSON-based APIs. Configured as a reverse proxy to existing
customer API endpoints, PingDataGovernance enforces dynamic authorization policies to inbound API
calls or outbound API responses. For inbound calls, policies can inspect request attributes and request
bodies to allow or deny the HTTP call. For outbound responses, policies can whitelist or blacklist JSON
objects and specific attributes, thus sanitizing the HTTP response data per use case.

▪ New Policy Administration GUI. Data owners and other stakeholders can now collaborate with IT and
developers to build and test data access control policies. IT and developers configure services and
attributes that gather, extract, and transform data dynamically from REST APIs, RBDMS, LDAP, and
more. Data owners and other stakeholders build expressions to check and compare these attributes as
part of a hierarchy of policies and rules. The Policy Administration GUI supports testing with mock input
data, and it displays test results in a graphical tree to help policy writers understand and troubleshoot
policy logic.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

PDSTAGING-570,DS-38334 The following enhancements were made to the
topology manager to make it easier to diagnose the
connection errors described in PDSTAGING-570:

- Added monitoring information for all the failed
outbound connections (including the time since it's
been failing and the last error message seen when
the failure occurred) from a server to one of its
configured peers and the number of failed outbound
connections.

- Added alarms/alerts for when a server fails to
connect to a peer server within a configured grace
period.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 26

Ticket ID Description

PDSTAGING-570,DS-38344 The topology manager will now raise a mirrored-
subtree-manager-connection-asymmetry alarm
when a server is able to establish outbound
connections to its peer servers, but those peer
servers are unable to establish connections back
to the server within the configured grace period.
The alarm is cleared as soon as there is connection
symmetry.

DS-15734 Added a cipher stream provider that can be
used to protect the contents of the encryption
settings database with a key from the Amazon Key
Management Service.

DS-18060 Added an HTTP servlet extension that can be
used to retrieve the server's current availability
state. It accepts any GET, POST, or HEAD request
sent to a specified endpoint and returns a minimal
response whose HTTP status code may be used to
determine whether the server considers itself to be
AVAILABLE, DEGRADED, or UNAVAILABLE. The
status code for each of these states is configurable,
and the response may optionally include a JSON
object with an "availability-state" field with the name
of the current state.

Two instances of this servlet extension are now
available in the default configuration. A request sent
to /available-state will return an HTTP status code
of 200 (OK) if the server has a state of AVAILABLE,
and 503 (Service Unavailable) if the server has
a state of DEGRADED or UNAVAILABLE. A
request sent to the /available-or-degraded-state will
return an HTTP status code of 200 for a state of
AVAILABLE or DEGRADED, and 503 for a state of
UNAVAILABLE. The former may be useful for load
balancers that you only want to have route requests
to servers that are fully available. The latter may be
useful for orchestration frameworks if you wish to
destroy and replace any instance that is completely
unavailable.

DS-37617 HTTP Connection Handlers now accept client-
provided correlation IDs by default. To adjust the
set of HTTP request headers that may include a
correlation ID value, change the HTTP Connection
Handler's correlation-id-request-header property.

DS-37753 PingDataGovernance now contains Server SDK
support for Advices.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 27

Ticket ID Description

DS-37839 Make Fingerprint Certificate Mapper and Subject
DN to User Attribute Certificate Mapper disabled
by default on fresh installations. This will not affect
upgrades from installations where these mappers
are enabled.

DS-37959 Added support for insignificant configuration archive
attributes.

The configuration archive is a collection of the
configurations that have been used by the server
at some time. It is updated whenever a change
is made to data in the server configuration, and
it is very useful for auditing and troubleshooting.
However, because the entries that define root
users and topology administrators reside in the
configuration, changes to those entries will also
cause a new addition to the configuration archive.
This is true even for changes that affect metadata
for those entries, like updates to the password
policy state information for one of those users. For
example, if last login time tracking is enabled for
one of those users, especially with high-precision
timestamps, a new configuration may be generated
and added to the configuration archive every time
that user authenticates to the server. While it is
important for this information to be persisted, it
is not as important for it to be part of the server's
configuration history.

This update can help avoid the configuration
archive from storing information about updates
that only affect this kind of account metadata. If
a configuration change only modifies an existing
entry, and if the only changes to that entry affect
insignificant configuration archive attributes, then
that change may not be persisted in the server's
configuration archive.

By default, the following attributes are now
considered insignificant for the purpose of the
configuration archive:

* ds-auth-delivered-otp * ds-auth-password-
reset-token * ds-auth-single-use-token * ds-
auth-totp-last-password-used * ds-last-access-
time * ds-pwp-auth-failure * ds-pwp-last-login-
ip-address * ds-pwp-last-login-time * ds-pwp-
password-changed-by-required-time * ds-pwp-
reset-time * ds-pwp-retired-password * ds-pwp-
warned-time * modifiersName * modifyTimestamp
* pwdAccountLockedTime * pwdChangedTime *
pwdFailureTime * pwdGraceUseTime * pwdHistory
* pwdReset

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 28

Ticket ID Description

DS-38050 Updated the server to support encrypting the
contents of the PIN files needed to unlock certificate
key and trust stores. If data encryption is enabled
during setup, then the default PIN files will
automatically be encrypted.

Also, updated the command-line tool framework
so that the tools.properties file (which can provide
default values for arguments not provided on the
command line), and passphrase files (for example,
used to hold the bind password) can be encrypted.

DS-38072 Updated the server to enable TLSv1.3 by default on
JVMs that support it (Java 11 and higher).

DS-38085 Fixed an issue in the installer where the
Administrative Console's trust store type would be
incorrectly set if it differed from the key store type.

DS-38089,DS-38705 The Open Banking Account Request servlet now
supports versions 1.1, 2.0, and 3.0 of the Open
Banking Read/Write Data API.

Error responses returned by the Account Request
servlet are now formatted as described in the Open
Banking Read/Write Data API specification, v3.0.

DS-38090,DS-38564,DS-38567 The response header used for correlation IDs
may now be set at the HTTP Servlet Extension
level using the correlation-id-response-header
configuration property. If set, this property overrides
the HTTP Connection Handler's correlation-id-
response-header property.

DS-38109 Added the --skipHostnameCheck command line
option to the setup script, which bypasses validation
of the provided host name for the server.

DS-38403 Fixed an issue that could prevent certain types of
initialization failures from appearing in the server
error log by default.

DS-38512 Added a cipher stream provider that can be used
to protect the contents of the encryption settings
database with a secret passphrase obtained from a
HashiCorp Vault instance.

DS-38550 Fixed an issue in which backups of the encryption
settings database could be encrypted with a key
from the encryption settings database.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 29

Ticket ID Description

DS-38670 Fixed a bug where the startIndex value for
SCIM requests would be incorrect if the used
LDAPSearch element had more than one baseDN
defined in the scim-resources XML file.

DS-38737 Fixed an issue where inter-server bind requests
would fail if the cipher used reported a maximum
unencrypted block size of 0.

DS-38864 Changed the default value of the HTTP
Configuration property include-stack-traces-in-error-
pages from 'true' to 'false'. Disabling this property
prevents information about exceptions thrown by
servlet or web application extensions from being
revealed in HTTP error responses.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Release Notes | 30

Ticket ID Description

DS-38897,DS-38908 Fixed two issues in which the server could have
exposed some clear-text passwords in files on the
server file system.

* When creating an encrypted backup of the alarms,
alerts, configuration, encryption settings, schema,
tasks, or trust store backends, the password
used to generate the encryption key (which may
have been obtained from an encryption settings
definition) could have been inadvertently written into
the backup descriptor.

* When running certain command-line tools
with an argument instructing the tool to read a
password from a file, the password contained
in that file could have been written into the
server's tool invocation log instead of the path to
that file. Affected tools include backup, create-
initial-config, ldappasswordmodify, manage-
tasks, manage-topology, migrate-ldap-schema,
parallel-update, prepare-endpoint-server, prepare-
external-server, realtime-sync, rebuild-index, re-
encode-entries, reload-http-connection-handler-
certificates, reload-index, remove-defunct-server,
restore, rotate-log, and stop-server. Other tools
are not affected. Also note that this only includes
passwords contained in files that were provided as
command-line arguments; passwords included in
the tools.properties file, or in a file referenced from
tools.properties, would not have been exposed.

In each of these cases, the files would have been
written with permissions that make their contents
only accessible to the system account used to run
the server. Further, while administrative passwords
may have been exposed in the tool invocation log,
neither the passwords for regular users, nor any
other data from their entries, should have been
affected. We have introduced new automated tests
to help ensure that such incidents do not occur in
the future.

We recommend changing any administrative
passwords you fear may have been compromised
as a result of this issue. If you are concerned that
the passphrase for an encryption settings definition
may have been exposed, then we recommend
creating a new encryption settings definition
that is preferred for all subsequent encryption
operations. You also may wish to re-encrypt or
destroy any existing backups, LDIF exports, or
other data encrypted with a compromised key, and
you may wish to sanitize or destroy any existing
tool invocation log files that may contain clear-text
passwords.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 31

Ticket ID Description

DS-38913 Added a set of message types to Trace Log
Publishers that records events related to access
token validation.

DS-39086 Removed the version information page from the
docs/build-info.txt endpoint. This information is now
available in build-info.txt, which is located in the root
directory.

DS-39102 Updated the server SDK class
AccessTokenValidator's method
initializeTokenValidator's parameters. The method's
first parameter is now of type ServerContext instead
of BrokerContext. This change is incompatible with
earlier versions of the server SDK.

PingDataGovernance Server Administration Guide

PingDataGovernance™ Product Documentation
© Copyright 2004-2020 Ping Identity® Corporation. All rights reserved.
© Copyright 2014-2020 Symphonic Software® Limited. All rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingFederate, PingAccess, and PingOne are registered trademarks of
Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks are the property of
their respective owners.

Disclaimer

The information provided in these documents is provided "as is" without warranty of any kind. Ping
Identity disclaims all warranties, either express or implied, including the warranties of merchantability and
fitness for a particular purpose. In no event shall Ping Identity or its suppliers be liable for any damages
whatsoever including direct, indirect, incidental, consequential, loss of business profits or special damages,
even if Ping Identity or its suppliers have been advised of the possibility of such damages. Some states
do not allow the exclusion or limitation of liability for consequential or incidental damages so the foregoing
limitation may not apply.

Support

https://support.pingidentity.com/

Introduction to PingDataGovernance Server
PingDataGovernance Server provides a policy-based security layer for protecting consumer data.

Increasingly, enterprises grant their users more control over their data privacy. While previous use cases
were typically simple, like a user opting out of an email newsletter, current use cases are growing more
sophisticated. In health care, for example, patients can grant family members and other third parties partial
or full access to their health records. Similarly, banking customers frequently control the account data that
is shared with different third parties.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 32

The sophistication of modern, user-managed data privacy places increasing demands on security
professionals and API developers to ensure that user preferences and other policies are enforced in
partner and application APIs. Mistakes often result in costly data breaches as well as a loss of trust.

As an API security gateway to user-related data APIs, PingDataGovernance provides organizations with
an additional layer of protection to prevent data breaches. Organizations can add policy to complete the
following tasks:

▪ Inspect the content of API requests and responses
▪ Verify user preferences and other attributes
▪ Allow, deny, or sanitize specific API data

Key components

▪ PingDataGovernance Policy Administration GUI – Powered by Symphonic®, the
PingDataGovernance Policy Administration GUI gives policy administrators the ability to author and test
security and business policies. The GUI is divided into the following sections:

▪ In the Trust Framework, administrators define the entities and abstractions for the information that
a policy uses.

▪ In Policies, administrators define the hierarchies of conditions and rules to evaluate data and make
policy decisions.

▪ API security gateway – In PingDataGovernance Server, the API security gateway invokes the policy
engine to evaluate API requests, and then enforces the policy decisions. Policy decisions can result in
many outcomes, including allowing or denying an API request, and filtering or altering an API response.

Explore PingDataGovernance Server
This section provides a tutorial for PingDataGovernance Server. As you complete this section, you will
quickly get up and running with PingDataGovernance Server and its policy administration GUI. You will
also learn how to implement data access policies for REST APIs and SCIM.

For more information about installing PingDataGovernance Server, including prerequisites and deployment
options, see Install PingDataGovernance Server on page 68.

Install and configure PingDataGovernance Server

About this task

This section describes the initial steps of setting up PingDataGovernance Server. For information about
updating to a new version of PingDataGovernance Server, see Upgrade PingDataGovernance Server on
page 167.

In this section, you will complete the following tasks:

Steps

1. Install a PingDirectory Server instance and a PingDataGovernance Server instance.

2. Configure PingDataGovernance Server to use PingDirectory Server as the User Store.

3. Configure PingDataGovernance Server to search PingDirectory Server for OAuth token subjects.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 33

Install PingDirectory Server

About this task

PingDataGovernance requires a User Store to evaluate identity attributes as part of policy. The following
command sets up PingDirectory Server with 1,000 users:

PingDirectory/setup \
 --cli --no-prompt --acceptLicense \
 --licenseKeyFile <path-to-pd-8x-license> \
 --rootUserDN "cn=directory manager" \
 --rootUserPassword <your-ds-password> \
 --ldapPort 1389 \
 --ldapsPort 1636 \
 --httpsPort 1443 \
 --generateSelfSignedCertificate \
 --baseDN "dc=example,dc=com" \
 --maxHeapSize 384m \
 --instanceName ds1 \
 --location Austin \
 --sampleData 1000

In this example, the server listens for LDAPS requests on port 1636.

Install PingDataGovernance Server

About this task

The following command sets up PingDataGovernance Server:

PingDataGovernance/setup \
 --cli --no-prompt --acceptLicense \
 --licenseKeyFile <path-to-dg-8x-license> \
 --rootUserDN "cn=directory manager" \
 --rootUserPassword <your-dg-password> \
 --ldapPort 8389 --ldapsPort 8636 \
 --httpsPort 8443 \
 --generateSelfSignedCertificate \
 --maxHeapSize 1g \
 --instanceName dg1 \
 --location Austin

In this example, PingDataGovernance Server listens for the following requests:

▪ LDAPS requests on port 8636
▪ HTTPS requests on port 8443

Configure the PingDataGovernance User Store

About this task

Configure PingDataGovernance Server to use PingDirectory Server as its User Store.

The first command makes a set of changes to PingDirectory Server that are needed by
PingDataGovernance Server, including the creation of a service account:

PingDataGovernance/bin/prepare-external-store \
 --hostname <your-ds-host> --port 1636 --useSSL --trustAll \
 --governanceTrustStorePath PingDataGovernance/config/truststore \
 --governanceTrustStorePasswordFile \
PingDataGovernance/config/truststore.pin \
 --bindDN "cn=directory manager" \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 34

 --bindPassword <your-ds-password> \
 --governanceBindDN "cn=Governance User,cn=Root DNs,cn=config" \
 --governanceBindPassword <your-dg-service-account-password> \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --no-prompt

The second command configures PingDataGovernance Server with a store adapter that allows it to
communicate with PingDirectory Server to retrieve identity attributes. This command also sets up a SCIM
resource type that defines a Users type with a SCIM schema that is automatically mapped to an LDAP
type (inetOrgPerson) on PingDirectory Server.

PingDataGovernance/bin/create-initial-config \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --governanceBindPassword <your-dg-service-account-password> \
 --externalServerConnectionSecurity useSSL \
 --governanceTrustStorePath PingDataGovernance/config/truststore \
 --governanceTrustStorePasswordFile \
PingDataGovernance/config/truststore.pin \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --userStore "<your-ds-host>:1636:Austin" \
 --userObjectClass "inetOrgPerson" \
 --initialSchema pass-through

Configure the PingDataGovernance OAuth subject search

About this task

Configure PingDataGovernance Server to search the User Store for OAuth token subjects.

The first command configures PingDataGovernance Server to mock OAuth access token validation.
The Mock Access Token Validator accepts tokens without authenticating them, and is used only for
demonstration and testing purposes. To use an authorization server like PingFederate, see Access token
validators on page 146.

PingDataGovernance/bin/dsconfig create-access-token-validator \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true --set subject-claim-name:sub

The second command configures PingDataGovernance Server to search the User Store and retrieve the
identity attributes of the OAuth token subject, so that the attributes can be evaluated in policy. A token
resource lookup method defines the expression that is used to search SCIM resources by the access token
subject or additional claims. In this scenario, the value of the access token subject claim is used to search
the uid attribute value of the SCIM User resource.

PingDataGovernance/bin/dsconfig create-token-resource-lookup-method \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --type 'scim' \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%_subject_claim_name%"' \
 --set evaluation-order-index:100

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 35

Configure PingDataGovernance logging

About this task

As you familiarize yourself with developing, testing, and enforcing policies, consider increasing the default
logging value to include details that will aid in debugging.

The following command enables more detailed logging to understand how policy decisions are being
made, including the comparison values and results of the various expressions that comprise a policy
decision tree:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request \
 --add decision-response-view:evaluated-entities

i Note: decision-response-view:request causes the Policy Decision Logger to record
potentially sensitive data in API requests and responses.

The following command enables Trace (detailed) logging, including complete HTTP requests and
responses:

PingDataGovernance/bin/dsconfig set-log-publisher-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --publisher-name "Debug Trace Logger" \
 --set enabled:true

i Note: Logging complete HTTP requests and responses might contain sensitive data.

For information about enabling detailed debug logging for troubleshooting purposes, see Enable detailed
logging on page 163.

Install and configure the PingDataGovernance Policy Administration GUI

About this task

To install an instance of the PingDataGovernance Policy Administration GUI, perform the following steps:

Steps

1. Extract the contents of the compressed PingDataGovernance-PAP distribution file.

2. Change the directory to PingDataGovernance-PAP.

3. To configure the application, run the ./bin/setup script.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 36

4. Answer the on-screen questions.

We recommend specific answers for the following questions:

▪ How would you like to configure the Policy Administration GUI?

Use option 1 (Quickstart) to set up a demo server with credentials admin/password123, and to
use a self-signed certificate for SSL.

▪ On which port should the Policy Administration GUI listen for HTTPS communications?

You can use any unused port here, but most of the examples in this guide assume that port 9443 is
used for the PingDataGovernance Policy Administration GUI.

▪ Enter the fully qualified host name or IP address that users’ browsers will use to connect to
this GUI

Unless you are testing on localhost, ensure that the provided API URL uses the public DNS
name of the PingDataGovernance Policy Administration GUI server as shown in the following
example:

pap.example.com

5. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingDataGovernance, under External Servers# Policy External
Server# Shared Secret.

6. To start the PAP, run bin/start-server.

The PAP runs in the background, so you can close the terminal window in which it was started without
interrupting it.

Results
The following transcript represents an example demo configuration:

[/opt/PingDataGovernance-PAP]$ bin/setup

Please enter the location of a valid PingDataGovernance with Symphonic license file
[/opt/PingDataGovernance-PAP/PingDataGovernance.lic]: /opt/PingDataGovernance/
PingDataGovernance.lic

PingDataGovernance Policy Administration GUI
==

How would you like to configure the Policy Administration GUI?

 1) Quickstart (DEMO PURPOSES ONLY): This option configures the server with a form
 based authentication and generates a self-signed server certificate
 2) OpenID Connect: This option configures the server to use an OpenID Connect
 provider such as PingFederate
 3) Cancel the setup

Enter option [1]: 1

On which port should the Policy Administration GUI listen for HTTPS communications? [9443]: 9443

Enter the fully qualified host name or IP address that users' browsers will use to
connect to this GUI [centos.localdomain]: pap.example.com

Setup Summary
=======================================
Host Name: pap.example.com
Server Port: 9443
Secure Access: Self-signed certificate

Command-line arguments that would set up this server non-interactively:
 setup demo --port 9443 --certNickname server-cert \
 --licenseKeyFile /opt/PingDataGovernance/PingDataGovernance.lic \
 --pkcs12KeyStorePath config/keystore.p12 --generateSelfSignedCertificate \
 --hostname pap.example.com

What would you like to do?

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 37

 1) Set up the server with the parameters above
 2) Provide the setup parameters again
 3) Cancel the setup

Enter option [1]:

Setup completed successfully

Please configure the following values
==
PingDataGovernance Server - Policy External Server
 Base URL: https://pap.example.com:9443
 Shared Secret: 7ed6f52d6e71411ca9e58f9567c7de2e
 Trust Manager Provider: Blind Trust

Please start the server by running bin/start-server

Next steps
In this example, the PingDataGovernance Policy Administration GUI is now running and listening on port
9443. To log in to the interface, go to https://<host>:9443. The default credentials are admin and
password123.

i Note: Use the default user name and password logon credentials for demo and testing purposes
only, such as this initial walk-through. To configure the PingDataGovernance Policy Administration GUI for
PingFederate OIDC SSO, see Configure Authentication Server for OpenID Connect single sign-on on page
82.

Import default policies

About this task

After you log in to the PingDataGovernance Policy Administration GUI, the following options are displayed:

▪ Create a Branch
▪ Import a Branch from Snapshot

To use the default policies that are distributed with PingDataGovernance Server, perform the following
steps:

Steps

1. Under Import a Branch from a Snapshot, select Click here to select a snapshot file.

The snapshot file is located in the PingDataGovernance installation directory at resource/
policies/defaultPolicies.SNAPSHOT.

2. Name the branch file Default Policies.

3. Click Import.

Configure PingDataGovernance Server for policy development

About this task

You configure PingDataGovernance Server to evaluate a policy in Embedded mode or External mode.
During policy development, configure PingDataGovernance Server in External mode, where it calls in to
the PingDataGovernance Policy Administration GUI for policy evaluation.

Embedded mode removes the reliance on an external server for improved performance in a production
environment and is covered in the chapter on Policy administration.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 38

i Warning: If you are using automation or DevOps to manage a cluster of PingDataGovernance
Servers, do not configure the nodes to share configuration details automatically among the servers.

Steps

1. From the Data Sources section of the PingDataGovernance Administration Console (https://
<your-dg-host>:8443/console), click External Servers# New External Server# Policy External
Server.

2. On the New Policy External Server page, specify the following information:

For: Do this:

Name Specify PingDataGovernance Policy Administration GUI.

Base URL Specify https://
<your_PingDataGovernance_Policy_Administration_GUI_host>:9443.

Host Name Verification
Method

Specify allow-all for test environments. If you are specifying a host
name verification method for a nontest environment, you might need to
configure additional mechanisms.

Trust Manager Provider Specify Blind Trust and click the Edit Value button to ensure that this
provider is Enabled.

User Id Specify admin.

Branch Specify the name of the branch that you created while importing the
default policy snapshot (Default Policies).

Shared Secret Click Set Value and enter the value previously generated in Install and
configure the PingDataGovernance Policy Administration GUI on page
35 step 5.

3. To specify a value for the Decision Node, perform the following steps:

a. Access the PingDataGovernance Policy Administration interface.
b. Click Policies# Global Decision Point.
c. In the upper-right corner, click
d. Click #.
e. To copy the node ID for the global decision point to the system clipboard, click Copy ID to

clipboard.
f. Paste the node ID (e51688ff-1dc9-4b6c-bb36-8af64d02e9d1) into the Decision Node text

box.

4. Click Save.

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to create the external server:

PingDataGovernance/bin/dsconfig create-external-server \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --server-name "PingDataGovernance Policy Administration GUI" \
 --type policy \
 --set base-url:https://<your-
PingDataGovernance_Policy_Administration_GUI_host>:9443 \
 --set hostname-verification-method:allow-all \
 --set "trust-manager-provider:Blind Trust" \
 --set user-id:admin \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 39

 --set "shared-secret:<your-shared-secret>" \
 --set decision-node:<global-decision-point-id> \
 --set "branch:Default Policies"

PingDataGovernance/bin/dsconfig set-trust-manager-provider-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN “cn=directory manager” \
 --bindPassword <your-dg-password> \
 --provider-name "Blind Trust" \
 --set enabled:true

Configure the policy service in External mode

About this task

After the policy external server has been created, perform the following steps:

i Warning: If you are using automation or DevOps to manage a cluster of PingDataGovernance
Servers, do not configure the nodes to share configuration details automatically among the servers.

Steps

1. From the PingDataGovernance Administration Console, click Authorization and Policies# Policy
Decision Service.

2. For the PDP Mode, select external.

3. For the Policy Server, select the policy external server that you created in Configure
PingDataGovernance Server for policy development on page 37.

4. Keep all the other default values.

5. Click Save To Data Governance Server Cluster.

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to configure the policy service in external mode:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --set pdp-mode:external \
 --set "policy-server:PingDataGovernance Policy Administration GUI"

Create the first API policy

About this task

In this section, you will build and test your first policy for the PingDataGovernance API security gateway.

Suppose that your organization creates an application to provide users with jokes to tell at parties. A joke
API generates several jokes in different categories, and users are granted the ability to filter certain types
of jokes that they might find offensive or unappealing.

This example uses the public joke API developed by https://github.com/15Dkatz/official_joke_api.

Configure the API security gateway

The API security gateway functions as the intermediary between the API client and the API server. These
components are configured in the PingDataGovernance Administration Console.

Copyright ©2022

https://github.com/15Dkatz/official_joke_api

PingDataGovernance | PingDataGovernance Server Administration Guide | 40

In this section, you will configure https://<your-dg-host>:<your-https-dg-port>/jokes/
random to proxy to https://official-joke-api.appspot.com/random_joke.

Create the API external server

About this task

To create the API external server, perform the following steps:

Steps

1. From the PingDataGovernance Administration Console, click Data Sources# External Servers.

2. Click New External Server# API External Server.

3. For the Name, specify Joke API Server.

4. For the Base URL, specify https://official-joke-api.appspot.com.

5. Click Save.

Results

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to create the API external server:

PingDataGovernance/bin/dsconfig create-external-server \

Copyright ©2022

https://official-joke-api.appspot.com/random_joke

PingDataGovernance | PingDataGovernance Server Administration Guide | 41

 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --server-name "Joke API Server" \
 --type api \
 --set base-url:https://official-joke-api.appspot.com

Create the Gateway API Endpoint

About this task

To create the external Gateway API Endpoint, perform the following steps:

i Warning: If you are using automation or DevOps to manage a cluster of PingDataGovernance
Servers, do not configure the nodes to share configuration details automatically among the servers.

Steps

1. From the PingDataGovernance Administration Console, click Web Services and Applications#
Gateway API Endpoints.

2. Click New Gateway API Endpoint.

3. For the Name, specify Random Joke API.

4. For the Inbound Base Path, specify /jokes/random.

5. For the Outbound Base Path, specify /random_joke.

6. For the API Server, specify Joke API Server.

7. For HTTP Auth Evaluation Behavior, specify evaluate-and-discard.

8. For Access Token Validator, specify Mock Access Token Validator.

9. Click Save To Data Governance Server Cluster.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 42

Results

Next steps
As an alternative to using the GUI, the following snippet provides an equivalent sample dsconfig
command to create the Gateway API Endpoint:

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 43

 --endpoint-name "Random Joke API" \
 --set inbound-base-path:/jokes/random \
 --set outbound-base-path:/random_joke \
 --set "api-server:Joke API Server" \
 --set http-auth-evaluation-behavior:evaluate-and-discard \
 --set "access-token-validator:Mock Access Token Validator"

Test the gateway with cURL

About this task

Before testing the gateway, make certain that you have configured everything successfully with an HTTP
client like Postman or cURL.

Issue the following request:

curl --insecure -X GET \
https://<your-dg-host>:<your-https-dg-port>/jokes/random \
-H 'Authorization: Bearer {"active": true}'

i Note: To provide easy testing, the Mock Access Token Validator allows the use of unencoded and
unsigned bearer tokens.

The following response is typical:

{
 "id":25,
 "type":"programming",
 "setup":"How many programmers does it take to change a light bulb?",
 "punchline":"None that's a hardware problem"
}

Add a policy for programming jokes

Policies are developed and tested in the PingDataGovernance Policy Administration GUI, which is divided
into the following sections:

▪ Trust Framework – Defines the attributes for information that the policy rules use.
▪ Policies – Defines the rules that allow or block an API response.

Create attributes for a Joke API response

About this task

To implement user-managed control to filter certain types of jokes that users find offensive or unappealing,
the policy requires checking the type attribute of the JSON response body of the Joke API.

The first attribute that you create represents the entire JSON response body of the Joke API:

Steps

1. From the PingDataGovernance Policy Administration GUI, click Trust Framework# Attributes.

2. To add a new attribute, click +.

3. For the Name, specify Joke.

4. Verify that Parent is not selected.

a. Click Add Resolver.

5. For the Resolver Type, select Attribute and specify a value of HttpRequest.ResponseBody.

6. For the Value Settings Type, select JSON.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 44

7. Click Save changes.

Results

Next steps

The second attribute that you create represents the type attribute of the JSON response body of the Joke
API:

1. To add a new attribute, click +.
2. For the Name, specify type.
3. For the Parent, select Joke.

a. Click Add Resolver.
4. For the Resolver Type, select Attribute and specify a value of Joke.
5. For the Value Settings Processor, select JSON Path and specify a value of $.type
6. For the Value Settings Type, select String.
7. Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 45

Create a service for the Random Jokes API

About this task

The name of the Gateway API Endpoint configured in PingDataGovernance Server is passed as the
service to the PingDataGovernance PDP. Create a policy that applies only to the requests and responses
of the Random Jokes API, and add this service to the Trust Framework.

Steps

1. From the PingDataGovernance Policy Administration GUI, click Trust Framework# Services.

2. To add a new service, click +.

3. For the Name, type Random Joke API.

4. Verify that Parent is not selected.

5. Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 46

Results

Create a policy for the Random Jokes API

About this task

To create a policy that targets the outbound response to an HTTP GET to the Random Joke API, perform
the following steps:

Steps

1. From the PingDataGovernance Policy Administration GUI, go to the Policies page.

2. Select Global Decision Point and click +.

3. Click Add Policy.

4. For the Name, specify Random jokes API policy.

5. Click Show "Applies to".

6. In the upper-right corner of the left panel, click Toolbox.

7. From the Actions list, drag outbound-GET to the blue Targets box.

8. From the Services list, drag Random Joke API to the blue Targets box.

9. Click Save changes.

Results

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 47

Add logic to reject programming jokes

About this task

To add a rule that blocks responses with programming as the joke type attribute value, perform the
following steps:

Steps

1. Click Create new Rule.

2. For the Name, specify Block programming jokes.

3. For the Effect, select Deny.

a. Click Create new Condition.

4. To specify a Condition, perform the following steps:

a. From the first Condition field, select Joke.type.
b. From the second field, select Equals.
c. In the third field, type programming.

5. Click Save changes.

Results

Add advice to set the HTTP response code

About this task

Add a command called advice that instructs PingDataGovernance Server to set the HTTP response code
when rejecting the outbound response. Because this problem is not associated with the HTTP client or its
request, set the response code to 502 to indicate a temporary gateway issue.

Steps

1. Expand Block programming jokes.

2. Click Show Advice.

3. Click Create new Advice.

4. For the Name, type Send "Bad gateway" response

5. For the Code, type denied-reason

6. From the Applies To drop-down list, select Deny.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 48

7. Click +Payload.

8. For a Payload value, type {"status": 502}

9. Click Save changes.

Results

Test the policy in the GUI

About this task

To test the full policy tree in the PingDataGovernance Policy Administration GUI, perform the following
steps:

Steps

1. Go to the Policies page.

2. Click Global Decision Point.

3. Click the Test tab.

4. From the Service drop-down list, select Random Joke API.

5. From the Action drop-down list, select outbound-GET.

6. Add the following HttpRequest attribute:

{"AccessToken":{"active":true},
"ResponseBody":{"id":25,
"type":"programming",
"setup":"How many programmers does it take to change a light bulb?",

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 49

"punchline":"None that's a hardware problem"}}

The following image provides an example:

7. Click Execute.
The HTTP GET response is rejected because of the "Block programming jokes" rule.

Results

Test the API gateway with cURL

About this task

Test the proxied API again with cURL, as follows:

curl --insecure -X GET \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 50

https://<your-dg-host>:<your-https-dg-port>/jokes/random \
 -H 'Authorization: Bearer {"active": true}'

Results
Non-programming jokes are allowed, but programming jokes return an HTTP 502 (bad gateway) response.

Add a policy for the user city

To simulate a user preference that is stored in an online profile, extend the policy to block programming
jokes from users in cities that are rich in software developers, like San Francisco, Boston, Austin, or
Seattle.

Find a user

About this task

To find a user, perform the following steps:

Steps

1. Verify that your PingDirectory example data contains a user whose profile location is set to one of the
developer-dense cities.

2. Issue the following search on your PingDirectory host, taking special note of the location (l, a
lowercase L) and user name (uid) of the resulting user:

PingDirectory/bin/ldapsearch \
 --port 1636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-ds-password> \
 --sizeLimit 1 "(|(l=Boston)(l=Austin)(l=San Fran*)(l=Seattle))"

Results
The following sample represents the typical output, although your output might differ:

dn: uid=user.20,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
mail: user.20@example.com
initials: KFS
homePhone: +1 707 878 3104
pager: +1 188 707 6756
givenName: Katie
employeeNumber: 20
telephoneNumber: +1 024 280 5210
mobile: +1 625 070 5636
sn: Steeves
cn: Katie Steeves
description: This is the description for Katie Steeves.
street: 23279 Seventh Street
st: IN
postalAddress: Katie Steeves$23279 Seventh Street$Boston, IN 85072
uid: user.20
l: Boston
postalCode: 85072

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 51

Create an attribute for the user location

About this task

The information of the user whom the OAuth bearer token identified to PingDataGovernance is passed
as the TokenOwner to the PingDataGovernance PDP. To use the location attribute of the user within the
policy, add it to the trust framework:

Steps

1. Click Trust Framework# Attributes.

2. To add a new attribute, click +.

3. In the Name text box, type city

4. From the Parent drop-down list, select TokenOwner.

5. In the Resolver Settings section, perform the following steps:

a. Click Add Resolver.
b. From the Resolver Type drop-down list, select Attribute and specify a value of TokenOwner.

6. In the Value Settings section, perform the following steps:

a. From the Processor drop-down list, select JSON Path and type a value of $.l (lowercase L)
b. Select the Default Value check box and type a value of [].

This step prevents a policy rule that uses the city attribute from failing if the token owner
possesses a null value for the l attribute.

c. Because the location is a multi-valued attribute, select Collection from the Type drop-down list.

7. Click Save changes.

Results

Add logic to check the user location

About this task

To check the user location by extending the condition logic of your policy rule, perform the following steps:

Steps

1. Click Policies# Global Decision Point# Random jokes API policy.

2. Expand the "Block programming jokes" rule.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 52

3. In the Condition group box, perform the following steps:

a. Click + Comparison.
b. From the first drop-down list, select TokenOwner.city.
c. From the comparator drop-down list, select Contains.
d. In the final text box, type Boston, which is the city that you found when searching for a user.

4. Click Save changes.

Results

Test the gateway with cURL

About this task

1. Test the proxied API again with cURL, but this time include the user name of the user whom you
located earlier, as follows:

curl --insecure -X GET \
 https://<your-dg-host>:<your-https-dg-port>/jokes/random \
 -H 'Authorization: Bearer {"active": true, "sub": "user.20"}'

Try the API repeatedly until you receive an HTTP 502 response.
2. Test the proxied API again with a different user from a different city, as follows:

curl --insecure -X GET \
https://<your-dg-host>:<your-https-dg-port>/jokes/random \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Keep trying the API until you receive a programming joke.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 53

Example files

The compressed PingDataGovernance Server file at PingDataGovernance/resource/policies
includes a policy snapshot and deployment package that contains an example Trust Framework as well as
example policies.

Create the first SCIM policies

In the previous section, you used PingDataGovernance Server to filter data that an external REST API
returned. In this section, you will develop a set of access-control policies for the PingDataGovernance
Server's built-in SCIM REST API.

While PingDataGovernance Server's API security gateway protects existing REST APIs,
PingDataGovernance Server's built-in SCIM service provides a REST API for accessing and protecting
identity data that might be contained in datastores like LDAP and relational databases.

PingDataGovernance Server uses SCIM in the following ways:

▪ Internally, user identities are represented as SCIM identities by way of one or more SCIM resource
types and schemas. This approach includes access token subjects, which are always mapped to a
SCIM identity.

▪ A SCIM REST API service provides access to user identities through HTTP.

You will now design a set of policies to control access to the SCIM REST API by using OAuth 2 access
token rules. This section assumes that you have set up and configured PingDataGovernance Server as
described previously.

Before proceeding, make a test request to generate a SCIM REST API response to a request when only
the default policies are in place. As in the earlier section, a mock access token is used.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'

Although the precise attribute values might vary, the response returns the SCIM resource that corresponds
to user.1.

{"mail":["user.1@example.com"],"initials":["RJV"],"homePhone":["+1 091 438
 1890"],
"pager":["+1 472 824 8704"],"givenName":
["Romina"],"employeeNumber":"1","telephoneNumber":["+1 319 624 9982"],
"mobile":["+1 650 622 7719"],"sn":["Valerio"],"cn":["Romina Valerio"],
"description":["This is the description for Romina Valerio."],"street":
["84095 Maple Street"],
"st":["NE"],"postalAddress":["Romina Valerio$84095 Maple Street$Alexandria,
 NE 39160"],
"uid":["user.1"],"l":["Alexandria"],"postalCode":
["39160"],"entryUUID":"355a133d-58ea-3827-8e8d-b39cf74ddb3e",
"objectClass":
["top","person","organizationalPerson","inetOrgPerson"],"entryDN":"uid=user.1,ou=people,o=yeah",
"meta":{"resourceType":"Users",
"location":"https://<your-dg-host>:<your-https-dg-port>/scim/v2/
Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},
"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"]}

This response is a success response, although we prefer that it not be one, because it shows that any
active access token referencing a valid user can be used to access any data.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 54

Create the policy tree

About this task

Log in to the PingDataGovernance Policy Administration GUI and click Policies# Policy Editor. The
default policies include a single policy, named Token Validation, under Global Decision Point.
This policy denies any request by using an access token if its active flag is set to false. This policy is
augmented with a set of scope-based access control policies.

Steps

1. To create a tree structure and ensure that your policies apply only to SCIM requests, perform the
following steps:

a. Highlight Global Decision Point.
b. Click +.
c. Click Add Policy Set.
d. In the Name text box, type SCIM Policy Set.
e. Click Unless one decision is deny, the decision will be permit and change it to A single deny

will override any permit decisions.

This step is known as a combining algorithm. It determines the manner in which the policy set
resolves potentially contending decisions from child policies.

f. Click Show "Applies to".
g. Click Toolbox.
h. From the Services list, drag SCIM2 to the blue Targets box.

This step ensures that policies in the SCIM policy set apply only to SCIM requests.
i. Click Save changes.

2. To add a branch under the SCIM policy set to hold SCIM-specific access token policies, go from
Toolbox to Policies and perform the following steps:

a. Highlight SCIM Policy Set.
b. Click +.
c. Click Add Policy Set.
d. In the Name text box, type Token Policies.
e. Change the combining algorithm to A single deny will override any permit decisions.
f. Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 55

3. To add another branch that holds a policy specific to access token scopes, perform the following steps:

a. Highlight Token Policies.
b. Click +.
c. Click Add Policy Set.
d. In the Name text box, type Scope Policies.
e. Change the combining algorithm to Unless one decision is permit, the decision will be deny.
f. Click Save changes.

Create SCIM access token policies

After you define a structure, you are ready to define some policies. In this section, you will define three
policies that use a requester's access token to limit its access to data.

Create a policy for permitted access token scopes

About this task

The first policy defines the access token scopes that PingDataGovernance Server accepts for SCIM
requests. The following table defines these scopes.

Scope Allowed actions Applies to

scimAdmin search, retrieve, create/modify,
delete

Any data

email retrieve Requester's email attributes

profile retrieve Requester's profile attributes

To create the policy and add rules to define the scopes, perform the following steps:

Steps

1. Highlight Scope Policies.

2. Click Show Advice.

a. Click the + icon to add advice.

3. Click Toolbox.

4. From the Advice list, drag Insufficient Scope to the blue Advice box.

5. Click Save Changes.

6. Highlight Scope Policies.

7. Click +.

8. Click Add Policy.

9. In the Name text box, type Permitted Scopes.

10.Change the combining algorithm to A single deny will override any permit decisions.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 56

11.Click Save Changes.

Test the policy with cURL

About this task

If you attempt the same HTTP request that you issued previously, it is now denied:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'

{"schemas":["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403",
"scimType":"insufficient_scope","detail":"Requested operation not allowed by
 the granted OAuth scopes."}

Define the email scope

Steps

1. Highlight Permitted Scopes.

a. Click Toolbox.

2. From the Rules list, drag Permitted SCIM scope for user to the blue Rules box.

3. To the right of the copied rule, click

4. Click Replace with clone.

5. In the Name text box, type Scope: email.

6. To expand the rule, click +.

7. In the Description text box, type Rule that permits a SCIM user to access its own
mail attribute if the access token contains the email scope..

8. In the HttpRequest.AccessToken.scope row of the Condition group box, type email in the
CHANGEME text box.

9. Within the rule, click Show "Applies to".

10.From Actions, drag retrieve to the blue Targets box.

i Note: This task uses different actions from the previous gateway example.

11.Within the rule, click Show Advice.

12.From Advice, drag Include email attributes to the blue Advice box.

Note the payload for this predefined advice. If the condition for this rule is satisfied, the response
includes the mail attribute.

13.Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 57

Results

Test the email scope with cURL

About this task

If you make the same request as earlier, a 403 is returned because the provided scope is not allowed:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/v2/
Me \

 -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'

If you adjust the request to use the email scope, the request succeeds, and only the mail attribute is
returned:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 58

Define the profile scope

Steps

1. From the Rules list, drag Permitted SCIM scope for user to the blue Rules box.

2. To the right of the copied rule, click

3. Click Replace with clone.

4. In the Name text box, type Scope: profile.

5. To expand the rule, click +.

6. In the Description text box, type Rule that permits a SCIM user to access a subset of
its own profile attributes if the access token contains the profile scope.

7. In the HttpRequest.AccessToken.scope row of the Condition group box, type profile in the
CHANGEME text box.

8. Within the rule, click Show "Applies to".

9. From Actions, drag retrieve to the blue Targets box.

10.Within the rule, click Show Advice.

11.Click Toolbox.

12.From Advice, drag Include profile attributes to the blue Advice box.

Note the payload for this predefined advice. If the condition for this rule is satisfied, the response
includes the uid, sn, givenName, and description attributes.

13.Click Save changes.

Results

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 59

Test the profile scope with cURL

About this task

Make the same request as earlier, but change the email scope that the access token uses to profile:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "profile", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"givenName":["Romina"],"description":["This is the description
 for Romina Valerio."],"sn":["Valerio"]}

The attributes defined by the new rule's advice are returned.

Because an access token might contain multiple scopes, confirm that an access token with the email and
profile scopes returns the union of the attributes that both scopes grant:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email profile", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"mail":["user.1@example.com"],"givenName":
["Romina"],"description":["This is the description for Romina
 Valerio."],"sn":["Valerio"]}

Define the scimAdmin scope

For the scimAdmin scope, you will define different behaviors that depend on the action of the request. As
a result, the scope definition will be split into multiple rules.

Add the scimAdmin retrieve rule

Steps

1. Highlight Permitted Scopes.

2. Click Create new Rule.

3. In the Name text box, type Scope: scimAdmin (retrieve).

4. From the Effect drop-down list, select Permit.

5. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, select HttpRequest.AccessToken.scope.
c. From the comparator drop-down list, select Contains.
d. In the final text box, type scimAdmin.

6. Within the rule, click Show "Applies to".

7. Click Toolbox.

8. From Actions, drag retrieve to the blue Targets box.

9. Within the rule, click Show Advice.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 60

10.From Advice, drag Include all attributes to the blue Advice box.

11.Click Save Changes.

Results

Add the scimAdmin create/modify rule

Steps

1. Click Create new Rule.

2. In the Name text box, type Scope: scimAdmin (create/modify).

3. From the Effect drop-down list, select Permit.

4. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, select HttpRequest.AccessToken.scope.
c. From the comparator drop-down list, select Contains.
d. In the final text box, type scimAdmin.

5. Within the rule, click Show "Applies to".

6. Click Toolbox.

7. From Actions, drag create to the blue Targets box.

8. From Actions, drag modify to the blue Targets box.

9. Within the rule, click Show Advice# Create new advice.

10.In the Name text box, type Allow certain attributes to be created or updated.

11.Select the Obligatory check box.

12.In the Code text box, type allow-attributes.

13.From the Applies to drop-down list, select Permit.

14.Click + Payload.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 61

15.In the Payload text box, type the following content:

["manager", "uid", "mail", "sn", "givenName", "cn", "description", "l",
 "st", "country", "postalAddress", "mobile", "homePhone"]

i Note: This example arbitrarily restricts the attributes that can be set during a create or modify
operation. To allow all attributes, set the Payload value to ["*"].

16.Click Save Changes.

Results

Add the scimAdmin search rule

Steps

1. Click Create new Rule.

2. In the Name text box, type Scope: scimAdmin (search).

3. From the Effect drop-down list, select Permit.

4. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, select HttpRequest.AccessToken.scope.
c. From the comparator drop-down list, select Contains.
d. In the final text box, type scimAdmin.

5. Within the rule, click Show "Applies to".

6. Click Toolbox.

7. From Actions, drag search to the blue Targets box.

8. Click Save Changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 62

Add the scimAdmin delete rule

Steps

1. Click Create new Rule.

2. In the Name text box, type Scope: scimAdmin (delete).

3. From the Effect drop-down list, select Permit.

4. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, type HttpRequest.AccessToken.scope.
c. From the comparator drop-down list, select Contains.
d. In the final text box, type scimAdmin.

5. Within the rule, click Show "Applies to".

6. Click Toolbox.

7. From Actions, drag delete to the blue Targets box.

8. Click Save Changes.

Create a policy for permitted OAuth2 clients

About this task

A REST service typically allows only requests from a whitelist of OAuth2 clients. In this section, you will
define a policy in which each rule specifies an allowed client.

Steps

1. On the Policies page, highlight Token Policies and click +.

2. Click Add Policy.

3. In the Name text box, type Permitted Clients.

4. Change the combining algorithm to Unless one decision is permit, the decision will be deny.

5. Click Create new Rule.

6. In the Name text box, type Client: client1.

7. From the Effect drop-down list, select Permit.

8. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, select HttpRequest.AccessToken.client_id.
c. From the comparator drop-down list, select Equals.
d. In the final text box, type client1.

9. Click Create new Rule.

10.In the Name text box, type Client: client2.

11.From the Effect drop-down list, select Permit.

12.In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, select HttpRequest.AccessToken.client_id.
c. From the comparator drop-down list, select Equals.
d. In the final text box, type client2.

13.At the policy level, click Show Advice.

i Note: Do not click Show Advice within the client1 or client2 rules.

14.From Advice, drag Unauthorized Client to the blue Advice box.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 63

15.Click Save changes.

Results

Test the client policy with cURL

About this task

After completing the tasks in the previous sections, an access token for any client other than client1 or
client2 is rejected.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"401","scimType":"The
 client is not authorized to request this
 resource.","detail":"unauthorized_client"}

An access token for client1 is now accepted.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 64

["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Create a policy for permitted audiences

About this task

An authorization server like PingFederate might set an audience field on the access tokens that it issues,
naming one or more services that are allowed to accept the access token. A REST service can use the
audience field to ensure that it does not accept access tokens that are intended for use with a different
service.

As with the Permitted Clients policy, each rule in the Permitted Audiences policy defines an acceptable
audience value.

Steps

1. Highlight Token Policies.

2. Click +.

3. Click Add Policy.

4. In the Name text box, type Permitted Audiences.

5. Change the combining algorithm to Unless one decision is permit, the decision will be deny.

6. Click Create new Rule.

7. In the Name text box, type Audience: https://example.com.

8. From the Effect drop-down list, select Permit.

9. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, select HttpRequest.AccessToken.audience.
c. From the comparator drop-down list, select Equals.
d. In the final text box, type https://example.com.

10.At the policy level, click Show Advice.

11.From Toolbox# Advice, drag Unauthorized Audience to the blue Advice box.

12.Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 65

Results

Test the audience policy with cURL

About this task

An access token without a specific audience value is expected to be rejected.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403","scimType":
"invalid_token","detail":"The access token was issued for a different
 audience."}

An access token with an audience value of https://example.com is accepted.

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1", "aud": "https://example.com"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":{"resourceType":"Users",
"location":"https://<your-https-dg-host>:<your-dg-port>/scim/v2/
Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},
"schemas":["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 66

Create a policy for role-based access control

About this task

The final policy illustrates the manner in which an access-control rule can base its authorization decision
on an attribute of the requesting identity, rather than on an access token claim.

When PingDataGovernance Server authorizes a request, an access token validator resolves the subject
of the access token to a SCIM user, and populates a policy request attribute called TokenOwner with the
SCIM user's attributes. In this scenario, build a policy around the employeeType attribute, which must be
defined in the Trust Framework.

Steps

1. On Trust Framework# Attributes, click TokenOwner.

2. Click +.

3. Click Add new Attribute.

4. In the Name text box, type employeeType.

5. From the Parent drop-down list, select TokenOwner.

6. In the Resolver Settings section, perform the following steps:

a. Click Add Resolver.
b. From the Resolver Type drop-down list, select Attribute and specify a value of TokenOwner.

7. In the Value Settings section, perform the following steps:

a. From the Processor drop-down list, select JSON Path and type a value of employeeType.
b. Select the Default Value check box and type of value of [].

A empty array is specified as the default value because not all users have an employeeType
attribute. A default value of [] ensures that policies can safely use this attribute to define conditions.

c. From the Type drop-down list, select Collection.

8. Click Save changes.

Results

Next steps

Add a policy that uses the employeeType attribute.

1. Highlight SCIM Policy Set.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 67

2. Click +.
3. Click Add Policy.
4. In the Name text box, type Restrict Intern Access.
5. Change the combining algorithm to Unless one decision is deny, the decision will be permit.
6. Click Create new Rule.
7. In the Name text box, type Restrict access for interns.
8. From the Effect drop-down list, select Permit.
9. In the Condition group box, perform the following steps:

a. Click + Condition.
b. In the first text box, select TokenOwner.employeeType.
c. From the comparator drop-down list, select Contains.
d. In the final text box, type intern.

10.Within the rule, click Show Advice# Create New Advice.
11.In the Name text box, type Restrict attributes visible to interns.
12.Select the Obligatory check box.
13.In the Code text box, type exclude-attributes.
14.From the Applies to drop-down list, select Permit.
15.Click + Payload.
16.In the Payload text box, type ["description"].
17.Click Save Changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 68

Test the policy with cURL

About this task

PingDataGovernance's sample user data allows an employeeType attribute but does not populate it
with values for any users. To modify a user entry, create a file named user2-to-intern.ldif with the
following contents:

dn: uid=user.2,ou=people,dc=example,dc=com
changetype: modify
add: employeeType
employeeType: intern

Run the following command to update user.2:

PingDirectory/bin/ldapmodify --port 1636 --useSSL --trustAll --bindDN
 "cn=directory manager" --bindPassword <your-ds-password> -f user2-to-
intern.ldif

Confirm that the user cannot read the description attribute, even though the profile scope allows it:

curl --insecure -X GET https://<your-dg-host>:<your-https-dg-port>/scim/
v2/Me -H 'Authorization: Bearer {"active": true, "sub": "user.2", "scope":
 "profile", "client_id": "client1", "aud": "https://example.com"}'

{"id":"c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09","meta":
{"resourceType":"Users","location":"https://<your-dg-host>:<your-https-
dg-port>/scim/v2/Users/c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.2"],"givenName":["Billy"],"sn":["Zaleski"]}

Example files

The compressed PingDataGovernance Server file at PingDataGovernance/resource/policies
includes a policy snapshot and deployment package that contains an example Trust Framework as well as
example policies.

Install PingDataGovernance Server
As you plan your PingDataGovernance deployment, review the components to install as well as the
potential deployment architectures and environments.

Components

▪ Policy Administration GUI – Powered by Symphonic®, the PingDataGovernance Policy Administration
GUI gives policy administrators the ability to develop and test data-access policies.

▪ PingDataGovernance Server – Enforces policies to control fine-grained access to data. REST APIs
access data through PingDataGovernance Server, which applies the data-access policies to allow,
block, filter, or modify data resources and data attributes.

Deployment architectures

PingDataGovernance Server supports the following options of deployment architectures for enforcing fine-
grained access to data:

▪ SCIM API to datastores
▪ API Security Gateway as reverse proxy

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 69

▪ API Security Gateway in Sideband configuration

The following sections describe these deployment architectures in more detail.

SCIM API to datastores

PingDataGovernance Server SCIM service provides a REST API for data that is stored in one or more
external datastores, based on the SCIM 2.0 standard. Policy is enforced by the SCIM service.

API Security Gateway as reverse proxy

PingDataGovernance Server's API security gateway can be deployed as a reverse proxy to an existing
JSON-based REST API. In this configuration, PingDataGovernance Server acts as an intermediary
between clients and existing API services. Policy is enforced by the API security gateway.

API Security Gateway in Sideband configuration

PingDataGovernance Server's API security gateway can be deployed as an extension to an existing
API Lifecycle Management Gateway, which is commonly known as a sideband configuration. In this
configuration, the API Lifecycle Management Gateway functions as the intermediary between clients and

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 70

existing API services. However, API request and response data still flows through PingDataGovernance
Server to enforce policy.

Deployment environments

PingDataGovernance Server can be deployed in either of the following environments:

▪ Development environment – PingDataGovernance Server and the Policy Administration GUI are used
together during the development of policies.

▪ Other pre-production and production environments – After policies are developed, they are tested in
other pre-production environments and eventually put into production.

The following sections describe these deployment environments in more detail.

Development environment

To allow teams to test data-access policies during their development, PingDataGovernance Server is
configured to obtain policy decisions from the Policy Administration GUI. The development environment
supports all deployment architectures. In this configuration, the Policy Decision Service is set to External
mode.

The following image shows PingDataGovernance Server configured in the Reverse Proxy architecture.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 71

As test API requests are proxied through PingDataGovernance Server's API security gateway, policy
decisions are obtained from the Policy Administration GUI, and are enforced by the API security gateway.

Other pre-production and production environments

The Policy Administration GUI is not a part of so-called higher environments. Instead, policy is exported
from the Policy Administration GUI, and is imported into PingDataGovernance Server.

In the following configuration, the Policy Decision Service is set to Embedded mode.

Before you begin

The following components are required to install PingDataGovernance Server:

▪ Supported Linux, Windows, or Docker platform
▪ Valid license key
▪ Java

The following sections describe these prerequisites in more detail.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 72

System requirements

Ping Identity® has qualified the configurations in this section and has certified that they are compatible with
the product. Differences in operating system versions, service packs, and other platform variations are
supported until the platform or other required software is suspected of causing an issue.

Platforms

▪ Windows Server 2019
▪ Windows Server 2016
▪ Red Hat Enterprise Linux ES 8
▪ Red Hat Enterprise Linux ES 7.6
▪ Red Hat Enterprise Linux ES 7.5
▪ CentOS 7.6
▪ CentOS 7.5
▪ SUSE Linux Enterprise 15
▪ SUSE Linux Enterprise 12 SP3
▪ Ubuntu 18.04 LTS
▪ Ubuntu 16.04 LTS
▪ Amazon Linux 2
▪ Amazon Linux

i Note: This product has been tested with the default configurations of all operating system
components. If your organization has customized implementations or has installed third-party plugins, the
deployment of this product might be affected.

Docker

Version: Docker 18.09.0

Host operating system: Ubuntu 18.04 LTS

Kernel: 4.4.0-1052-aws 7.3

i Note: Ping Identity accepts no responsibility for the performance of any specific virtualization software
and in no way guarantees the performance or interoperability of any virtualization software with its
products.

Java Runtime Environment

▪ Amazon Corretto 8
▪ OpenJDK 11
▪ OpenJDK 8
▪ Oracle Java SE Development Kit 11 LTS
▪ Oracle Java SE Development Kit 8

i Note: The Ping Identity Java Support Policy applies to your Java Runtime Environment.

Browsers

Administration Console

▪ Chrome
▪ Firefox
▪ Internet Explorer 11 and later

Copyright ©2022

https://support.pingidentity.com/s/article/PingIdentity-Java-Support-Policy

PingDataGovernance | PingDataGovernance Server Administration Guide | 73

About license keys

License keys are required to install all Ping products. To obtain a license key, contact your account
representative or use the Ping Identity licensing portal.

A license is required for setting up a new single server instance and can be used site-wide for all servers
in an environment. Additionally, a new license must be obtained when updating a server to a new major
version, such as when upgrading from 7.3 to 8.0.

i Note: A prompt for a new license is displayed during the update process.

Each license expires on a particular date. Before a license expires, obtain a new one and install it by using
dsconfig or the Admin Console.

i Note: The server provides a notification as the expiration date approaches.

To view the details of a license, use the server's status tool.

Installing Java

About this task

PingDataGovernance Server requires Java for 64-bit architectures. Even if Java is already installed
on your system, we recommend that you create a separate Java installation for PingDataGovernance
Server. This setup ensures that updates to the system-wide Java installation do not inadvertently impact
PingDataGovernance Server.

i Note: This setup requires that you install the JDK, rather than the JRE.

Steps

1. Download and install a JDK.

2. Set the JAVA_HOME environment variable to the Java installation directory path.

3. Add the bin directory to the PATH environment variable.

Preparing a Linux environment

About this task

This section describes the following tasks, which must be completed before you install
PingDataGovernance Server in a Linux environment:

Steps

1. Setting the file descriptor limit.

2. Setting the maximum user processes.

3. Disabling file system swapping.

4. Managing system entropy.

5. Enabling the server to listen on privileged ports.

Copyright ©2022

https://www.pingidentity.com/en/account/request-license-key.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 74

Set the file descriptor limit

About this task

By default, PingDataGovernance Server allows for an unlimited number of connections. However, the
server is restricted by the file descriptor limit on the operating system. This topic describes how to increase
the file descriptor limit on the operating system.

i Note: If the operating system relies on systemd, refer to the Linux operating system documentation
for instructions on setting the file descriptor limit.

Steps

1. Display the current hard limit of the system, as follows:

ulimit -aH

The hard limit is the maximum server limit that can be set without tuning the kernel parameters in the
proc file system.

2. Edit the /etc/sysctl.conf file.

If the fs.file-max property is defined in the file, verify that its value is set to at least 65535. If this property
does not exist, add the following line to the end of the file:

fs.file-max = 65535

3. Edit the /etc/security/limits.conf file.

If the file contains lines that set the soft and hard limits for the number of file descriptors, verify that the
values are set to 65535. If the properties are absent, add the following lines to the end of the file (before
#End of file), making certain to insert a tab between the columns:

* soft nofile 65535
* hard nofile 65535

4. Restart the server.

5. Use the ulimit command to verify that the file descriptor limit is set to 65535, as follows:

ulimit -n

Results

After the operating system limit is set, use one of the following methods to configure the number of file
descriptors that the server uses:

▪ Use a NUM_FILE_DESCRIPTORS environment variable.
▪ Create a config/num-file-descriptors file with a single line, such as

NUM_FILE_DESCRIPTORS=12345.

If these values are not set, the default value of 65535 is used.

i Note: This optional step ensures that the server shuts down safely before it reaches the file descriptor
limit.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 75

Next steps

For RedHat 7 or later, modify the 20-nproc.conf file to set limits for the open files and max user
processes:

/etc/security/limits.d/20-nproc.conf

Add or edit the following lines if they do not already exist:

* soft nproc 65536
* soft nofile 65536
* hard nproc 65536
* hard nofile 65536
root soft nproc unlimited

Set the maximum user processes

About this task

On some Linux distributions, such as RedHat Enterprise Linux Server/CentOS 6.0 or later, the default
maximum number of user processes is set to 1024, which is considerably lower than the same parameter
on earlier distributions, such as RHEL/CentOS 5.x. The default value of 1024 leads to some JVM memory
errors when running multiple servers on a machine, due to each Linux thread being counted as a user
process.

At startup, PingDataGovernance Server attempts to raise this limit to 16383 if the value reported by
ulimit is less than that number. If the value cannot be set, an error message is displayed. In such a
scenario, explicitly set the limit in /etc/security/limit.conf, as the following example shows.

* soft nproc 100000
* hard nproc 100000

The 16383 value can also be set in the NUM_USER_PROCESSES environment variable, or by setting the
same variable in config/num-user-processes.

Disable file system swapping

About this task

Disable all performance-tuning services, like tuned. If performance tuning is required, perform the
following steps to set vm.swappiness:

Steps

1. Clone the existing performance profile.

2. Add vm.swappiness = 0 to the new profile's tuned.conf file in /usr/lib/tuned/
profilename/tuned.conf.

3. Select the updated profile by running tuned-adm profile customized_profile.

Manage system entropy

Entropy is used to calculate random data that the system uses in cryptographic operations. Some
environments with low entropy might experience intermittent performance issues with SSL-based
communication, such as certificate generation. This scenario is more typical on virtual machines but can
also occur in physical instances. For best results, monitor the value of kernel.random.entropy_avail
in the configuration file /etc/sysctl.conf.

i Note: To increase system entropy on a Windows system, move the mouse pointer in circles or type
characters randomly into an empty text document.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 76

On a UNIX or Linux system, ensure that rng-tools is installed and run the following command:

sudo rngd -r /dev/urandom -o /dev/random

To check the level of system entropy on a UNIX or Linux system, run the following command:

cat /proc/sys/kernel/random/entropy_avail

Values smaller than 3200 are considered too low to generate a certificate and might cause the system to
hang indefinitely.

Enable the server to listen on privileged ports

About this task

Linux systems provide capabilities that grant specific commands the ability to complete tasks that are
normally permitted only by a root account. Instead of granting an ability to a specific user, capabilities are
granted to a specific command. For the sake of convenience, you might want to enable the server to listen
on privileged ports while running as a non-root user.

Use the setcap command to assign capabilities to an application. The cap_net_bind_service
capability enables a service to bind a socket to privileged ports, which are defined as ports with numbers
less than 1024. If Java is installed in /ds/java, and if the Java command to run the server is /ds/java/
bin/java, then the Java binary can be granted the cap_net_bind_service capability by using the
following command:

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

The Java binary requires an additional shared library, libjli.so, as part of the Java installation.
Because additional limitations are imposed on where the operating system looks for shared libraries to load
for commands with assigned capabilities, you must create the file /etc/ld.so.conf.d/libjli.conf
with the path to the directory that contains the libjli.so file. This step informs the operating system
where to look for the library. For example, if the Java installation is located in /ds/java, the contents
must be as follows:

/ds/java/lib/amd64/jli

Run the following command for the change to take effect:

$ sudo ldconfig -v

Installing PingDataGovernance Server

About this task

The following options are available when installing PingDataGovernance Server:

▪ Install PingDataGovernance Server manually
▪ Use server profiles to install PingDataGovernance Server in an automated environment
▪ Use Docker to install PingDataGovernance Server

The following sections describe these installation options in more detail.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 77

Installing PingDataGovernance Server manually

About this task

After you prepare your hardware and software system based on the preceding instructions, you can start
the setup process for PingDataGovernance Server, which consists of the following steps:

Steps

1. Obtaining the PingDataGovernance Server installation packages.

2. Installing PingDataGovernance Server.

3. Installing the PingDataGovernance Policy Administration GUI.

4. Performing additional configuration steps.

The following sections describe these installation and configuration steps in more detail.

Obtaining the installation packages

About this task

The PingDataGovernance distribution consists of two compressed files, one for each of the following
server components:

▪ PingDataGovernance Server
▪ PingDataGovernance Policy Administration GUI

To start the installation process, obtain the latest compressed release bundles from Ping Identity and
expand them into folders of your choice.

Installing the server

About this task

To unpack the build distribution

The PingDataGovernance release bundle contains the PingDataGovernance Server code, tools, and
package documentation.

Steps

1. Download the latest compressed distribution of the PingDataGovernance Server software.

2. Unzip the compressed zip archive to a directory of your choice.

$ unzip PingDataGovernance-<version>.zip

Results
You can now set up PingDataGovernance Server.
About the layout of the PingDataGovernance Server folders

After you extract the contents of the PingDataGovernance Server distribution file, you can access the
folders and command-line utilities that the following table describes.

Directories, files, and tools Description

README README file that describes the steps to set up and
start PingDataGovernance Server.

bak Stores the physical backup files used with the
backup command-line tool.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 78

Directories, files, and tools Description

bat Stores Windows-based command-line tools for
PingDataGovernance Server.

bin Stores UNIX/Linux-based command-line tools for
PingDataGovernance Server.

build-info.txt Contains build and version information for
PingDataGovernance Server.

collector Used by the server to make monitored statistics
available to PingDataMetrics Server.

config Stores the configuration files for the backends
(admin, config) as well as the directories for
messages, schema, tools, and updates.

docs Provides the product documentation.

legal Stores any legal notices for dependent software
used with PingDataGovernance Server.

lib Stores any scripts, jar, and library files needed for
the server and its extensions.

locks Stores any lock files in the backends.

logs Stores log files for PingDataGovernance Server.

metrics Stores the metrics that can be gathered for this
server and surfaced in PingDataMetrics Server.

resource Stores supporting files such as default policies, a
sample server profile template, and MIB files for
SNMP.

revert-update The revert-update tool for UNIX/Linux systems.

revert-update.bat The revert-update tool for Windows systems.

setup The setup tool for UNIX/Linux systems.

setup.bat The setup tool for Windows systems.

uninstall The uninstall tool for UNIX/Linux systems.

uninstall.bat The uninstall tool for Windows systems.

update The update tool for UNIX/Linux systems.

update.bat The update tool for Windows systems.

velocity Stores any customized Velocity templates and
other artifacts (CSS, Javascript, images), or
Velocity applications hosted by the server.

webapps Stores web application files such as the
Administrative Console.

About the server installation modes

PingDataGovernance Server provides the following tools to help install and configure the system:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 79

▪ The setup tool performs the initial tasks needed to start PingDataGovernance Server, including
configuring JVM runtime settings and assigning listener ports for the PingDataGovernance Server's
HTTP services.

▪ The create-initial-config tool configures connectivity between a SCIM 2 user store and
PingDataGovernance Server. During the process, the prepare-external-store tool prepares each
PingDirectory Server to serve as a user store by PingDataGovernance Server. Configuration can be
written to a file to use for additional installations.

▪ After the initial setup is finished, you can use the dsconfig tool and the Administrative Console to
perform additional configuration.

To install a server instance, run the setup tool in one of the following modes:

▪ Interactive Command-Line mode – Prompts for information during the installation process. To run the
installation in this mode, use the setup --cli command.

▪ Non-Interactive Command-Line mode – Designed for setup scripts to automate installations or for
command-line usage. To run the installation in this mode, setup must be run with the --no-prompt option
as well as the other arguments required to define the appropriate initial configuration.

Perform all installation and configuration steps while logged on to the system as the user or the role under
which PingDataGovernance Server will run.

Install the server interactively

About this task

▪ The setup tool prompts you interactively for the information that it needs. Be prepared to provide the
following information:

▪ The location of a valid license file.
▪ The name and password for an administrative account, which is also called the root user DN.
▪ An available port for PingDataGovernance Server to accept HTTPS requests.
▪ An available LDAPS port for PingDataGovernance Server to accept administrative requests.
▪ Information related to the server's connection security, including the location of a keystore that contains

the server certificate, the nickname of that server certificate, and the location of a truststore.
▪ The amount of memory to reserve for usage by the JVM.
▪ A unique instance name for the server.

Steps

1. Run the setup command.

$./setup

2. To start and stop PingDataGovernance Server, use the start-server and stop-server
commands, respectively.

For additional options, see Starting PingDataGovernance Server on page 91.

Log in to the Administrative Console

About this task

After the server is installed, access the Administrative Console at https://<host>/console/login
to verify the configuration and to manage the server. To log in to the Administrative Console, use the initial
root user DN specified during setup (by default, cn=Directory Manager).

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 80

Installing PingDataGovernance Policy Administration GUI

About this task

To unpack the build distribution

The PingDataGovernance Policy Administration GUI release bundle contains the PingDataGovernance
Policy Administration GUI code and tools.

Steps

1. Download the latest compressed distribution of the PingDataGovernance Policy Administration GUI
software.

2. Extract the compressed archive to a directory of your choice.

$ unzip PingDataGovernance-PAP-<version>.zip

Results
You can now set up PingDataGovernance Policy Administration GUI.
About the layout of the PingDataGovernance Policy Administration GUI folders

After you have extract the contents of the PingDataGovernance Policy Administration GUI distribution file,
you can access the folders and command-line utilities that the following table describes.

Directories, files, and tools Description

admin-point-application Stores any jar and library files needed for the
server.

bin Stores UNIX/Linux-based command-line tools for
the PingDataGovernance Policy Administration
GUI.

build-info.txt Contains build and version information for the
PingDataGovernance Policy Administration GUI.

config Stores the configuration, including the keystore for
the web server HTTPS certificate.

lib Stores any jar and library files needed by the
command-line tools.

logs Stores log files for the PingDataGovernance Policy
Administration GUI.

resource Stores supporting files such as policy snapshots.

Install the PingDataGovernance Policy Administration GUI interactively

About this task

The setup tool prompts you interactively prompt for the information that it needs. Be prepared to provide
the following information:

▪ The location of a valid license file.
▪ An available port for the PingDataGovernance Policy Administration GUI to accept HTTPS requests.

Additionally, you must choose one of the two following authentication modes for the PingDataGovernance
Policy Administration GUI:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 81

▪ Demo mode – Configures the PingDataGovernance Policy Administration GUI to use form-based
authentication with a fixed set of credentials. Unlike OIDC mode, this mode does not require an external
authentication server. However, it is inherently insecure and is recommended only for demonstration
purposes.

▪ OpenID Connect (OIDC) mode – configures the PingDataGovernance Policy Administration GUI to
delegate authentication and sign-on services to an OpenID Connect provider, such as PingFederate.

If you choose OIDC mode, be prepared to provide the following additional information:

▪ The host name and port of an OpenID Connect provider.
▪ Information related to the server's connection security, including the location of a keystore that contains

the server certificate, the nickname of that server certificate, and the location of a truststore.

Steps

1. Run the setup command.

2. To start and stop the PingDataGovernance Policy Administration GUI, use the start-server and
stop-server commands, respectively.

Log in to the PingDataGovernance Policy Administration GUI

After completing setup for demo mode, you can log in immediately to the PingDataGovernance Policy
Administration GUI by going to the following URL in a web browser:

https://<host>:<port>

where you substitute the host name and port that you specified during setup.

Use the following demo credentials to log in to the PingDataGovernance Policy Administration GUI:

▪ User name: admin
▪ Password: password123

If you set up the PingDataGovernance Policy Administration GUI to use OIDC mode, you must also
configure an OpenID Connect provider, see Configure Authentication Server for OpenID Connect single
sign-on on page 82

To log in to the PingDataGovernance Policy Administration GUI, go to the following URL in a web browser:

https://<host>:<port>

where you substitute the host name and port that you specified during setup.

The GUI prompts you to proceed to the OpenID Connect provider to log in. After OpenID Connect
authentication is complete, you are redirected back to the PingDataGovernance Policy Administration GUI.

Change the Policy Administration GUI authentication mode

About this task

If you decide later to change the authentication mode that the PingDataGovernance Policy Administration
GUI uses, re-run the setup tool and choose a different authentication mode. This action overwrites the
PingDataGovernance Policy Administration GUI's existing configuration.

Steps

1. Stop the Policy Administration GUI.

$ bin/stop-server

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 82

2. Run the setup command.

$ bin/setup

3. Start the Policy Administration GUI.

$ bin/start-server

Configure Authentication Server for OpenID Connect single sign-on

About this task

If you chose OIDC mode when setting up the PingDataGovernance Policy Administration GUI, you need
to configure an OpenID Connect provider, such as PingFederate, to accept sign-on requests from the
PingDataGovernance Policy Administration GUI.

Create an OAuth 2 client

Use the following configuration to create an OAuth 2 client that represents the PingDataGovernance Policy
Administration GUI.

OAuth 2 client configuration Configuration value

Client ID pingdatagovernance-pap

Redirect URI https://<host>:<port>/idp-callback

Grant type Implicit

Response type token id_token

Scopes ▪ openid
▪ email
▪ profile

Additionally, access tokens and ID tokens issued for this client must be configured to include the following
claims:

▪ sub
▪ name
▪ email

Allow a CORS origin

Configure the OpenID Connect provider to accept a CORS origin that matches the PingDataGovernance
Policy Administration GUI's scheme, public host, and port, such as https://<host>:<port>.

Authorizing logon attempts

Configure the OpenID Connect provider to issue tokens to the PingDataGovernance Policy Administration
GUI only when the authenticated user is authorized to administer policies according to your organization's
access rules.

For PingFederate, this level of authorization is controlled by using issuance criteria. For more information,
refer to the PingFederate documentation.

Additional configuration steps

About this task

After the components are installed, complete the following configuration tasks:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 83

Steps

1. Configure the Policy Decision service.

2. Configure a user store.

3. Configure Access Token Validation

The following sections describe these configuration tasks in more detail.

Configure the Policy Decision Service

About this task

Configure the Policy Decision Service before policies are enforced on data access. For development
environments in which policy administrators will be building and testing policies, configure the Policy
Decision Service to External mode. For other pre-production and production environments in which policies
will be tested and deployed, configure the Policy Decision Service for Embedded mode.

For information about configuring the Policy Decision Service, see Policy administration on page 132.

Configure a user store

About this task

PingDataGovernance Server uses a user store from which to obtain attributes about the user who is
invoking APIs, or the user about whom a service is invoking APIs, to evaluate the attributes as part of
policy. Although PingDataGovernance Server assumes that PingDirectory Server is the default user store,
other LDAPv3-compliant directories are also supported.

prepare-external-store

When using PingDirectory Server as the user store, first prepare the server by running prepare-
external-store. This tool completes the following tasks:

▪ Creates the PingDataGovernance Server user account on your instance of PingDirectory Server.
▪ Sets the correct password.
▪ Configures the account with the required privileges.
▪ Installs the schema that PingDataGovernance Server requires.

create-initial-config

The create-initial-config command configures connectivity between PingDataGovernance Server
and the user store. It also creates a SCIM resource type through which PingDataGovernance Server
obtains the user attributes.

Although the create-initial-config command is recommended for first-time installers, its use is
optional. If you elect not to use create-initial-config, you must configure the following objects:

▪ Store adapter
▪ SCIM resource type
▪ SCIM schema (optional)

For more information about configuring SCIM, see About the SCIM service on page 115.

Configure Access Token Validation

About this task

Clients authenticate themselves to HTTP APIs and the SCIM service by using OAuth2 bearer token
authentication. PingDataGovernance Server uses Access Token Validators to translate and decode a
bearer token to a set of attributes that it represents.

For user-authorized bearer tokens, Access Token Validators are required to map the subject of the access
token to the user in the user store, to evaluate the user's attributes as part of policy.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 84

For more information about configuring Access Token Validation, see Access token validators on page
146.

Next steps

About this task

After the components are installed and configured, start developing policies for enforcing fine-grained
access to data. Consider performing the following steps:

Steps

1. Log in to the Admin Console to configure endpoints for existing JSON APIs.

For more information, see About the API security gateway on page 94.

2. Log in to the Admin Console to define SCIM APIs for data in databases

For more information, see About the SCIM service on page 115.

3. Log in to the PingDataGovernance Policy Administration GUI to create policy.

For more information, refer to the PingDataGovernance Policy Administration Guide.

Using server profiles to install PingDataGovernance Server

About this task

Organizations are adopting DevOps practices to reduce risk while providing quicker time-to-value for
the services that they provide to their business and customers. Examples of such practices that are
central to DevOps include automation and Infrastructure-as-Code (IaC). Organizations that combine these
principles can manage the following infrastructure and service operations in the same manner as preparing
application code for general release:

▪ Appropriate versioning
▪ Continuous integration
▪ Quality control
▪ Release cycles

Server profiles enable organizations to adopt these DevOps practices more easily.

Administrators can export the configuration of a PingDataGovernance Server instance to a directory of
mostly text files called a server profile. Administrators can also track changes to these files in a version-
control system like Git, and can install new instances of PingDataGovernance Server (or update existing
instances of PingDataGovernance Server) from a server profile.

The scripts and other files in the server-profile directory are declarative of the desired state of the
environment. Consequently, the definitions in the server-profile directory directly influence the
servers. No one needs to identify a server's current configuration and compute the differences that must be
applied to attain the appropriate end state.

The primary goal of a server profile is to simplify the deployment of PingDataGovernance Server by using
deployment automation frameworks. By using server profiles, the amount of scripting that is required
across automation frameworks – like Docker, Kubernetes, and Ansible – is reduced considerably.

As a declarative form of a full server configuration, a server profile provides the following advantages:

▪ Provides a more complete and easily comparable method of defining the configuration of an individual
server. Changes between different servers are easier to review and understand, and incremental
changes to a server's configuration are easier to track.

▪ Ensures that each server instance is configured identically to its peers.
▪ Applies to installing new instances as well as updating the configuration of previously installed

instances.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 85

▪ Shares a common configuration across a deployment environment of development, test, and production
without unnecessary duplication and error-prone, environment-specific modifications. For more
information about substituting variables that differ by environment, see Variable substitution on page
85.

▪ Reduces the number of additional configuration steps that are required to place a server into
production.

▪ Makes the execution of various configuration changes more consistent and repeatable. The strategy of
using a server profile to represent the final state of a server is less error-prone than recording a step-by-
step process to attain that state.

▪ Can be managed easily in a version-control system.
▪ Simplifies the management of servers outside deployment-automation frameworks.

Variable substitution

The manage-profile tool uses the format ${VARIABLE} to support the substitution of variables in
profiles. This format can be escaped by using another $. For example, after substitution, $${VARIABLE}
becomes ${VARIABLE}.

Variable values can be read from a profile variables file or from environment variable values. If both options
are used, the values that are specified in the file overwrite any environment variables.

The following code provides an example profile variables file.

MY_VARIABLE=value
MY_OTHER_VARIABLE=anothervalue

In this example, the tool provides the PING_SERVER_ROOT and PING_PROFILE_ROOT variables. The
following table describes the built-in variables.

Built-in variable Description

PING_SERVER_ROOT Evaluates to the absolute path of the server's root
directory.

PING_PROFILE_ROOT Evaluates to the individual profile's root directory.

For more information about the tool's usage, run the command bin/manage-profile --help.

Layout of a server profile

Use either of the following methods to create a server profile:

▪ Extract the template named server-profile-template-dg.zip, which is located in the resource
directory.

▪ Run the manage-profile generate-profile subcommand. The manage-profile tool
references the file system directory structure.

Files can be added to each directory as needed.

The following hierarchy represents the file structure of a basic server profile.

-server-profile/
 |-- dsconfig/
 |-- misc-files/
 |-- server-root/
 | |-- post-setup/
 | /-- pre-setup/
 |-- server-sdk-extensions/
 |-- setup-arguments.txt

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 86

setup-arguments.txt

When creating a profile, the first step is to add arguments to the file setup-arguments.txt. When
manage-profile setup is run, these arguments are passed to the server’s setup tool. To view the
arguments that are available in this file, run the server's setup --help command.

To provide the equivalent, non-interactive CLI arguments after any prompts have been completed, run
setup interactively. The setup-arguments.txt file in the profile template contains an example set of
arguments that can be changed.

setup-arguments.txt is the only required file in the profile.

dsconfig/

dsconfig batch files can be added to the dsconfig directory. These files, each of which must include a
.dsconfig extension, contain dsconfig commands to apply to server.

Because the dsconfig batch files are ordered lexicographically, 00-base.dsconfig runs before 01-
second.dsconfig, and so on.

To produce a dsconfig batch file that reproduces the current configuration, run bin/config-diff.

server-root/

Any server root files can be added to the server-root directory, including schema files, email template
files, custom password dictionaries, and other files that must be present on the final server root. Add these
files to the server-root/pre-setup or server-root/post-setup directory, depending on when
they need to be copied to the server root. Most server root files are added to the server-root/pre-setup
directory.

server-sdk-extensions/

Add server SDK extension ZIP files to the server-sdk-extensions directory. Use the manage-
extension tool to install them, and include any configuration that is necessary for the extensions in the
profile's dsconfig batch files.

variables-ignore.txt

The variables-ignore.txt file is an optional component of the server profile. It is useful when adding
bash scripts to the server root because such files often contain expressions that the manage-profile
tool normally interprets as variables.

Add variables-ignore.txt to a profile's root directory to indicate the relative paths of any files that are
not to have their variables substituted.

The following example shows the contents of a typical variables-ignore.txt file:

server-root/pre-setup/script-to-ignore.sh
server-root/post-setup/another-file-to-ignore.txt

server-root/permissions.properties

The permissions.properties file, located in the server-root directory, is an optional file that
specifies the permissions to apply to files that are copied to the server root. These permissions are
represented in octal notation. By default, server root files maintain their permissions when copied.

The following example shows the contents of a typical permissions.properties file:

default=700
file-with-special-permissions.txt=600
new-subdirectory/file-with-special-permissions.txt=644
bin/example-script.sh=760

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 87

misc-files/

Additional documentation and other files can be added to the misc-files directory, which the manage-
profile tool does not use. Use the variable PING_PROFILE_ROOT to refer to files in this directory from
other locations, such as setup-arguments.txt.

For example, a password file named password.txt in the misc-files directory could be referenced
with ${PING_PROFILE_ROOT}/misc-files/password.txt in setup-arguments.txt. Use a
reference like this example to supply the file for the --rootUserPasswordFile argument in setup-
arguments.txt.

Workflows

This section describes how to use the manage-profile tool to accomplish typical server-management
tasks, like the following examples:

▪ Creating a server profile on page 87.
▪ Installing a new environment on page 88.
▪ Scaling up your environment on page 89.
▪ Rolling out an update on page 89.

The following sections describe these tasks in more detail. For more information about the manage-
profile tool, run manage-profile --help. For more information about each individual subcommand
and its options, run manage-profile <subcommand> --help.

Creating a server profile

About this task

To create a server profile from a configured server, use the generate-profile subcommand.

Steps

1. Create a profile directory.

$ mkdir -p /opt/server-profiles/dg

2. Run generate-profile.

$ bin/manage-profile generate-profile --profileRoot /opt/server-profiles/
dg

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 88

3. Customize the resulting profile to suit your needs and to remove deployment environment-specific
values.

▪ Specify a consistent location for the license key file:

a. Copy the license key file to the server profile's misc-files directory.

$ cp PingDataGovernance.lic /opt/server-profiles/dg/misc-files/

b. Open the setup-arguments.txt file in a standard text editor.
c. Locate the --licenseKeyFile argument.
d. Change the value of --licenseKeyFile to the following value:

${PING_PROFILE_ROOT}/misc-files/PingDataGovernance.lic

e. Save your changes.
▪ Remove deployment environment-specific values and replace them with variables. For example,

to refer to a different PingFederate server in your development environments versus your test
environments, perform the following steps:

a. Open the /opt/server-profiles/dg/dsconfig/00-config.dsconfig file in a standard
text editor.

b. Locate the value specified for base-url for the external server that identifies your PingFederate
server.

c. Replace the value with a variable, like ${PF_BASE_URL}.
d. Save your changes.
e. Create or update a server profile variables file for your development environment.
f. Add a row like the following example to the variables file:

PF_BASE_URL=https://sso.dev.example.com:9031

g. Save your changes.
h. Continue replacing deployment environment-specific values with variables until the server profile

contains no more deployment environment-specific values.

At this point, the server profile can be checked into a version-control system, like Git, shared with
your team, and integrated into your deployment automation.

Installing a new environment

Before you begin
The steps in this section make the following assumptions:

▪ A server profile has already been created at the path ~/git/server-profiles/dg
▪ Your development environment's variables file is saved at the path ~/dg-variables-dev.env

About this task

After you create and customize a server profile, use the manage-profile setup subcommand to set up
new server instances and additional deployment environments.

The setup subcommand completes the following tasks:

▪ Copies the server root files
▪ Runs the setup tool
▪ Runs the dsconfig batch files
▪ Installs the server SDK extensions

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 89

▪ Sets the server's cluster name to a unique value

i Note: Cluster-wide configuration is automatically mirrored across all servers in the topology with
the same cluster name. In a DevOps deployment with immutable servers, configuration mirroring
introduces risk. Therefore, in most cases, cluster names should be unique for each server to avoid
configuration mirroring.

Steps

1. Extract the contents of the compressed archive to a directory of your choice.

$ mkdir /opt/dg
$ cd /opt/dg
$ unzip PingDataGovernance-<version>.zip

2. Change directories.

$ cd PingDataGovernance

3. Run setup.

$ bin/manage-profile setup \
 --profile ~/git/server-profiles/dg \
 --profileVariablesFile ~/dg-variables-dev.env

Scaling up your environment

About this task

The automation for this task is identical to the previous task of installing a new server in a new
environment. Because each instance of PingDataGovernance Server requires a unique instance name and
host name, each instance must also be set up from a unique server profile variables file.

Rolling out an update

Before you begin
The steps in this section make the following assumptions:

▪ A server profile has been created at the path ~/git/server-profiles/dg
▪ The server's server profile variables file is saved at the path /opt/dg/dg-variables.env
▪ The existing server with the earlier configuration is installed at /opt/dg/PingDataGovernance

About this task

Run the replace-profile subcommand on a server that was originally set up with a server profile to
replace its configuration with a new profile. The replace-profile subcommand applies a specified
server profile to an existing server while also preserving its configuration.

While manage-profile replace-profile is running, the existing server is stopped and moved to a
temporary directory that the --tempServerDirectory argument specifies. A fresh, new server is subsequently
installed and set up with the new profile. The final server is left running if it was running before the
command was started, and remains stopped if it was stopped.

If files have been added or modified in the server root since the most recent manage-profile setup
or manage-profile replace-profile was run, they are included in the final server with the replaced
profile. Otherwise, files added specifically from the server-root directory of the previous server profile
are absent from the final server with the replaced profile.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 90

If errors occur while running the subcommand, such as the new profile having an invalid setup-
arguments.txt file, the existing server returns to its original state from before manage-profile
replace-profile was run.

Steps

1. Extract the same or a new version of PingDataGovernance Server to a location outside the existing
server's installation.

$ mkdir ~/stage
 $ cd ~/stage
 $ unzip PingDataGovernance-<version>.zip

2. Change directories.

The replace-profile subcommand must be run from the location of the distribution package, not
from the location of the existing server.

$ cd PingDataGovernance

3. Run replace-profile.

$ bin/manage-profile replace-profile \
 --serverRoot /opt/dg/PingDataGovernance \
 --profile ~/git/server-profiles/dg \
 --profileVariablesFile ~/dg-variables-dev.env

Using Docker to install PingDataGovernance Server

About this task

Docker images for Ping Identity's on-premises server products, including PingDataGovernance Server, are
available from the Docker Hub repository at the following URL:

https://hub.docker.com/u/pingidentity/

Clustering and scaling

Because PingDataGovernance Servers are stateless, they do not require intra-cluster communication to
scale. Instead, similarly configured independent server instances can be added behind the same network
load balancer to achieve higher throughput while maintaining low latency.

Automated environments

To maintain identically configured PingDataGovernance Server instances behind your load balancer,
we recommend that you use DevOps principles of Infrastructure-as-Code (IaC) and Automation. For
information about using server profiles to scale upward by installing a new, identically configured instance
of PingDataGovernance Server, see Using server profiles to install PingDataGovernance Server on page
84.

Non-automated environments

For customers without infrastructure and configuration automation, PingDataGovernance supports intra-
cluster communication to maintain consistent configuration more easily among PingDataGovernance
Server instances behind your network load balancer.

In this model, the server instances are joined into a topology configuration that automatically enables the
grouping of servers as well as the mirroring of configuration changes. To mirror shared data across a
topology, this model uses a master/slave architecture. All writes and updates are forwarded to the master,
which forwards them to all other servers.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 91

To learn more about this clustering model, contact Ping Professional Services.

Running PingDataGovernance Server

About this task

To start PingDataGovernance Server as a background process on a UNIX or Linux system, run bin/
start-server. On Microsoft Windows systems, an analogous command is located in the bat folder.

To run PingDataGovernance Server as a foreground process, run bin/start-server with the --
nodetach option.

Starting PingDataGovernance Server

About this task

To starting PingDataGovernance Server, use the bin/start-server command.

$ bin/start-server

Running PingDataGovernance Server as a foreground process

About this task

To launch PingDataGovernance Server as a foreground process, run bin/start-server with the --
nodetach option.

$ bin/start-server --nodetach

To stop PingDataGovernance Server, perform one of the following steps:

▪ In the terminal window in which the server is running, press and hold CTRL+C.
▪ Run bin/stop-server from another window.

Starting PingDataGovernance Server at boot time (Unix/Linux)

About this task

By default, PingDataGovernance Server does not start automatically when the system is booted. Instead,
you must use the bin/start-server command to start it manually.

To configure PingDataGovernance Server to start automatically when the system boots, complete one of
the following tasks:

▪ Use the create-systemd-script utility to create a script.
▪ Create a script manually.

Steps

1. Create the service unit configuration file in a temporary location.

 $ bin/create-systemd-script \
 --outputFile /tmp/ping-data-governance.service \
 --userName dg

In this example, dg represents the user that PingDataGovernance Server runs as

2. As a root user, copy the ping-data-governance.service configuration file to the /etc/
systemd/ system directory.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 92

3. Reload systemd to read the new configuration file.

$ systemctl daemon-reload

4. To start PingDataGovernance Server, use the start command.

$ systemctl start ping-directory.service

5. To configure PingDataGovernance Server to start automatically when the system boots, use the
enable command.

$ systemctl enable ping-data-governance.service

6. Log off from the system as the root user.

Next steps
If you are working on an RC system, perform the following steps to complete this task:

1. Run bin/create-rc-script to create the startup script.
2. Move the script to the /etc/init.d directory.
3. Create symlinks to the script from the /etc/rc3.d directory.

To ensure that the server is started, begin the symlinks with an S.
4. Create symlinks to the script from the /etc/rc0.d directory.

To ensure that the server is stopped, begin the symlinks with a K.

Starting PingDataGovernance Server at boot time (Windows)

About this task

PingDataGovernance Server can run as a service on Windows Server operating systems. This approach
allows the server to start at boot time, and allows the administrator to log off from the system without
stopping the server.

Registering PingDataGovernance Server as a Windows service

About this task

i Note: The following options are not supported when PingDataGovernance Server is registered to run
as a Windows service:

▪ Command-line arguments for the start-server.bat and stop-server.bat scripts
▪ Using a task to stop the server

Steps

1. Run bin/stop-server to stop PingDataGovernance Server.

A server cannot be registered while it is running.

2. From a Windows command prompt, run bat/register-windows- service.ba to register the
server as a service.

3. Use one of the following methods to start PingDataGovernance Server:

▪ The Windows Services Control Panel
▪ The bat/ start-server.bat command

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 93

Running multiple service instances

About this task

Only one instance of a particular service can run at a time. Services are distinguished by the
wrapper.name property in the <server-root>/config/wrapper-product.conf file.

To run additional service instances, change the wrapper.name property on each additional instance.
Service descriptions can also be added or changed in the wrapper-product.conf file.

Deregistering and uninstalling services

About this task

When a server is registered as a service, it cannot run as a non-service process or be uninstalled.

To remove the service from the Windows registry, use the bat/deregister-windows-service.bat
file. The server can then be uninstalled by running the uninstall.bat script.

Log files for services

Log files are stored in <server-root>/logs, and file names begin with windows-service-wrapper.
Log files are configured to rotate each time the wrapper starts or due to file size. Only the three most
recent log files are retained.

These configurations can be edited in the <server-root>/config/ wrapper.conf file.

Stopping PingDataGovernance Server

About this task

PingDataGovernance Server provides a simple shutdown script, bin/stop-server, to stop the server.

$ bin/stop-server

You can run bin/stop-server manually from the command line or within a script.

Restarting PingDataGovernance Server

About this task

To restart PingDataGovernance Server, use the bin/stop-server command with the --restart or -R
option. Running this command is equivalent to shutting down PingDataGovernance Server, exiting the JVM
session, and starting the server again.

Steps

1. Go to the PingDataGovernance Server root directory.

2. Run bin/stop-server with the --restart or -R option.

$ bin/stop-server --restart

Uninstalling PingDataGovernance Server

About this task

PingDataGovernance Server provides an uninstall tool to remove its components from the system.

Steps

1. Go to the PingDataGovernance Server root directory.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 94

2. Run the uninstall command.

$./uninstall

3. Select the option to remove all components, or select the components to be removed.

To remove selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes
Remove Log Files? (yes / no) [yes]: no
Remove Configuration and Schema Files? (yes / no) [yes]: yes
Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no
Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]: no
The files will be permanently deleted, are you sure you want to continue?
 (yes / no) [yes]:

4. Manually delete any remaining files or directories.

About the API security gateway
PingDataGovernance Server and its API security gateway act as an intermediary between a client and an
API server.

Request and response flow

The gateway handles proxied requests in the following phases:

▪ Inbound phase – When a client submits an API request to PingDataGovernance Server, the gateway
forms a policy request based on the API request and submits it to the PDP for evaluation. If the policy
result allows it, PingDataGovernance Server forwards the request to the API server.

▪ Outbound phase – After PingDataGovernance Server receives the upstream API server's response, the
gateway again forms a policy request, this time based on the API server response, and submits it to the
PDP. If the policy result is positive, PingDataGovernance Server forwards the response to the client.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 95

The API gateway supports only JSON requests and responses.

Gateway configuration basics

The API security gateway consists of the following components:

▪ One or more gateway HTTP servlet extensions
▪ One or more Gateway API Endpoints
▪ One or more API external servers

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 96

An API external server represents the upstream API server and contains the configuration for the
server's protocol scheme, host name, port, and connection security. The server can be created in the
PingDataGovernance Administration Console, or with the following example command:

PingDataGovernance/bin/dsconfig create-external-server \
 --server-name "API Server" \
 --type api \
 --set base-url:https://api-service.example.com:1443

A Gateway API Endpoint represents a public path prefix that PingDataGovernance Server accepts for
handling proxied requests. A Gateway API Endpoint configuration defines the base path for receiving
requests (inbound-base-path) as well as the base path for forwarding the request to the API server
(outbound-base-path). It also defines the associated API external server and other properties that
relate to policy processing, such as service, which targets the policy requests generated for the Gateway
API Endpoint to specific policies.

The following example commands use the API external server from the previous example to create a pair
of Gateway API Endpoints:

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set inbound-base-path:/c/definitions \
 --set outbound-base-path:/consent/v1/definitions \
 --set "api-server:API Server" \
 --set service:Consent

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Records" \
 --set inbound-base-path:/c/consents \
 --set outbound-base-path:/consent/v1/consents \
 --set "api-server:API Server" \
 --set service:Consent

The gateway HTTP servlet extension is the server component that represents the API security gateway
itself. In most cases, you do not need to configure this component.

Changes to these components do not typically require a server restart to take effect. For more information
about configuration options, refer to the Configuration Reference Guide that is bundled with the product.

API security gateway authentication

Although the gateway does not strictly require the authentication of requests, the default policy set requires
bearer token authentication.

To support this approach, the gateway uses the configured access token validators to evaluate bearer
tokens that are included in incoming requests. The result of that validation is supplied to the policy request
in the HttpRequest.AccessToken attribute, and the user identity that is associated with the token is
provided in the TokenOwner attribute.

Policies use this authentication information to affect the processing of requests and responses. For
example, a policy in the default policy set requires all requests to be made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny
 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 97

Gateway API Endpoints include the following configuration properties to specify the manner in which they
handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Gateway API Endpoint
evaluates bearer tokens, and if so, whether the
bearer token is forwarded to the API server.

access-token-validator Sets the access token validators that the Gateway
API Endpoint uses. By default, this property has
no value, and the Gateway API Endpoint can
evaluate every bearer token by using each access
token validator that is configured on the server. To
constrain the set of access token validators that a
Gateway API Endpoint uses, set this property to
use one or more specific values.

If http-auth-evaluation-behavior is set to
do-not-evaluate, this setting is ignored.

API security gateway policy requests

Before accepting an incoming request and forwarding it to the API server, the gateway creates a policy
request that is based on the request and sends it to the PDP for authorization. Before accepting an API
server response and forwarding it back to the client, the gateway creates a policy request that is based
on the request and response, and sends it to the PDP for authorization. An understanding of the manner
in which the gateway formulates policy requests can help you create and troubleshoot policies more
effectively.

We recommend enabling detailed decision logging and viewing all policy request attributes in action,
particularly when first developing API security gateway policies. For more information, see Policy Decision
logger on page 163.

Policy request attributes

The following table identifies the attributes of a policy request that the gateway generates.

Policy request attributes Description Type

action Identifies the gateway request
processing phase and the HTTP
method, such as GET or POST.

The value is formatted as
<phase>-<method>.

Example values include
inbound-GET, inbound-POST,
outbound-GET, and outbound-
POST.

String

service Identifies the API service. By
default, this attribute is set
to the name of the Gateway
API Endpoint, which can be
overridden by setting the Gateway
API Endpoint's service property.
Multiple Gateway API Endpoints
can use the same service value.

String

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 98

Policy request attributes Description Type

domain Unused. String

identityProvider Identifies the access token
validator that evaluates the
bearer token used in an incoming
request.

String

attributes Identifies additional attributes
that do not correspond to
a specific entity type in the
PingDataGovernance trust
framework. For more information
about these attributes, see the
following table.

Object

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

HttpRequest Identifies the HTTP request. Object

TokenOwner The access token subject as a
SCIM resource, as obtained by
the access token validator.

Object

Gateway Provides additional gateway-
specific information about the
request.

Object

The following table identifies the fields that the HttpRequest attribute contains.

Attribute Description Type

RequestURI The request URI. String

ResourcePath Portion of the request URI path
following the inbound base path
that the Gateway API Endpoint
defines.

String

QueryParameters Request URI query parameters. Object

AccessToken Parsed access token. For more
information, see the following
table.

Object

RequestBody The request body, if available. Object

ResponseBody The response body, if available.
This attribute is provided only for
outbound policy requests.

Object

ResponseStatus The HTTP response status code,
if available.

Number

RequestHeaders The HTTP request headers. Object

ResponseHeaders The HTTP response headers, if
available.

Object

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 99

Attribute Description Type

ClientCertificate Properties of the client certificate,
if one was used.

Object

CorrelationId A unique value that identifies
the request and response, if
available.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

client_id The client ID of the application
that was granted the access
token.

String

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization
server sets this field to indicate
the resource servers that might
accept the token.

Array

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a client.

Boolean

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

issued_at Date and time at which the
access token was issued.

DateTime

expiration Date and time at which the
access token expires.

DateTime

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

Copyright ©2022

https://tools.ietf.org/html/rfc7662

PingDataGovernance | PingDataGovernance Server Administration Guide | 100

Attribute Description Type

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

notBefore Earliest date on which the
certificate is considered valid.

DateTime

notAfter Expiration date and time of the
certificate.

DateTime

issuer Distinguished name (DN) of the
certificate issuer.

String

subject DN of the certificate subject. String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the Gateway attribute contains.

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Gateway API
Endpoint's inbound-base-path
value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

base path parameters Parameters used in a Gateway
API Endpoint's inbound-base-
path configuration property are
included as fields of the Gateway
attribute.

String

custom attribute The Gateway attribute might
contain multiple arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Gateway API Endpoint
configuration.

String

Gateway API Endpoint configuration properties that affect policy requests

The following table identifies Gateway API Endpoint properties that might force the inclusion of additional
attributes in a policy request.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 101

Gateway API Endpoint property Description

inbound-base-path Defines the URI path prefix that the gateway uses
to determine whether the Gateway API Endpoint
handles a request.

The inbound-base-path property value can
include parameters. If parameters are found and
matched, they are included as attributes to policy
requests.

The following configuration properties reference
parameters that the inbound-base-path
introduces:

▪ outbound-base-path
▪ service
▪ resource-path
▪ policy-request-attribute

service Identifies the API service to the PDP.

The service value appears in the policy request as
the service attribute.

If undefined, the service value defaults to the name
of the Gateway API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute.

If undefined, the resource path value defaults to
the portion of the request that follows the base path
defined by inbound-base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, key-value pairs are always added
as attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute Gateway.foo
is added to the policy request with a value of bar.

Path parameters

As stated previously, the inbound-base-path property value can include parameters. If parameters are
found and matched, they are included in policy requests as fields of the Gateway policy request attribute.
The previous table identifies additional configuration properties that can use these parameters.

Parameters must be introduced by the inbound-base-path property. Other configuration properties
cannot introduce new parameters.

Basic example

Given the following example configuration:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 102

Gateway API Endpoint property Example value

inbound-base-path /accounts/{accountId}/transactions

outbound-base-path /api/v1/accounts/{accountId}/
transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/accounts/XYZ/transactions/1234.

The following properties are added to the policy request:

▪ HttpRequest.ResourcePath : 1234
▪ Gateway.accountId : XYZ
▪ Gateway.foo : bar

Advanced example

Given the following example configuration:

Gateway API Endpoint property Example value

inbound-base-path /health/{tenant}/{resourceType}

outbound-base-path /api/v1/health/{tenant}/{resourceType}

service HealthAPI.{resourceType}

resource-path {resourceType}/{_TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/health/OmniCorp/patients/1234.

The following properties are added to the policy request:

▪ service : HealthAPI.patients
▪ HttpRequest.ResourcePath : patients/1234
▪ Gateway.tenant : OmniCorp
▪ Gateway.resourceType : patients

About error templates

REST API clients are often written with the expectation that the API produces a custom error format. Some
clients might fail unexpectedly if they encounter an error response that uses an unexpected format.

When a REST API is proxied by PingDataGovernance Server, errors that the REST API returns are
forwarded to the client as is, unless a policy dictates a modification of the response. In the following
scenarios, PingDataGovernance Server returns a gateway-generated error:

▪ When the policy evaluation results in a deny response. This scenario typically results in a 403 error.
▪ When an internal error occurs in the gateway, or when the gateway cannot contact the REST API

service. This scenario typically results in a 500, 502, or 504 error.

By default, these responses use a simple error format, as the following example shows:

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes this default error format.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 103

Field Type Description

errorMessage String Error message

status Number HTTP status code

Because some REST API clients expect a specific error response format, PingDataGovernance Server
provides a facility for responding with custom errors, called error templates. An error template is written
in Velocity Template Language and defines the manner in which a Gateway API Endpoint produces error
responses.

Error templates feature the following context parameters:

Parameter Type Description

status Integer HTTP status

message String Exception message

requestURI String Original Request URI

requestQueryParams Object Query parameters as JSON
object

headers Object Request headers as JSON object

correlationID String Request correlation ID

For more information, see Error templates on page 114.

Example

The example in this section demonstrates the configuration of a custom error template for a Gateway API
Endpoint named Test API. Error responses that use this error template feature the following fields:

▪ code
▪ message

Perform the following steps:

1. Create a file named error-template.vtl with the following contents:

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration, as follows:

dsconfig create-error-template \
 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

3. Assign the error template to the Gateway API Endpoint, as follows:

dsconfig set-gateway-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

Copyright ©2022

http://velocity.apache.org/engine/1.7/user-guide.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 104

The error template is used whenever the gateway generates an error in response to a request. For
example, a policy deny results in a response like the following example:

HTTP/1.1 403 Forbidden
Content-Length: 57
Content-Type: application/json;charset=utf-8
Correlation-Id: e7c8fb82-f43e-4678-b7ff-ae8252411513
Date: Wed, 27 Feb 2019 05:54:50 GMT
Request-Id: 56

{
 "code": "ACCESS_FAILED",
 "message": "Access Denied"
}

About the Sideband API
As a gateway, PingDataGovernance Server functions as a reverse proxy that performs the following steps:

▪ Intercepts client traffic to a backend REST API service.
▪ Authorizes the traffic to a policy decision point (PDP) that operates in one of the following locations:

▪ Within the PingDataGovernance process. This mode is known as Embedded PDP mode.
▪ Outside the PingDataGovernance process. This mode is known as External PDP mode.

Using the Sideband API, PingDataGovernance Server can be configured instead as a plugin to an external
API gateway. In Sideband mode, an API gateway integration point performs the following steps:

▪ Intercepts client traffic to a backend REST API service.
▪ Passes intercepted traffic to the PingDataGovernance Sideband API.

The Sideband API authorizes requests and responses, and returns them in a potentially modified form,
which the API gateway forwards to the backend REST API or the client.

API gateway integration

By using an API gateway plugin that acts as a client to the Sideband API, PingDataGovernance Server can
be used with an external API gateway.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 105

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 106

After the API gateway receives a request from an API gateway plugin, it makes a call to the Sideband API
to process the request. The Sideband API returns a response that contains a modified version of the HTTP
client's request, which the API gateway forwards to the REST API.

If the Sideband API returns a response that indicates the request is unauthorized or otherwise not to
be forwarded, the response includes the response to return to the client. The API gateway returns the
response to the client without forwarding the request to the REST API.

When the API gateway receives a response from the REST API, it makes a call to the Sideband API to
process the response. The Sideband API returns a response that contains a modified version of the REST
API's response, which the API gateway forwards to the client.

Sideband API configuration basics

The Sideband API consists of the following components:

▪ Sideband API Shared Secrets – Define the authentication credentials that the Sideband API might
require an API gateway plugin to present. For more information, see Authenticating to the Sideband API
on page 107.

▪ Sideband API HTTP Servlet Extension – Represents the Sideband API itself. If you decide to require
shared secrets, you might need to configure this component. For more information, see Authenticating
to the Sideband API on page 107.

▪ One or more Sideband API Endpoints – Represent a public path prefix that the Sideband API accepts
for handling proxied requests. Specifically, a Sideband API Endpoint configuration defines the following
items:

▪ The base path (base-path) for requests that the Sideband API accepts.
▪ Properties that relate to policy processing, such as service, which targets the policy requests that

are generated for the Sideband API Endpoint to specific policies.

PingDataGovernance Server's out-of-the-box configuration includes a Default Sideband API Endpoint
that accepts all API requests and generates policy requests for the service Default. To customize policy
requests further, an administrator can create additional Sideband API Endpoints.

The following example commands create a pair of Sideband API Endpoints that target specific requests to
a consent service:

PingDataGovernance/bin/dsconfig create-sideband-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set base-path:/c/definitions \
 --set service:Consent

PingDataGovernance/bin/dsconfig create-sideband-api-endpoint \
 --endpoint-name "Consent Records" \
 --set base-path:/c/consents \
 --set service:Consent

For more information about using the Sideband API Endpoint configuration to customize policy requests,
see Sideband API policy requests on page 109

i Note: Changes to these components do not typically require a server restart to take effect. For more
information about the configuration and configuration options, refer to the Configuration Reference Guide,
which is bundled with the product.

Sideband API authentication

The Sideband API provides the following levels of authentication:

▪ Authentication to the Sideband API itself
▪ Bearer token processing of API gateway requests

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 107

The following sections describe these authentication levels in more detail.

Authenticating to the Sideband API

The Sideband API can require an API gateway plugin to authenticate to it by using a shared secret. Shared
secrets are defined by using Sideband API Shared Secret configuration objects, and are managed by
using the Sideband API HTTP Servlet Extension.

Creating a shared secret

About this task

To create a shared secret, run the following example dsconfig command, substituting values of your
choosing:

PingDataGovernance/bin/dsconfig create-sideband-api-shared-secret \
 --secret-name "Shared Secret A" \
 --set "shared-secret:secret123"

i Note:

▪ The shared-secret property sets the value that the Sideband API requires the API gateway plugin to
present. After this value is set, it is no longer visible.

▪ The secret-name property is a label that allows an administrator to distinguish one Sideband API
Shared Secret from another.

A new Sideband API Shared Secret is not used until the shared-secrets property of the Sideband API
HTTP Servlet Extension is updated. To update the shared-secrets property, run the following example
dsconfig command:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --add "shared-secrets:Shared Secret A"

Deleting a shared secret

About this task

To remove a Sideband API Shared Secret from use, run the following example dsconfig command,
substituting values of your choosing:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --remove "shared-secrets:Shared Secret A"

To delete a Sideband API Shared Secret, run the following example dsconfig command:

PingDataGovernance/bin/dsconfig delete-sideband-api-shared-secret \
 --secret-name "Shared Secret A"

Rotating shared secrets

About this task

To avoid service interruptions, the Sideband API allows multiple, distinct shared secrets to be accepted
at the same time. As a result, an administrator can configure a new shared secret that the Sideband API
accepts alongside an existing shared secret. This approach allows time for the API gateway plugin to be
updated to use the new shared secret.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 108

Steps

1. Create a new Sideband API Shared Secret and assign it to the Sideband API HTTP Servlet Extension.

2. Update the API gateway plugin to use the new shared secret.

3. Remove the previous Sideband API Shared Secret.

Customizing the shared secret header

About this task

By default, the Sideband API accepts a shared secret from an API gateway plugin by way of the PDG-
TOKEN header. To customize a shared secret header, change the value of the Sideband API HTTP Servlet
Extension's shared-secret-header property.

For example, the following command changes the shared secret header to x-shared-secret:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set shared-secret-header-name:x-shared-secret

The following command resets the shared secret header to its default value:

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --reset shared-secret-header-name

Authenticating API server requests

About this task

As with PingDataGovernance's API Security Gateway mode, API server requests that the Sideband API
authorizes do not strictly require authentication. However, the default policy set requires bearer token
authentication.

To support this level of authentication, the Sideband API uses configured Access Token Validators to
evaluate bearer tokens that are included in incoming requests. The HttpRequest.AccessToken
attribute supplies the validation result to the policy request, and the TokenOwner attribute provides the
user identity that is associated with the token.

Policies use this authentication information to affect the processing requests and responses. For example,
a policy in the default policy set requires all requests to be made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny
 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

The following table identifies the configuration properties that determine the manner in which Sideband API
Endpoints handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Sideband API Endpoint
evaluates bearer tokens and, if so, whether the
Sideband API Endpoint forwards them to the API
server by way of the API gateway.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 109

Property Description

access-token-validator Sets the Access Token Validators that the
Sideband API Endpoint uses. Because this property
contains no value by default, the Sideband API
Endpoint can potentially use each Access Token
Validator that is configured on the server to
evaluate every bearer token.

To constrain the set of Access Token Validators
that a Sideband API Endpoint uses, set this
property to use one or more specific values.

This setting is ignored if http-auth-
evaluation-behavior is set to do-not-
evaluate.

Sideband API policy requests

To authorize an incoming request, the Sideband API performs the following steps:

▪ Creates a policy request that is based on the incoming request.
▪ Sends the policy request to the PDP for evaluation.

An understanding of the manner in which the Sideband API formulates policy requests can help you create
and troubleshoot policies more effectively.

Policy request attributes

The following table identifies the attributes that are associated with a policy request that the Sideband API
generates.

Attribute Description Type

action Identifies the request-processing
phase and the HTTP method,
such as GET or POST.

The value is formatted as
<phase>-<method>. Example
values include inbound-GET,
inbound-POST, outbound-
GET, and outbound-POST.

String

service Identifies the API service. By
default, this value is set to the
name of the Sideband API
Endpoint.

To override the default value,
set the Sideband API Endpoint's
service property.

Multiple Sideband API Endpoints
can use the same service value.

String

domain Unused. String

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 110

Attribute Description Type

identityProvider Name of the Access Token
Validator that evaluates the
bearer token in an incoming
request.

String

attributes Additional attributes that do not
correspond to a specific entity
type in the Symphonic trust
framework.

For more information, see the
following table.

Object

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

HttpRequest HTTP request. Object

TokenOwner Access token subject as a SCIM
resource, as obtained by the
access token validator.

Object

Gateway Additional information about the
request.

Object

The following table identifies the fields that the HttpRequest attribute can contain.

Attribute Description Type

RequestURI Request URI. String

ResourcePath Portion of the request URI path
that follows the inbound base
path, which the Sideband API
Endpoint defines.

String

QueryParameters Request URI query parameters. Object

AccessToken Parsed access token.

For more information, see the
following table.

Object

RequestBody Request body, if available. Object

ResponseBody Response body, if available. This
field is provided only for outbound
policy requests.

Object

ResponseStatus The HTTP response status code,
if available.

Number

RequestHeaders The HTTP request headers. Object

ResponseHeaders The HTTP response headers, if
available.

Object

ClientCertificate Properties of the client certificate,
if one was used.

Object

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 111

Attribute Description Type

CorrelationId A unique value that identifies
the request and response, if
available.

Object

i Note: When handling an outbound response, HTTP request data is only available if specifically
provided by the API gateway plugin.

The following table identifies the fields that are associated with the HttpRequest.AccessToken
attribute, which is populated by the access token validator.

i Note: These fields correspond approximately to the fields that are defined by the IETF Token
Introspection specification, RFC 7662.

Attribute Description Type

client_id Client ID of the application that
was granted the access token.

String

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization server
sets this field to identify the
resource servers that can accept
the token.

Array

user_token Flag that the access token
validator sets to indicate the
token was originally issued to a
subject. If the flag is false, the
token contains no subject and
was issued directly to a client.

Boolean

subject Token subject. This value
represents a user identifier that
the authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This value is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

username Subject's user name. This value
represents a user identifier that
the authorization server sets.

String

issuer Token issuer. Typically, this
value is a URI that identifies the
authorization server.

String

issued_at Date and time at which the
access token was issued.

DateTime

expiration Date and time at which the
access token expired.

DateTime

Copyright ©2022

https://tools.ietf.org/html/rfc7662

PingDataGovernance | PingDataGovernance Server Administration Guide | 112

Attribute Description Type

not_before Date and time before which a
resource server does not accept
an access token.

DateTime

token_type Token type, as set by the
authorization server. Typically,
this value is bearer.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute can
contain.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

subject DN of the certificate subject. String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

valid Indicates whether the SSL client
certificate is valid.

Boolean

The following table identifies the fields that the Gateway attribute can contain.

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Sideband API
Endpoint's base-path value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

base path parameters Parameters in a Sideband
API Endpoint's base-path
configuration property are
included as fields of the Gateway
attribute.

String

base path parameters The Gateway attribute can
contain multiple, arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Sideband API Endpoint
configuration.

String

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 113

Sideband API Endpoint configuration properties

The following table identifies Sideband API Endpoint properties that might force the inclusion of additional
attributes with the policy request.

Property Description

base-path Defines the URI path prefix that the Sideband
API uses to determine whether the Sideband API
Endpoint handles a request.

The base-path property value can include
parameters. If parameters are found and matched,
they are included as attributes to policy requests.

The following configuration properties can
reference parameters that base-path introduces:

▪ service
▪ resource-path
▪ policy-request-attribute

service Identifies the API service to the PDP. A policy can
use this value to target requests.

The service value appears in the policy request
as the service attribute. If undefined, the
service value defaults to the name of the
Sideband API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute. If undefined, the resource-path value
defaults to the portion of the request that follows the
base path, as defined by base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, the pairs are always added as
attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute
Gateway.foo is added to the policy request with
the value bar.

Path parameters

If parameters are found and matched for the base-path property, they are included in policy requests
as fields of the Gateway policy request attribute. These parameters are available for use by other
configuration properties, as identified in the table in Sideband API Endpoint configuration properties on
page 113.

Parameters must be introduced by the base-path property. Other configuration properties cannot
introduce new parameters.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 114

Path parameters: Basic example

The following table provides a basic example configuration.

API Endpoint property Example value

base-path /accounts/{accountId}/transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the example base-path
value.

The following properties are added to the policy request:

▪ HttpRequest.ResourcePath : 1234
▪ Gateway.accountId : XYZ
▪ Gateway.foo : bar

Path parameters: Advanced example

The following table provides an advanced example configuration:

API Endpoint property Example value

base-path /health/{tenant}/{resourceType}

service HealthAPI.{resourceType}

resource-path {resourceType}/{_TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the example base-path
value.

The following properties are added to the policy request:

▪ service : HealthAPI.patients
▪ HttpRequest.ResourcePath : patients/1234
▪ Gateway.tenant : OmniCorp
▪ Gateway.resourceType : patients

Error templates

REST API clients are often written to expect a custom error format that the API produces. Some clients
might fail unexpectedly if they encounter an error response that uses an unexpected format.

When PingDataGovernance Server proxies a REST API, errors that the API returns are forwarded to
the client as they are, unless a policy dictates modifications to the response. In the following scenarios,
PingDataGovernance Server return an error that the Sideband API generates:

▪ The policy evaluation results in a deny response. This scenario typically results in a 403 error.
▪ An internal error occurrs in the Sideband API. This scenario typically results in a 500 error.

By default, these responses use a simple error format, as the following example shows.

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes the default error format.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 115

Field Type Description

errorMessage String Error message.

status Number HTTP status code.

Because some REST API clients expect a specific error-response format, PingDataGovernance Server
provides error templates as a way to respond with custom errors. Written in Velocity Template Language,
error templates define the manner in which a Sideband API Endpoint produces error responses.

The following table identifies the context parameters that are provided with error templates.

Parameter Type Description

status Integer HTTP status.

message String Exception message.

Error templates: Example

This topic demonstrates the configuration of a custom error template for a Sideband API Endpoint called
Test API.

The following fields are associated with the error responses that use this error template:

▪ code
▪ message

To create such an error template, perform the follwing steps:

1. Create a file named error-template.vtl with the following contents:

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration.

dsconfig create-error-template \
 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

3. Assign the error template to the Sideband API Endpoint.

dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

The error template is used whenever the Sideband API generates an error in response to a request.

About the SCIM service
PingDataGovernance Server's built-in SCIM service provides a REST API for data that is stored in one or
more external datastores, based on the SCIM 2.0 standard.

Copyright ©2022

http://velocity.apache.org/engine/1.7/user-guide.html
https://tools.ietf.org/html/rfc7644

PingDataGovernance | PingDataGovernance Server Administration Guide | 116

Request and response flow

The SCIM REST API provides an HTTP API for data that is contained in a User Store. Although User
Stores typically consist of a single datastore, such as PingDirectory Server, they can also consist of
multiple datastores.

When a SCIM request is received, it is translated into one or more requests to the User Store, and the
resulting User Store response is translated into a SCIM response. The SCIM response is authorized
by sending a policy request to the PDP. Depending on the policy result, including the advices that are
returned in the result, the SCIM response might be filtered or rejected.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 117

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 118

SCIM configuration basics

PingDataGovernance Server's SCIM system consists of the following components:

▪ SCIM resource types – Define a class of resources, such as users or devices. Every SCIM resource
type features at least one SCIM schema, which defines the attributes and subattributes that are
available to each resource, and at least one store adapter, which handles datastore interactions.

The following types of SCIM resource types differ according to the definitions of the SCIM schema:

▪ Mapping SCIM resource type – Requires an explicitly defined SCIM schema, with explicitly defined
mappings of SCIM attributes to store adapter attributes. Use a mapping SCIM resource type to
exercise detailed control over the SCIM schema, its attributes, and its mappings.

▪ Pass-through SCIM resource type – Does not use an explicitly defined SCIM schema. Instead,
an implicit schema is generated dynamically, based on the schema that is reported by the store
adapter. Use a pass-through SCIM resource type when you need to get started quickly.

▪ SCIM schemas – Define a collection of SCIM attributes, grouped under an identifier called a schema
URN. Each SCIM resource type possesses a single core schema and can feature schema extensions,
which act as secondary attribute groupings that the schema URN namespaces. SCIM schemas are
defined independently of SCIM resource types, and multiple SCIM resource types can use a single
SCIM schema as a core schema or schema extension.

A SCIM attribute defines an attribute that is available under a SCIM schema. The configuration for a
SCIM attribute defines its data type, regardless of whether it is required, single-valued, or multi-valued.
Because it consists of SCIM subattributes, a SCIM attribute can be defined as a complex attribute.

▪ Store adapters – Act as a bridge between PingDataGovernance Server's SCIM system and an external
datastore. PingDataGovernance Server provides a built-in LDAP store adapter to support LDAP
datastores, including PingDirectory Server and PingDirectoryProxy Server. The LDAP store adapter
uses a configurable load-balancing algorithm to spread the load among multiple directory servers. Use
the Server SDK to create store adapters for arbitrary datastore types.

Each SCIM resource type features a primary store adapter, and can also define multiple secondary
store adapters. Secondary store adapters allow a single SCIM resource to consist of attributes that are
retrieved from multiple datastores.

Store adapter mappings define the manner in which a SCIM resource type maps the attributes in its
SCIM schemas to native attributes of the datastore.

About the create-initial-config tool

The create-initial-config tool helps to quickly configure PingDataGovernance Server for SCIM.
Run this tool after completing setup to configure a SCIM resource type named Users, along with a related
configuration.

For an example of using create-initial-config to create a pass-through SCIM resource type, see
Configure the PingDataGovernance User Store on page 33.

Example: Mapped SCIM resource type for devices

This example demonstrates the addition of a simple mapped SCIM resource type, backed by the standard
device object class of a PingDirectory Server.

To add data to PingDirectory Server, create a file named devices.ldif with the following contents:

dn: ou=Devices,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Devices

dn: cn=device.0,ou=Devices,dc=example,dc=com
objectClass: top
objectClass: device

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 119

cn: device.0
description: Description for device.0

dn: cn=device.1,ou=Devices,dc=example,dc=com
objectClass: top
objectClass: device
cn: device.1
description: Description for device.1

Use the ldapmodify tool to load the data file, as follows:

PingDirectory/bin/ldapmodify --defaultAdd --filename devices.ldif

Start configuring PingDataGovernance Server by adding a store adapter, as follows:

dsconfig create-store-adapter \
 --adapter-name DeviceStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:User Store LBA" \
 --set structural-ldap-objectclass:device \
 --set include-base-dn:ou=devices,dc=example,dc=com \
 --set include-operational-attribute:createTimestamp \
 --set include-operational-attribute:modifyTimestamp \
 --set create-dn-pattern:entryUUID=server-
generated,ou=devices,dc=example,dc=com

The previous command creates a store adapter that handles LDAP entries found under the base DN
ou=devices,dc=example,dc=com with the object class device. This example uses the User Store
load-balancing algorithm that is created when you use the create-initial-config tool to set up a
users SCIM resource type.

The following command creates a SCIM schema for devices with the schema URN
urn:pingidentity:schemas:Device:1.0:

dsconfig create-scim-schema \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --set display-name:Device

Under this schema, add the string attributes name and description, as follows:

dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --attribute-name name \
 --set required:true
dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --attribute-name description

After you create a store adapter and schema, create the SCIM resource type, as follows:

dsconfig create-scim-resource-type \
 --type-name Devices \
 --type mapping \
 --set enabled:true \
 --set endpoint:Devices \
 --set primary-store-adapter:DeviceStoreAdapter \
 --set lookthrough-limit:500 \
 --set core-schema:urn:pingidentity:schemas:Device:1.0

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 120

Map the two SCIM attributes to the corresponding LDAP attributes. The following commands map the
SCIM name attribute to the LDAP cn attribute, and map the SCIM description attribute to the LDAP
description attribute:

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name name \
 --set scim-resource-type-attribute:name \
 --set store-adapter-attribute:cn \
 --set searchable:true

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name description \
 --set scim-resource-type-attribute:description \
 --set store-adapter-attribute:description

To confirm that the new resource type has been added, send the following request to the SCIM resource
types endpoint:

curl -k https://localhost:8443/scim/v2/ResourceTypes/Devices

The response is:

{"schemas":
["urn:ietf:params:scim:schemas:core:2.0:ResourceType"],"id":"Devices","name":
"Devices","endpoint":"Devices","schema":"urn:pingidentity:schemas:Device:1.0",
"meta":{"resourceType":"ResourceType","location":"https://localhost:8443/
scim/v2/ResourceTypes/Devices"}}

For a more advanced example of a mapped SCIM resource type, refer to the example User schema in
PingDataGovernance/resource/starter-schemas.

SCIM endpoints

The following table identifies the endpoints that the SCIM 2.0 REST API provides.

Endpoint Description Supported HTTP methods

/ServiceProviderConfig Provides metadata that indicates
PingDataGovernance Server's
authentication scheme, which
is always OAuth 2.0, and its
support for features that the SCIM
standard considers optional.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/Schemas Lists the SCIM schemas that
are configured for use on
PingDataGovernance Server, and
that define the various attributes
available to resource types.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 121

Endpoint Description Supported HTTP methods

/Schemas/<schema> Retrieves a specific SCIM
schema, as specified by its ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes Lists all of the SCIM resource
types that are configured for use
on PingDataGovernance Server.
Clients can use this information
to determine the endpoint, core
schema, and extension schemas
of any resource types that the
server supports.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes/
<resourceType>

Retrieves a specific SCIM
resource type, as specified by its
ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/<resourceType> Creates a new resource (POST),
or lists and filters resources
(GET).

GET, POST

/<resourceType>/.search Lists and filters resources. POST

/<resourceType>/
<resourceId>

Retrieves a single resource
(GET), modifies a single resource
(PUT, PATCH), or deletes a
single resource (DELETE).

GET, PUT, PATCH, DELETE

/Me Alias for the resource that the
subject of the access token
identifies.

Retrieves the resource (GET),
modifies the resource (PUT,
PATCH), or deletes the
(DELETE).

GET, PUT, PATCH, DELETE

SCIM authentication

All SCIM requests must be authenticated by using OAuth 2.0 bearer token authentication.

Bearer tokens are evaluated by using access token validators. The HttpRequest.AccessToken
attribute supplies the validation result to the policy request, and the TokenOwner attribute provides the
user identity that is associated with the token.

Policies use this authentication information to affect the processing of requests and responses.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 122

SCIM policy requests

An understanding of the manner in which the SCIM service formulates policy requests will help you to
create and troubleshoot policies more effectively.

For every SCIM request or response, one or more policy requests are sent to the PDP for authorization.
Policies can use a policy request's action value to determine the processing phase and to act
accordingly.

Most SCIM operations are authorized in the following phases:

1. The operation itself is authorized.
2. The outgoing response is authorized with the retrieve action.

In most cases, policies that target the retrieve action can be reused to specify read-access control
rules.

Operation Actions

POST /scim/v2/<resourceType> create, retrieve

GET /scim/v2/<resourceType>/
<resourceId>

retrieve

PUT /scim/v2/<resourceType>/
<resourceId>

PATCH /scim/v2/<resourceType>/
<resourceId>

modify, retrieve

DELETE /scim/v2/<resourceType>/
<resourceId>

delete

GET /scim/v2/<resourceType>

POST /scim/v2/<resourceType>/.search

search, retrieve

-OR-

search, search-results

For more information about authorizing searches,
see About SCIM searches on page 125.

We recommend enabling detailed decision logging and viewing all policy request attributes in action,
particularly when learning how to develop SCIM policies. For more information, see Policy Decision logger
on page 163.

Policy request attributes

The following table identifies the attributes associated with a policy request that the SCIM service
generates.

Policy request attribute Description Type

action Identifies the SCIM request as
one of the following types:

▪ create
▪ modify
▪ retrieve
▪ delete
▪ search
▪ search-request

String

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 123

Policy request attribute Description Type

service Identifies the SCIM service, which
is always SCIM2.

String

domain Unused. String

identityProvider Name of the access token
validator that evaluates the
bearer token used in an incoming
request.

String

attributes Additional attributes that do not
correspond to a specific entity
type in the PingDataGovernance
Trust Framework. For more
information, see the following
table.

Object

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

HttpRequest HTTP request. Object

impactedAttributes Provides the set of attributes that
the request modifies.

Collection

TokenOwner Access token subject as a SCIM
resource, as obtained by the
access token validator.

Object

SCIM2 Provides additional, SCIM2-
specific information about the
request.

Object

The following table identifies the fields that the HttpRequest attribute contains.

Attribute Description Type

RequestURI The request URI. String

Headers Request and response headers. Object

ResourcePath Uniquely identifies the SCIM
resource that is being requested,
in the format <Resource
Type>/<SCIM ID>, as the
following example shows:

Users/0450b8db-
f055-35d8-8e2f-0f203a291cd1

String

QueryParameters Request URI query parameters. Object

AccessToken Parsed access token. For more
information, see the following
table.

Object

RequestBody The request body, if available.
This attribute is available for
POST, PUT, and PATCH
requests.

Object

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 124

Attribute Description Type

ClientCertificate Properties of the client certificate,
if one is used.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

client_id The client ID of the application
that was granted the access
token.

String

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization
server sets this field to indicate
the resource servers that might
accept the token.

Array

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a client.

Boolean

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

issued_at Date and time at which the
access token was issued.

DateTime

expiration Date and time at which the
access token expires.

DateTime

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

Copyright ©2022

https://tools.ietf.org/html/rfc7662

PingDataGovernance | PingDataGovernance Server Administration Guide | 125

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

notBefore Earliest date on which the
certificate is considered valid.

DateTime

notAfter Expiration date and time of the
certificate.

DateTime

issuer Distinguished name (DN) of the
certificate issuer.

String

subject DN of the certificate subject. String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the SCIM2 attribute contains.

Attribute Description Type

resource Complete SCIM resource that the
request targets. This attribute is
available for GET, PUT, PATCH,
and DELETE requests.

The resource attribute is
also available in the policy
requests that are performed for
each matching SCIM resource
in a search result. For more
information, see About SCIM
searches on page 125.

Object

modifications Contains a normalized SCIM
2 PATCH request object that
represents all of the changes to
apply. This attribute is available
for PUT and PATCH requests.

Object

About SCIM searches

A request that potentially causes the return of multiple SCIM resources is considered a search request.
Perform such requests in one of the following manners:

▪ Make a GET request to /scim/v2/<resourceType>.
▪ Make a POST request to /scim/v2/<resourceType>/.search.

To constrain the search results, we recommend that clients supply a search filter through the filter
parameter. For example, a GET request to /scim/v2/Users?filter=st+eq+"TX" returns all SCIM
resources of the Users resource type in which the st attribute possesses a value of "TX" Additionally, the
Add Filter policy can be used to add a filter automatically to search requests.

SCIM search policy processing

Policy processing for SCIM searches occurs in the following phases:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 126

1. Policies deny or modify a search request.
2. Policies filter the search result set.

Search request authorization

In the first phase, a policy request is issued for the search itself, using the search action. If the policy
result is a deny, the search is not performed. Otherwise, advices in the policy result are applied to the
search filter, giving advices a chance to alter the filter.

i Note: Only advice types that are written specifically for the search action can be used. For example,
the Add Filter advice type can be used to constrain the scope of a search.

The Combine SCIM Search Authorizations advice type can also be used at this point. If this advice is used,
search results are authorized by using a special mode, which the next section describes.

Search response authorization

After a search is performed, the resulting search response is authorized in one of two ways.

The default authorization mode simplifies policy design but can generate a large number of policy requests.
For every SCIM resource that the search returns, a policy request is issued by using the retrieve action.
If the policy result is a deny, the SCIM resource is removed from the search response. Otherwise, advices
in the policy result are applied to the SCIM resource, which gives advices a chance to alter the resource.
Because the retrieve action is used, policies that are already written for single-resource GET operations
are reused and applied to the search response.

Optimized search response authorization

If the search request policy result includes the Combine SCIM Search Authorizations advice type, an
optimized authorization mode is used instead. This mode reduces the number of overall policy requests but
might require a careful policy design. Instead of generating a policy request for each SCIM resource that
the search returns, a single policy request is generated for the entire result set. To distinguish the policy
requests that this authorization mode generates, the action search-results is used.

Write policies that target these policy requests to accept an object that contains a Resources array with all
matching results. Advices that the policy result returns are applied iteratively to each member of the result
set. The input object that is provided to advices also contains a Resources array, but it contains only the
single result that is currently being considered.

The following code provides an example input object:

{
 "Resources": [{
 "name": "Henry Flowers",
 "id": "40424a7d-901e-45ef-a95a-7dd31e4474b0",
 "meta": {
 "location": "https://example.com/scim/v2/Users/40424a7d-901e-45ef-
a95a-7dd31e4474b0",
 "resourceType": "Users"
 },
 "schemas": [
 "urn:pingidentity:schemas:store:2.0:UserStoreAdapter"
]
 }
]
}

The optimized search response authorization mode checks policies efficiently, and is typically faster than
the default authorization mode. However, the optimized search response authorization mode might be less
memory-efficient because the entire result set, as returned by the datastore, is loaded into memory and
processed by the PDP.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 127

Lookthrough limit

Because a policy evaluates every SCIM resource in a search result, some searches might exhaust server
resources. To avoid this scenario, cap the total number of resources that a search matches.

The configuration for each SCIM resource type contains a lookthrough-limit property that defines this
limit, with a default value of 500. If a search request exceeds the lookthrough limit, the client receives a
400 response with an error message that resembles the following example:

{
 "detail": "The search request matched too many results",
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "scimType": "tooMany",
 "status": "400"
}

To avoid this error, a client must refine its search filter to return fewer matches.

Disable the SCIM REST API

About this task

If you have no need to expose data through the SCIM REST API, disable it by removing the SCIM2 HTTP
servlet extension from the HTTPS connection handler, or from any other HTTP connection handler, and
restart the handler, as follows:

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --remove http-servlet-extension:SCIM2 \
 --set enabled:false
dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

When the SCIM REST API is disabled, access token validators still use PingDataGovernance Server's
SCIM system to look up token owners.

About the PDP API

i Important: The PDP API feature requires PingDataGovernance Premier. For information about
access to PingDataGovernance Premier, contact your Ping Identity account representative.

While the PingDataGovernance Server's main functionality is to enforce fine-grained policies for data
accessed via APIs, organizations might have requirements to use the core Policy Decision Service for
other, non-API use cases. For example, an application server may use it to request policy decisions when
generating dynamic web content. In this configuration, the PingDataGovernance Server becomes the
Policy Decision Point (PDP), and the application server becomes the Policy Enforcement Point (PEP).

PingDataGovernance Server’s PDP API provides an endpoint to support these use cases. Enforcement
points request policy decisions based on a subset of the XACML-JSON standard (XACML 3.0 JSON
Profile 1.1).

i Note: The PDP API can indicate when a particular request or response triggers advice, but it is up to
the application server to actually implement this advice.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 128

For the PDP API to be available, an administrator must configure the PingDataGovernance Server with
a feature-enabled license during setup. In addition, the admin must configure an Access Token Validator
(see Access Token Validators), and the Policy Decision Point Service (see Use policies in a production
environment).

Request and Response Flow

The PDP API is implemented as a single endpoint, which consuming application servers can access via
POST requests to the /pdp path. The requests must include the appropriate Content-Type and Accept
headers, and request bodies must adhere to the XACML-JSON standard (see XACML-JSON response
conversion on page 131 for a concrete example).

PDP API Endpoint path Action Content-Type/Accept Request data

/pdp POST application/xacml+json XACML-JSON

The PDP API provides an HTTP API for decisions determined based on the policies configured within the
PingDataGovernance Server’s Policy Decision Service. At a high level, a successful PDP API request goes
through the following two-phase flow:

▪ First, the client makes the XACML-JSON request, which is received by the PDP API. The PDP API
converts the request to a PingDataGovernance Server decision request and attempts to authorize the
client.

▪ On authorize success, the request is handed off to the Policy Decision Service which processes a
decision for the PDP API. The PDP API then converts the decision to a XACML-JSON response and
writes the response to the client.

The following sections describe these stages in more detail.

Requests

The PDP API first converts the XACML-JSON request to a decision request for the policy decision point
to be consumed later by the Policy Decision Service. Policies may match a decision request by Service,
Domain, Action, or other attributes. The following table describes how these trust framework entities map
to a XACML-JSON request:

XACML-JSON PingDataGovernance decision request

$.Request.AccessSubject[0].Attribute[0].ValueDomain

$.Request.Action[0].Attribute[0].Value Action

$.Request.Resource[0].Attribute[0].ValueService

$.Request.Environment[0].Attribute[*].AttributeIdAttribute Name

$.Request.Environment[0].Attribute[*].ValueAttribute Value (as a JSON escaped string)

The following example XACML-JSON request body represents a request that an application server
might make while generating the content for a protected Performance Dashboard Summary page for an
employee of a company. The employee can access the application, but only has access to limited content.
The employee has authenticated using a social network called "Spacebook."

{
 "Request": {
 "AccessSubject": [{
 "Attribute": [{
 "AttributeId": "Domain",
 "Value": "PerformanceDashboard"
 }]

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 129

 }],
 "Action": [{
 "Attribute": [{
 "AttributeId": "Action",
 "Value": "read"
 }]
 }],
 "Resource": [{
 "Attribute": [{
 "AttributeId": "Service",
 "Value": "Pages.Summary"
 }]
 }],
 "Environment": [{
 "Attribute": [{
 "AttributeId": "role",
 "Value": "employee"
 }]
 }],
 "Category": [{
 "CategoryId": "symphonic-idp",
 "Attribute": [{
 "AttributeId": "Identity Provider",
 "Value": "Spacebook"
 }]
 }]
 }
}

i Note: Besides Environment, the AttributeIds are not consumed by the system and may be used for
readability as they are in the example.

The response for this request body can be seen in XACML-JSON response conversion on page 131.

Authorization

Before calculating a decision, the PDP API attempts to authorize the client making the PDP
API request by invoking the Policy Decision Service. A PDP authorization request can be
targeted in policy as having service PDP with action authorize. The default policies included
with the PingDataGovernance Server perform this authorization by only permitting requests
with active access tokens which contain the urn:pingdatagovernance:pdp scope.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 130

This policy can be seen in Global Decision Point > PDP API Endpoint Policies > Token

Authorization.

i Note: The parent of the Token Authorization policy, PDP API Endpoint Policies, is what constrains the
Token Authorization policy to apply only to the PDP service.

For example, under the default policies, the following request would result in an authorized client when the
PDP is configured with a Mock Access Token Validator:

curl --insecure -X POST \
 -H 'Authorization: Bearer
 {"active":true,"scope":"urn:pingdatagovernance:pdp", "sub":"<valid-
subject>"}' \
 -H 'Content-Type: application/xacml+json' \
 -d '{"Request":{}}' "https://<your-dg-host>:<your-dg-port>/pdp"

The default policies are intended to be a sensible starting point, and the policy writer may decide to modify
these policies if additional authorization logic is required.

Decision Processing

On successful client authorization, the Policy Decision Service is invoked with the decision request
converted from the XACML-JSON request. When writing policy for the PDP API endpoint, it is important
to note the mapping between the XACML-JSON schema and the PingDataGovernance Server decision
request, described in XACML-JSON response conversion on page 131. Once the decision response is
determined, it is handed back to the PDP API to provide to the client.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 131

XACML-JSON response conversion

The PDP API converts a decision response to a XACML-JSON response, which includes a decision
(Permit/Deny/etc.), and any obligations or advice that were found to match during policy processing. Note
that it is up to the Policy Enforcement Point (PEP) to actually apply any of the obligations and advice.

The mapping from decision response to XACML-JSON response is indicated in the table below.

PingDataGovernance Server decision response XACML-JSON response

Decision Decision

Advice (obligatory) Obligations

▪ Advice code Obligations[].Id

▪ Advice payload Obligations[].AttributeAssigments[].Value

Advice (non-obligatory) AssociatedAdvice

▪ Advice code AssociatedAdvice[].Id

▪ Advice payload AssociatedAdvice[].AttributeAssigments[].Value

Going back to the hypothetical example from XACML-JSON request conversion where an employee
attempts to access a Performance Dashboard application, an appropriate response could be:

{
 "Response": {
 "Decision": "Permit",
 "Obligations": [
 {
 "Id": "disclaimer",
 "AttributeAssignments": [
 {
 "AttributeId": "payload",
 "Value": "confidential"
 }
]
 }
],
 "AssociatedAdvice": [
 {
 "Id": "content-gen",
 "AttributeAssignments": [
 {
 "AttributeId": "payload",
 "Value": "limited"
 }
]
 }
]
 }
}

In the above example, it is up to the application server to know to interpret these statements by generating
limited content and including a confidentiality disclaimer.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 132

Policy administration

Create policies in a development environment

About this task

Policies are developed in the PingDataGovernance Policy Administration GUI, which is sometimes referred
to as the Policy Administration Point (PAP). PingDataGovernance can be configured to evaluate policy in
the following modes:

▪ Embedded
▪ External

In a development environment, the External mode is used. PingDataGovernance authorizes requests by
submitting policy requests to the PAP.

Change the active policy branch

About this task

The PingDataGovernance Policy Administration GUI manages multiple sets of Trust Framework attributes
and policies by storing data sets in different branches. In a development environment, the ability to quickly
reconfigure PingDataGovernance Server between policy branches is highly beneficial.

To change the active policy branch, perform the following steps:

Steps

1. Define a Policy External Server configuration for each branch.

2. Change the Policy Decision service’s policy-server property as needed.

Example configuration

The following example involves a policy branch named Default Policies and a policy branch named
SCIM Policies. Create a Policy external server for each branch, as follows:

dsconfig create-external-server \
 --server-name "Default Policies" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 \
 --set "branch:Default Policies"
dsconfig create-external-server \
 --server-name "SCIM Policies" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 \
 --set "branch:SCIM Policies"

To use the Default Policies branch, configure the Policy Decision Service to use the corresponding
Policy external server, as follows:

dsconfig set-policy-decision-service-prop \
 --set "policy-server:Default Policies"

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 133

To use the SCIM Policies branch, configure the Policy Decision Service to use the corresponding
Policy external server, as follows:

dsconfig set-policy-decision-service-prop \
 --set "policy-server:SCIM Policies"

Use policies in a production environment

PingDataGovernance Server can be configured to evaluate policy in the following modes:

▪ Embedded
▪ External

In staging and production environments, configure PingDataGovernance Server in Embedded mode so
that it does not depend on an external server.

To configure the Embedded mode of the Policy Decision Service, perform the following steps:

1. On the main configuration page of the PingDataGovernance Administration Console, click Policy
Decision Service.

2. From the PDP Mode drop-down list, select Embedded.
3. After you complete the following section, upload a policy deployment package file.

For more information about modes, see External PDP mode on page 135 and Embedded PDP mode on
page 141.

Default policies

To use the default policies that are distributed with PingDataGovernance Server, select the deployment
package and locate the default policies deployment package that loads directly into the embedded PDP.
The policy deployment package is located at resource/policies/defaultPolicies.SDP.

The following dsconfig command configures the policy service in Embedded mode with the default
policies:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --set pdp-mode:embedded \
 --set "deployment-package<resource/policies/defaultPolicies.SDP"

Customized policies

About this task

To install a new set of policies into the PingDataGovernance embedded PDP, based on the changes that
you made through the PingDataGovernance Policy Administration GUI, perform the following steps:

Steps

1. In the PingDataGovernance Policy Administration GUI, click Change Control.

2. Verify that you are viewing the Version Control child tab

3. Select Commit New Changes and enter a commit message.

4. From the submenu in the upper-left corner, select the Deployment Packages tab.

5. To create a new deployment package, click +.

6. From the Branch drop-down list, select the policy branch to export.

7. From the Snapshot drop-down list, select the option that matches your most recent commit message.

8. To include only particular policies and policy sets, from the Policy Node drop-down list, select the
branch in the policy tree to export.

9. Click Create Package.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 134

10.After the deployment package has been created, click Export Package to download a file to your
system.

11.To load the new deployment package into the PingDataGovernance embedded PDP, use the
PingDataGovernance Administration Console or enter a dsconfig command like the following
example:

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --set "deployment-package</path/to/policies/customPolicies.SDP"

Environment-specific Trust Framework attributes

Within dynamic authorization, policies must be able to retrieve attributes frequently from Policy Information
Providers (PIPs) at runtime. The services and datastores from which additional policy information
is retrieved range from development and testing environments to preproduction and production
environments.

For example, you might use a Trust Framework service to retrieve a user's consent from PingDirectory's
Consent API. This service depends on the URL of the Consent API, the user name and password that are
used for authentication, and other items that vary between development, preproduction, and production
environments.

When you begin creating policies, you can define these values easily in the Trust Framework attributes, as
the following image shows.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 135

Before sharing your policies with others or moving to production, remove these hard-coded values from the
Trust Framework. For more information, see Remove the hard-coded password on page 139.

Store keys and values in PingDataGovernance Server

About this task

Environment-specific attribute keys and values are stored in PingDataGovernance Server's configuration,
which can be encrypted. By using this approach, you can configure different values in each of your
PingDataGovernance development, preproduction, and production environments.

The hard-coded values will be removed from your Trust Framework attributes at a later time.

Define a policy configuration key

About this task

To define a policy configuration key, perform the following steps:

Steps

1. Use a web browser to access the PingDataGovernance Administration Console at https://<your-
dg-host>:<your-dg-https-port>/console.

2. Select Authorization and Policies# Policy Decision Service.

3. In the Name text box, type ConsentServicePassword.

4. In the Policy Configuration Value text box, type foobarpassword1.

Next steps

If you utilize scripted deployment automation, use the command-line tools to configure a different value
for each of your environments. For example, in Ansible you might use a Jinja2 template to replace
foobarpassword1 with the appropriate Consent API password for the deployment environment, as
follows:

 PingDataGovernance/bin/dsconfig create-policy-configuration-key
 \
 --key-name ConsentServicePassword \
 --set "policy-configuration-value:foobarpassword1"

Repeat this step for the ConsentServiceBaseUri and ConsentServiceUsername configuration keys.

External PDP mode

When you develop policies, you are using the PDP in your PingDataGovernance Policy Administration GUI
server. This mode is referred to as External PDP mode. To grant an external PDP access to the passwords

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 136

that are stored in PingDataGovernance Server, create a service that retrieves the keys and values from
your development PingDataGovernance Server's configuration API.

Ultimately, you will create services like the following example, each of which retrieves a specific value from
your development PingDataGovernance Server:

To complete this task, configure the credentials that grant access to your development
PingDataGovernance Server's API.

i Note: Configure credentials to grant access to your development PingDataGovernance Servers only
when operating in External PDP mode. Such credentials are unnecessary when operating in Embedded
PDP mode, which is used in production environments.

Never store credentials in the Trust Framework attributes. Instead, save them to the server on which you
installed the PingDataGovernance Policy Administration GUI.

Store PingDataGovernance credentials as environment variables

About this task

To create environment variables, run the following commands in a terminal window:

export ConfigurationKeyServiceBaseUri="https://<your-dg-host>:<your-dg-
httpsport>/config/v2"
export ConfigurationKeyServiceUsername="cn=<your-dg-username>"
export ConfigurationKeyServicePassword="<your-dg-password>"

Add PingDataGovernance environment variables to the configuration file

About this task

To add an attribute value to the configuration file, perform the following steps:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 137

Steps

1. In a text editor, open the configuration file PingDataGovernance-PAP/config/
configuration.yml.

2. Locate the core: section.

3. Add the user name and password to PingDataGovernance Server, as follows:

ConfigurationKeyServiceBaseUri: ${ConfigurationKeyServiceBaseUri}
ConfigurationKeyServiceUsername: ${ConfigurationKeyServiceUsername}
ConfigurationKeyServicePassword: ${ConfigurationKeyServicePassword}

4. Stop the PingDataGovernance Policy Administration GUI server.

5. Restart the PingDataGovernance Policy Administration GUI server.

Results

The ${} points to the server environment variables. It is added to configuration.yml so that the
PingDataGovernance Policy Administration GUI can use environment variables as attributes.

In the following section, we will create those attributes within the PingDataGovernance Policy
Administration GUI.

Define a new attribute

About this task

To define a new attribute, perform the following steps:

Steps

1. In the PingDataGovernance Policy Administration GUI, go to Trust Framework.

2. Click Attributes.

3. Click +Add new attribute.

4. In the Name text box, type Username.

5. In the Resolver Settings section, perform the following steps:

a. From the Resolver Type drop-down list, select Configuration Key.
b. In the corresponding text box, type ConfigurationKeyServiceUsername.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 138

6. Click Save Changes.

Next steps
Repeat this task for ConfigurationKeyServiceBaseUri and
ConfigurationKeyServicePassword.
Retrieve the ConsentServicePassword value

About this task

Create a new Trust Framework service to retrieve the ConsentServicePassword value from your
development PingDataGovernance Server.

Steps

1. In the PingDataGovernance Policy Administration GUI, go to Trust Framework.

2. Click Services.

3. Click +Add new service.

4. In the Name text box, type ConsentServicePassword.

5. From the Service Type drop-down list, select Restful.

6. In the Restful Settings section, perform the following steps:

a. In the URL Format text box, type {{ConfigurationKeyServiceBaseUri}}/policy-
decision-service/policy-configuration-keys/ConsentServicePassword.

b. From the Authentication drop-down list, select Basic.
c. From the Username drop-down list, select the attribute that you created,

<Attribute>.Username.
d. From the Password drop-down list, select the attribute that you created, <Attribute>.Password.

7. In the Value Settings section, perform the following steps:

a. From the Processor drop-down list, select JSONPath.
b. In the corresponding text box, type $.policyConfigurationValue.

8. Click Save Changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 139

Results

Next steps
Repeat this task for ConsentServiceBaseUri and ConsentServiceUsername.
Remove the hard-coded password

About this task

Remove the hard-coded password from your Trust Framework attributes and add a resolver to use the new
Trust Framework service. To reduce REST API calls to your development PingDataGovernance Server,
ensure that you add attribute caching.

Steps

1. In the PingDataGovernance Policy Administration GUI, go to Trust Framework.

2. Click Attributes.

3. Expand ConsentService.

4. Click Password.

5. In the Resolver Settings section, perform the following steps:

a. From the Resolver Type drop-down list, select Service.
b. In the corresponding text box, type

PolicyConfigurationService.ConsentServicePassword.

6. Click Save Changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 140

Results

Next steps
Repeat this task for ConsentServiceUsername and ConsentServiceBaseUri.
Test your changes

About this task

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 141

Steps

Embedded PDP mode

When you perform regression testing or work in a production environment, you are using the PDP that is
embedded within PingDataGovernance Server. This mode is referred to as Embedded PDP mode.

PingDataGovernance Server automatically passes all configured policy configuration keys and values to
the embedded PDP.

Access a policy configuration key

About this task

To access the keys and values in Trust Framework attributes, add a corresponding resolver for using the
Configuration Key type, and specify the matching key name. Make certain to drag the Configuration Key
resolver to the top of the preference order.

Steps

1. In the PingDataGovernance Policy Administration GUI, go to Trust Framework.

2. Click Attributes.

3. Click +Add new attribute.

4. In the Name text box, type Password.

5. In the Resolver Settings section, perform the following steps:

a. From the Resolver Type drop-down list, select Configuration Key.
b. In the corresponding text box, type ConsentServicePassword.
c. Click +Add Resolver.
d. From the Resolver Type drop-down list, select Service.
e. In the corresponding text box, type

PolicyConfigurationService.ConsentServicePassword.

6. Click Save Changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 142

Results

Next steps
Repeat this task for ConsentServiceBaseUri and ConsentServiceUsername.

Advice
When a policy is applied to a request or response, the policy result might include one or more advices.
An advice is a directive that instructs the policy enforcement point to perform additional processing in
conjunction with an authorization decision. In this example, PingDataGovernance Server functions as the
policy enforcement type.

Advices allow PingDataGovernance Server to do more than simply allow or deny access to an API
resource. For example, an advice might cause the removal of a specific set of fields from a response.

An advice can be added directly to a single policy or rule, or it can be defined in the Toolbox for use with
multiple policies or rules. Advices possess the following significant properties:

Advice property Description

Name Friendly name for the advice.

Obligatory If true, the advice must be fulfilled as a condition
of authorizing the request. If PingDataGovernance
cannot fulfill an obligatory advice, it fails the
operation and returns an error to the client
application. If a non-obligatory advice cannot
be fulfilled, an error is logged, but the client's
requested operation continues.

Code Identifies the advice type. This value corresponds
to an advice ID that the PingDataGovernance
configuration defines.

Applies To Specifies the policy decisions, such as Permit or
Deny, that include the advice with the policy result.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 143

Advice property Description

Payload Set of parameters governing the actions that the
advice performs when it is applied. The appropriate
payload value depends on the advice type.

PingDataGovernance supports the following advice types:

▪ Add Filter
▪ Allow Attributes
▪ Combine SCIM Search Authorizations
▪ Denied Reason
▪ Exclude Attributes
▪ Filter Response
▪ Include Attributes
▪ Modify Attributes
▪ Modify Query
▪ Prohibit Attributes

The following sections describe these advice types in more detail. To develop custom advice types, use
the Server SDK.

i Note: Many advice types let you use the JSONPath expression language to specify JSON field paths.
To experiment with JSONPath, use the Jayway JSONPath Evaluator tool.

Add Filter

Advice ID: add-filter

Description: Adds administrator-required filters to SCIM search queries.

Applicable to: SCIM

The Add Filter advice places restrictions on the resources that are returned to an application that can
otherwise use SCIM search requests. The filters that the advice specifies are ANDed with any filter that the
SCIM request includes.

The payload for this advice is a string that represents a valid SCIM filter, which can contain multiple
clauses that are separated by AND or OR. If multiple instances of Add Filter advice are returned from policy,
they are ANDed together to form a single filter that is passed with the SCIM request. If the original SCIM
request body included a filter, it is ANDed with the policy-generated filter to form the final filter value.

Allow Attributes

Advice ID: allow-attributes

Description: Specifies the attributes that a JSON request body can create or modify for POST, PUT, or
PATCH.

Applicable to: All, although only SCIM is supported when the HTTP method is PATCH.

The payload for this advice is a JSON array of strings. Each string is interpreted as the name of a resource
attribute that the client can modify, create, or delete. If the client request contains changes for an attribute
that the advice does not name, the request is denied with a 403 Forbidden response. If multiple instances
of Allow Attributes advice are returned from policy, the union of all named attributes is allowed. The
optional wildcard string "*" indicates that the request can modify all attributes, and can override the other
paths that are present in the policy result.

Copyright ©2022

https://goessner.net/articles/JsonPath/
https://jsonpath.herokuapp.com/

PingDataGovernance | PingDataGovernance Server Administration Guide | 144

Combine SCIM Search Authorizations

Advice ID: combine-scim-search-authorizations

Description: Optimizes policy processing for SCIM search responses.

Applicable to: SCIM

By default, SCIM search responses are authorized by generating multiple policy decision requests with the
retrieve action, one for each member of the result set. The default mode enables policy reuse but might
result in greater overall policy processing time.

When this advice type is used, the current SCIM search result set is processed by using an alternative
authorization mode in which all search results are authorized by a single policy request that uses the
search-results action. The policy request includes an object with a single Resources field, which
is an array that consists of each matching SCIM resource. Advices that are returned in the policy result
are applied iteratively against each matching SCIM resource, allowing for the modification or removal of
individual search results.

This advice type does not use a payload.

For more information about SCIM search handling, see About SCIM searches on page 125.

Denied Reason

Advice ID: denied-reason

Description: Allows a policy writer to provide an error message that contains the reason for denying a
request.

Applicable to: DENY decisions.

The payload for Denied Reason advice is a JSON object string with the following fields:

▪ status – Contains the HTTP status code that is returned to the client. If this field is absent, the default
status is 403 Forbidden.

▪ message – Contains a short error message that is returned to the client.
▪ detail (optional) – Contains additional, more detailed error information.

The following example might be returned for a request made with insufficient scope:

{"status":403, "message":"insufficient_scope", "detail":"Requested operation
 not allowed by the granted OAuth scopes."}

Exclude Attributes

Advice ID: exclude-attributes

Description: Specifies the attributes that are excluded from a JSON response.

Applicable to: PERMIT decisions, although [Include or Exclude] Attributes advice cannot be applied
directly to a SCIM search.

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath into the
response body of the request that is being authorized. The portions of the response that each JSONPath
selects are removed before the response is returned to the client. Each JSONPath can point to multiple
attributes in the object, all of which are removed.

The following example instructs PingDataGovernance Server to remove the attributes secret and
data.private:

["secret","data.private"]

For more information about the processing of SCIM searches, see Filter Response on page 145.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 145

Filter Response

Advice ID: filter-response

Description: Directs PingDataGovernance Server to invoke policy iteratively over each item of a JSON
array that is contained within an API response.

Applicable to: PERMIT decisions from Gateway, although Filter Response advice cannot be applied
directly to a SCIM search. However, the SCIM service performs similar processing automatically when it
handles a search result. For every candidate resource in a search result, a policy request is made for the
resource with an Action value of retrieve.

Filter Response advice allows policies, when presented with a request to permit or deny a multi-valued
response body, to require that a separate policy request be made to determine whether the client can
access each individual resource that a JSON array returns.

The following table identifies the fields of the JSON object that represents the payload for this advice.

Field RequiredDescription

Path Yes JSONPath to an array within the API's response body. The advice implementation
iterates over the nodes in this array and makes a policy request for each node.

Action No Value to pass as the action parameter on subsequent policy requests. If no value is
specified, the action from the parent policy request is used.

Service No Value to pass as the service parameter on subsequent policy requests. If no value is
specified, the service value from the parent policy request is used.

ResourceTypeNo Type of object contained by each JSON node in the array, selected by the Path field.
On each subsequent policy request, the contents of a single array element are passed
to the policy decision point as an attribute with the name that this field specifies. If no
value is specified, the resource type of the parent policy request is used.

On each policy request, if policy returns a deny decision, the relevant array node is removed from the
response. If the policy request returns a permit decision with additional advice, the advice is fulfilled
within the context of the request. For example, this advice allows policy to decide whether to exclude or
obfuscate particular attributes for each array item.

For a response object that contains complex data, including arrays of arrays, this advice type can descend
through the JSON content of the response.

i Note: Performance might degrade as the total number of policy requests increases.

Include Attributes

Advice ID: include-attributes

Description: Limits the attributes that a JSON response can return.

Applicable to: PERMIT decisions, although [Include or Exclude] Attributes advice cannot be applied
directly to a SCIM search.

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath into the
response body of the request that is being authorized. The response includes only the portions that one of
the JSONPaths selects. When a single JSONPath represents multiple attributes, all of them are included. If
multiple instances of Include Attributes advice are returned from a policy, the response includes the union
of all selected attributes.

For more information about the processing of SCIM searches, see Filter Response on page 145.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 146

Modify Attributes

Advice ID: modify-attributes

Description: Modifies the values of attributes in the JSON request or response.

Applicable to: All, although Modify Attributes advice cannot be applied directly to a SCIM search

The payload for this advice is a JSON object. Each key/value pair is interpreted as an attribute modification
on the request or response body of the request being authorized. For each pair, the key is a JSONPath
pointing to the attribute to be modified, and the value is the value to set for the attribute. The value can be
any valid JSON value (including a complex value such as an object or array).

Modify Query

Advice ID: modify-query

Description: Modifies the query string of the request sent to the API server.

Applicable to: All

The payload for this advice is a JSON object. The keys are the names of the query parameters which must
be modified, and the values are the new values of the parameters. A value can be one of the following:

▪ Null, in which case the query parameter is removed from the request
▪ A string, in which case the parameter is set to that specific value
▪ An array of strings, in which case the parameter is set to all of the values in the array

If the query parameter already exists on the request, it will be overwritten. If it does not already exist, it will
be added.

As an example, if a request is made to a proxied API, with a request URL of https://example.com/
users?limit=1000, a policy may be used to limit certain groups of users to only request 20 users at a
time, and a payload of {"limit": 20} will cause the URL to be rewritten as https://example.com/
users?limit=20.

Prohibit Attributes

Advice ID: prohibit-attributes

Description: Specifies the attributes that a JSON request body cannot create or modify with POST, PUT,
or PATCH methods.

Applicable to: All, although only SCIM is supported when the HTTP method is PATCH.

The payload for this advice is a JSON array of strings. Each string is interpreted as the name of a resource
attribute that the client is not permitted to modify, create, or delete. If the client request contains changes
for an attribute that the advice specifies, the request is denied with a 403 Forbidden response.

Access token validators
Access token validators verify the tokens that client applications submit when they request access to
protected resources. Specifically, they translate an access token into a data structure that constitutes part
of the input for policy processing.

To authenticate to PingDataGovernance Server's HTTP services, clients use OAuth 2 bearer token
authentication to present an access token in the HTTP Authorization Request header. To process the
incoming access tokens, PingDataGovernance Server uses access token validators, which determine
whether to accept an access token and translate it into a set of properties, called claims.

Most access tokens identify a user, also called the token owner, as its subject. Access token validators
can retrieve the token owner's attributes from the User Store using a related component called a token

Copyright ©2022

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

PingDataGovernance | PingDataGovernance Server Administration Guide | 147

resource lookup method. The user data obtained by a token resource lookup method is sent to the PDP so
that policies can determine whether to authorize the request.

About access token validator processing

Any number of access token validators can be configured for PingDataGovernance Server. Each access
token validator possesses an evaluation order index, an integer that determines its processing priority.
Lower evaluation order index values take precedence over higher values.

The following image shows the validation process.

1. If an incoming HTTP request contains an access token, the token is sent to the access token validator
with the lowest evaluation order index.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 148

2. The access token validator validates the access token.

Validation logic varies by access token validator type, but the validator generally verifies the following
information:

▪ A trusted source issued the token
▪ The token is not expired

If the token is valid, its active flag is set to true. The flag and other access token claims are added to
the HttpRequest.AccessToken attribute of the policy request.

3. If the access token contains a subject, the access token validator sets the user_token flag to true,
and uses a token resource lookup method to fetch the token owner through SCIM.

A token resource lookup defines a SCIM filter that locates the token owner. If the lookup succeeds, the
resulting SCIM object is added to the policy request as the TokenOwner attribute.

i Note: For deployments that do not use SCIM, token owner attributes can be retrieved from other
user store types by writing a token resource lookup method extension with the Server SDK.

4. If the access token validator is unable to validate the access token, the token is passed to the access
token validator with the next lowest evaluation order index, and the previous two steps are repeated.

5. HTTP request processing continues, and the policy request is sent to the PDP.
6. Policies inspect the HttpRequest.AccessToken and TokenOwner attributes to make access control

decisions.

Access tokens issued using the OAuth 2 client credentials grant type are issued directly
to a client and do not contain a subject. An access token validator always sets the
HttpRequest.AccessToken.user_token flag to false for such tokens, which are called application
tokens, in contrast to tokens with subjects, which are called user tokens. Because authorization policies
often grant a broad level of access for application tokens, we recommend that such policies always check
the HttpRequest.AccessToken.user_token flag.

Access token validators determine whether PingDataGovernance Server accepts an access token and
uses it to provide key information for access-control decisions, but they are neither the sole nor the primary
means of managing access. The responsibility for request authorization falls upon the PDP and its policies.
This approach allows an organization to tailor access-control logic to its specific needs.

Access token validator types

PingDataGovernance Server provides the following types of access token validators:

▪ PingFederate access token validator
▪ JSON Web Token (JWT) access token validator
▪ Mock access token validator
▪ Third-party access token validator

PingFederate access token validator

To verify the access tokens that a PingFederate authorization server issues, the PingFederate access
token validator uses HTTP to submit the tokens to PingFederate Server's token introspection endpoint.
This step allows the authorization server to determine whether a token is valid.

Because this step requires an outgoing HTTP request to the authorization server, the PingFederate access
token validator might perform slower than other access token validator types. Regardless, the validation
result is guaranteed to be current, which is an important consideration if the authorization server permits
the revocation of access tokens.

Before attempting to use a PingFederate access token validator, create a client that represents the access
token validator in the PingFederate configuration. This client must use the Access Token Validation grant
type.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 149

Example configuration

In PingFederate, create a client with the following properties:

▪ Client ID: PingDataGovernance
▪ Client authentication: Client Secret
▪ Allowed grant types: Access Token Validation

Take note of the client secret that is generated for the client, and use PingDataGovernance Server's
dsconfig command to create an access token validator, as follows:

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031
Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "PingFederate Access Token Validator" \
 --type ping-federate \
 --set enabled:true \
 --set "authorization-server:PingFederate External Server" \
 --set client-id:PingDataGovernance \
 --set "client-secret:<client secret>"
 --set evaluation-order-index:2000
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "PingFederate Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

JWT access token validator

The JWT access token validator verifies access tokens that are encoded in JSON Web Token format,
which can be signed (JWS) or signed and encrypted (JWE). The JWT access token validator inspects the
JWT token without presenting it to an authorization server for validation.

To ensure that a trusted source issued a particular token, the token's signature is validated by using the
public keys of the authorization server in one of the following manners:

▪ Store the keys as trusted certificates in PingDataGovernance Server's configuration.
▪ Retrieve the keys by way of HTTP from the authorization server's JSON Web Key Set (JWKS) endpoint

when the JWT access token validator is initialized. This method ensures that the JWT access token
validator uses updated copies of the authorization server's public keys.

Because the JWT access token validator is not required to make a token introspection request for every
access token that it processes, it performs better than the PingFederate access token validator. The
access token is self-validated, however, so the JWT access token validator cannot determine whether the
token has been revoked.

Supported JWS/JWE features

For signed tokens,the JWT access token validator supports the following JWT web algorithm (JWA) types :

▪ RS256
▪ RS384
▪ RS512

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 150

For encrypted tokens, the JWT access token validator supports the RSA-OAEP key-encryption algorithm
and the following content-encryption algorithms:

▪ A128CBC-HS256
▪ A192CBC-HS384
▪ A256CBC-HS512

Example configuration

In the following example, a JWT access token validator is configured to retrieve public keys from a
PingFederate authorization server's JWKS endpoint:

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031
Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \
 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set "authorization-server:PingFederate External Server" \
 --set jwks-endpoint-path:/ext/oauth/jwks
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "PingFederate Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Mock access token validator

A mock access token validator is a special access token validator type that is used for development or
testing purposes. A mock access token validator accepts arbitrary tokens without validating whether
a trusted source issued them. This approach allows a developer or tester to make bearer token-
authenticated requests without first setting up an authorization server.

Mock access tokens are formatted as plain-text JSON objects using standard JWT claims. Always provide
the boolean active claim. If this value is true, the token is accepted. If this value is false, the token
is rejected. If the sub claim is provided, a token owner lookup populates the TokenOwner policy request
attribute, as with the other access token validator types.

The following example cURL command provides a mock access token in an HTTP request:

curl -k -X GET https://localhost:8443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub":"user.3", "scope":"email profile",
 "client":"client1"}'

i Important: Never use mock access token validators in a production environment because they do not
verify whether a trusted source issued an access token.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 151

Example configuration

The configuration for a mock access token validator resembles the configuration for a JWT access
token validator. However, the JWS signatures require no configuration because mock tokens are not
authenticated.

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true \
 --set evaluation-order-index:9999
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Third-party access token validator

To create custom access token validators, use the Server SDK.

Server configuration
This section covers basic server configuration. For a detailed look at configuration, refer to the Ping Identity
PingDataGovernance Server Configuration Reference, which is located in the server's docs directory.

PingDataGovernance Server is built upon the same foundation as PingDirectory Server. Both servers use
a common configuration system, and their configurations use the same tools and APIs.

The configuration system is fundamentally LDAP-based, and configuration entries are stored in a special
LDAP backend called cn=config. The structure is a tree structure, and configuration entries are
organized in a shallow hierarchy under cn=config.

Administration accounts

Administration accounts called Root DNs are stored in a branch of the configuration backend, cn=Root
DNs,cn=config. When setup is run, the process creates a superuser account that is typically
named cn=Directory Manager. Although PingDataGovernance Server is not an LDAP directory
server, it follows this convention by default. As a result, its superuser account is also typically named
cn=Directory Manager.

To create additional administration accounts, use dsconfig or the PingDataGovernance Administration
Console to add Root DN users.

About the dsconfig tool

Use the dsconfig tool whenever you administer the server from a shell. When run without arguments,
dsconfig enters an interactive mode that permits the browsing and updating of the configuration from a
menu-based interface. Use this interface to list, update, create, and delete configuration objects.

When viewing any configuration object in dsconfig, use the d command to display the command line that
is necessary to recreate a configuration object. A command line in this form can be used directly from a
shell or placed in a dsconfig batch file, along with other commands.

Batch files are a powerful feature that enable scripted deployments. By convention, these scripts use a
file extension of DSCONFIG. Batch files support comments by using the # character, and they support line
continuation by using the \ (backslash) character.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 152

For example, the following dsconfig script configures PingDataGovernance Server's policy service:

Define an external PingDataGovernance PAP
dsconfig create-external-server \
 --server-name "PingDataGovernance Policy Administration GUI" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 \
 --set "branch:Default Policies"
Configure the policy service
dsconfig set-policy-decision-service-prop \
 --type scim \
 --set pdp-mode:external \
 --set "policy-server:PingDataGovernance PAP" \
 --set "decision-response-view:request" \
 --set "decision-response-view:decision-tree"

To load a dsconfig batch file, run dsconfig with the --batch-file argument, as follows:

$ PingDataGovernance/bin/dsconfig -n --batch-file example.dsconfig

Batch file 'example.dsconfig' contains 2 commands.

Pre-validating with the local server Done

Executing: create-external-server -n --server-name "PingDataGovernance PAP"
 --type policy --set base-url:http://localhost:4200 --set
decision-node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 --set "branch:Default
 Policies"

Arguments from tool properties file: --useSSL --hostname localhost --port
 8636 --bindDN cn=root --bindPassword ***** --trustAll

The Policy External Server was created successfully.

Executing: set-policy-decision-service-prop -n --set pdp-mode:external --set
 "policy-server:PingDataGovernance PAP" --set
decision-response-view:request --set decision-response-view:decision-tree

The Policy Decision Service was modified successfully.

 PingDataGovernance Administration Console

The PingDataGovernance Administration Console is a web-based application that provides a graphical
configuration and administration interface. It is available by default from the /console path.

About the configuration audit log

All successful configuration changes are recorded to the file logs/config-audit.log, which records
the configuration commands that represent these changes as well as the configuration commands that
undo the changes.

$ tail -n 8 PingDataGovernance/logs/config-audit.log
[23/Feb/2019:23:16:24.667 -0600] conn=4 op=12 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
Undo command: dsconfig delete-external-server --server-name
 "PingDataGovernance PAP"

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 153

dsconfig create-external-server --server-name "PingDataGovernance PAP"
 --type policy --set base-url:http://localhost:4200 --set decision-
node:e51688ff-1dc9-4b6c-bb36-8af64d02e9d1 --set "branch:Default Policies"

[23/Feb/2019:23:16:24.946 -0600] conn=5 op=22 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
This change was made to mirrored configuration data, which is
 automatically kept in sync across all servers.
Undo command: dsconfig set-policy-decision-service-prop --set "policy-
server:PingDataGovernance (Gateway Policy Example)"
dsconfig set-policy-decision-service-prop --set "policy-
server:PingDataGovernance PAP"

About the config-diff tool

The config-diff tool compares server configurations and produces a dsconfig batch file that lists the
differences.

When run without arguments, the config-diff tool produces a list of changes to the configuration,
as compared to the server’s baseline or out-of-the-box configuration. Because this list captures the
customizations of your server configuration, it is useful when you transition from a development
environment to a staging or production environment.

$ PingDataGovernance/bin/config-diff
No comparison arguments provided, so using "--sourceLocal --sourceTag
 postSetup --targetLocal" to compare the local configuration with the post-
setup configuration.
Run "config-diff --help" to get a full list of options and example usages.

Configuration changes to bring source (config-postSetup.gz) to target
 (config.ldif)
Comparison options:
Ignore differences on shared host
Ignore differences by instance
Ignore differences in configuration that is part of the topology
 registry

dsconfig create-external-server --server-name "DS API Server" --type api
--set base-url:https://localhost:1443 --set hostname-verification-
method:allow-all --set "trust-manager-provider:Blind Trust" --set user-
name:cn=root --set "password:AADaK6dtmjJQ7W+urtx9RGhSvKX9qCS8q5Q="

dsconfig create-external-server --server-name "FHIR Sandbox" --type api
--set base-url:https://fhir-open.sandboxcerner.com
...

Certificates

Depending on the circumstances, PingDirectory Server uses one of the following certificates:

▪ Inter-server certificate – Used for internal purposes, like the following examples:

▪ Replication authentication
▪ Inter-server authentication in the topology registry
▪ Reversible password encryption
▪ Encrypted backups and LDIF exports

▪ Server certificate – Presented by the server when a client uses a protocol like LDAPS or HTTPS to
initiate a secure connection. A client must trust the server's certificate to obtain a secure connection to
it.

Copyright ©2022

https://fhir-open.sandboxcerner.com

PingDataGovernance | PingDataGovernance Server Administration Guide | 154

The following sections describe these certificates in more detail.

Inter-server certificate

Generated during installation, the inter-server certificate is stored under the alias ads-certificate in a
file named ads-truststore, which resides in the server’s /config directory. This certificate contains
the key pair for the local server as well as for the certificates of all trusted servers, and has a lifetime of 20
years before expiring.

The local server's public key is signed by its own private key, making it a self-signed certificate. The alias
is hard-coded to ads-certificate, and the keystore file is hard-coded to ads-truststore. This
behavior cannot be modified during setup.

i Warning:

▪ Although some customers feel uncomfortable with the self-signed nature of the inter-server certificate,
we recommend that you do not replace it with a CA-signed certificate for the following reasons:

▪ If the inter-server certificate is replaced incorrectly, serious problems can occur during topology
authentication.

▪ The inter-server certificate is used for internal purposes only.
▪ If the server's access logs contain authentication (bind) errors, the inter-server certificate is most likely

configured inappropriately. In the topology registry, this certificate is persisted in the inter-server-
certificate property of a server instance.

Replace the inter-server certificate

About this task

Because the inter-server certificate is also stored in the topology registry, it can be replaced on one server
and mirrored to all other servers in the topology. Changes are mirrored automatically to the other servers in
the topology.

i Important: Before attempting to replace the inter-server certificate, ensure that all servers in the
topology are updated to version 7.0 or later.

The inter-server certificate is stored in human-readable, PEM-encoded format and can be updated by
using the dsconfig tool. While the certificate is being replaced, existing authenticated connections
continue to work. If the server is restarted, or if a topology change requires a reset of peer connections, the
server continues authenticating with its peers, all of whom trust the new certificate.

To replace the inter-server certificate with no downtime, complete the following tasks:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new keystore.

3. Update the server configuration to use the new certificate by adding it to the server’s list of certificates
in the topology registry.
After this step is performed, other servers will trust the certificate.

4. Replace the server’s ads-truststore file with the new one.

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 155

Prepare a new keystore with the replacement key pair

The self-signed certificate can be replaced with an existing key pair. As an alternative, the certificate that is
associated with the original key pair can be used.

Use an existing key pair

If a private key and certificate in PEM-encoded format already exist, both the original private key and the
self-signed certificate can be replaced in ads-truststore by using the manage-certificates tool.
Depending on your operating system, the manage-certificates tool is located in the server's bin or
bat directory.

i Important: If the existing key pair is not in PEM-encoded format, convert it to a format that is
compatible with the server’s ads-truststore keystore file format before proceeding.

If you replace the entire key pair instead of only the certificate that is associated with the original private
key, your existing backups and LDIF exports might be rendered invalid. To avoid this scenario, perform
this step immediately after setup, or at least before the key pair is used. After the first use, change only the
certificate associated with the private key to extend its validity period, or to replace it with a certificate that
is signed by a different CA.

The following command imports existing certificates into a new keystore file named ads-
truststore.new:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Order the certificates that use the --certificate-file option in such a manner that each subsequent
certificate functions as the issuer for the previous one. The server certificate is listed first, any intermediate
certificates are listed next, and the root CA certificate is listed last. Because some deployments do not
feature an intermediate issuer, you might need to import only the server certificate and a single issuer.

Replace the certificate associated with the original key pair

About this task

Alternatively, to replace the certificate that is associated with the original server-generated, ads-
certificate private key, perform the following steps:

Steps

1. Create a CSR for the ads-certificate, as follows:

manage-certificates generate-certificate-signing-request \
 --keystore ads-truststore \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file ads.csr

2. Submit ads.csr to a CA for signing.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 156

3. Export the server’s private key into ads.key, as follows:

manage-certificates export-private-key \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --output-file ads.key

4. Import the certificates obtained from the CA – including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates – into ads-truststore.new, as follows:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --private-key-file ads.key \
 --certificate-file new-ads.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Import earlier trusted certificates into the new keystore

About this task

The new ads-truststore file, ads-truststore.new, contains only the server’s new key pair. You
must import the currently trusted certificates of other servers in the topology.

To export trusted certificates from ads-truststore and import them into ads-truststore.new,
perform the following steps for each trusted certificate:

Steps

1. Locate the currently trusted certificates, as follows:

manage-certificates list-certificates \
 --keystore ads-truststore

2. For each alias other than ads-certificate, or whose fingerprint does not match ads-
certificate, perform the following steps:

a. Export the trusted certificate from ads-truststore, as follows:

manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file <trust-cert-alias>.crt

b. Import the trusted certificate into ads-truststore.new, as follows:

manage-certificates import-certificate \
 --keystore ads-truststore.new \
 --keystore-type JKS \
 --keystore-password-file ads-truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file <trusted-cert-alias>.crt

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 157

Update the server configuration to use the new certificate

About this task

Before updating the server to use the appropriate key pair, update the inter-server-certificate
property for the server instance in the topology registry. To support the transition from an existing
certificate to a new one, earlier and newer certificates might appear within their own beginning and ending
headers in the inter-server-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Steps

1. Export the server’s previous ads-certificate into old-ads.crt, as follows:

manage-certificates export-certificate \
 --keystore ads-truststore \
 --keystore-password-file ads-truststore.pin \
 --alias ads-certificate \
 --output-file old-ads.crt

2. Concatenate the previous and new certificate into one file.

On Windows, use a text editor like Notepad. On Unix, use the following command:

cat old-ads.crt new-ads.crt > old-new-ads.crt

3. Use dsconfig to update the inter-server-certificate property for the server instance in the
topology registry, as follows:

$ bin/dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set "inter-server-certificate<old-new-ads.crt"

Replace the previous ads-truststore file with the new one

Because the server still uses the previous ads-certificate, you must replace the previous ads-
truststore file with ads-truststore.new in the server’s config directory when you want the new
ads-certificate to go into effect:

$ mv ads-truststore.new ads-truststore

Retire the previous certificate

Retire the previous certificate by removing it from the topology registry after it expires, as follows:

$ dsconfig -n set-server-instance-prop \
 --instance-name <instance-name> \
 --set "inter-server-certificate<chain.crt"

Existing encrypted backups and LDIF exports remain unaffected. Because the public key is the same in the
previous and new server certificates, the private key can decrypt them.

Server certificate

During setup, administrators have the option of using self-signed certificates or CA-signed certificates
for the server certificate. Where possible, we encourage the use of CA-signed certificates. Self-signed
certificates are recommended only for demonstration and proof-of-concept environments.

If you specify the option --generateSelfSignedCertificate during setup, the server certificate is
generated automatically with the alias server-cert. The key pair consists of the private key and the
self-signed certificate, and is stored in a file named keystore, which resides in the server's /config

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 158

directory. The certificates for all the servers that the server trusts are stored in the truststore file, which
is also located under the server’s /config directory.

To override the server certificate alias and the files that store the key pair and certificates, use the following
arguments during setup:

▪ --certNickname
▪ --use*Keystore
▪ --use*Truststore

For more information about these arguments, refer to the setup tool’s Help and the Installation Guide.

i Important: If the server's access logs contain authentication (bind) errors, the inter-server certificate
is most likely configured inappropriately. In the topology registry, this certificate is persisted in a Server
Instance Listener’s listener-certificate property.

Replace the server certificate

About this task

Regardless of whether the server was set up with self-signed or CA-signed certificates, the steps to
replace the server certificate are nearly identical.

This task makes the following assumptions:

▪ You are replacing the self-signed server certificate.
▪ The certificate alias is server-cert.
▪ The private key is stored in keystore.
▪ The trusted certificates are stored in truststore.
▪ The keystore and truststore use the JKS keystore format.

If a PKCS#12 keystore format was used for the keystore and truststore files during setup, change
the --keystore-type argument in the manage-certificate commands to PKCS12 in the relevant
steps.

i Important: Before attempting to replace the inter-server certificate, ensure that all servers in the
topology are updated to version 7.0 or later.

While the certificate is being replaced, existing secure connections continue to work. If the server is
restarted, or if a topology change requires a reset of peer connections, the server continues authenticating
with its peers, all of whom trust the new certificate.

To replace the server certificate with no downtime, complete the following tasks:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new truststore file.

3. Update the server configuration to use the new certificate by adding it to the server’s list of listener
certificates in the topology registry.
After this step is performed, other servers will trust the certificate.

4. Replace the server’s keystore and truststore files with the new ones.

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 159

Prepare a new keystore with the replacement key pair

The self-signed certificate can be replaced with an existing key pair. As an alternative, the certificate that is
associated with the original key pair can be used.

Use an existing key pair

If a private key and certificate already exist in PEM-encoded format, they can replace both the original
private key and the self-signed certificate in keystore (instead of replacing the self-signed certificate
associated with the original server-generated private key). Use the manage-certificates tool that,
depending on your operating system, is located in the server's bin or bat directory.

The following command imports existing certificates into a new keystore file named keystore.new:

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Order the certificates that use the --certificate-file option in such a manner that each subsequent
certificate functions as the issuer for the previous one. The server certificate is listed first, any intermediate
certificates are listed next, and the root CA certificate is listed last. Because some deployments do not
feature an intermediate issuer, you might need to import only the server certificate and a single issuer.

Replace the certificate associated with the original key pair

About this task

If the certificate that is associated with the original server-generated private key (server-cert) has
expired or must be replaced with a certificate from a different CA, perform the following steps to replace it:

Steps

1. Create a CSR file for the server-cert, as follows:

manage-certificates generate-certificate-signing-request \
 --keystore keystore \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file server-cert.csr

2. Submit server-cert.csr to a CA for signing.

3. Export the server’s private key into server-cert.key, as follows:

manage-certificates export-private-key \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file server-cert.key

4. Import the certificates obtained from the CA – including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates – into keystore.new, as follows:

manage-certificates import-certificate \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 160

 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file server-cert.key \
 --certificate-file server-cert.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Import earlier trusted certificates into the new keystore

About this task

The trusted certificates of other servers in the topology must be imported into the new truststore file.
To export trusted certificates from truststore and import them into truststore.new, perform the
following steps for each trusted certificate:

Steps

1. Locate the currently trusted certificates, as follows:

manage-certificates list-certificates \
 --keystore truststore

2. For each alias other than server-cert, or whose fingerprint does not match server-cert, perform
the following steps:

a. Export the trusted certificate from truststore, as follows:

manage-certificates export-certificate \
 --keystore truststore \
 --keystore-password-file tuststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file trusted-cert-alias.crt

b. Import the trusted certificate into truststore.new, as follows:

manage-certificates import-certificate \
 --keystore truststore.new \
 --keystore-type JKS \
 --keystore-password-file truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file trusted-cert-alias.crt

Update the server configuration to use the new certificate

About this task

Before updating the server to use the appropriate key pair, update the listener-certificate property
for the server instance's LDAP listener in the topology registry. To support the transition from an existing
certificate to a new one, earlier and newer certificates might appear within their own beginning and ending
headers in the listener-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Steps

1. Export the server’s previous server-cert into old-server-cert.crt, as follows:

manage-certificates export-certificate \
 --keystore keystore \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 161

 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file old-server-cert.crt

2. Concatenate the previous and new certificate into one file.

On Windows, use a text editor like Notepad. On Unix, use the following command:

cat old-server-cert.crt new-server-cert.crt > old-new-server-cert.crt

3. Use dsconfig to update the listener-certificate property for the server instance's LDAP
listener in the topology registry, as follows:

$ bin/dsconfig -n set-server-instance-listener-prop \
 --instance-name instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<old-new-server-cert.crt"

Replace the keystore and truststore files with the new ones

Because the server still uses the previous server-cert, you must replace the earlier keystore and
truststore files with the new ones in the server’s config directory when you want the new server-
cert to take effect.

$ mv keystore.new keystore
 mv truststore.new truststore

Retire the previous certificate

Retire the previous certificate by removing it from the topology registry after it expires, as follows:

$ dsconfig -n set-server-instance-listener-prop \
 --instance-name <instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<new-server-cert.crt"

Manage monitoring

StatsD monitoring endpoint

The Monitoring Endpoint configuration type provides the StatsD Endpoint type that you can use to transfer
metrics data in the StatsD format.

Examples of metrics you can send are:

▪ Busy worker thread count
▪ Garbage collection statistics
▪ Host system metrics such as CPU and memory

For a list of available metrics, use the interactive dsconfig menu for the Stats Collector Plugin or in the
Administrative Console, edit the Stats Collector plugin as explained in the second example.

You configure the Monitoring Endpoint using the dsconfig command. When you configure Monitoring
Endpoint, you include:

▪ The endpoint's hostname
▪ The endpoint's port
▪ A toggle to use TCP or UDP
▪ A toggle to use SSL if you use TCP

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 162

For example, to configure a new StatsD Monitoring Endpoint to send UDP data to localhost port 8125
using dsconfig:

dsconfig create-monitoring-endpoint \
 --type statsd \
 --endpoint-name StatsDEndpoint \
 --set enabled:true \
 --set hostname:localhost \
 --set server-port:8125 \
 --set connection-type:unencrypted-udp

If you are using the Administrative Console:

1. Click Show Advanced Configuration.
2. In the Logging, Monitoring, and Notifications section, click Monitoring Endpoints.
3. Click New Monitoring Endpoint.

You can send data to any number of monitoring endpoints.

The Stats Collector Plugin controls the metrics used by the StatsD monitoring endpoint. To send metrics
with the StatsD monitoring endpoint, you must enable the Stats Collector Plugin. Also, you must configure
the Stats Collector Plugin to indicate the metrics to send.

To enable the Stats Collector Plugin or to configure the type of data sent, use the dsconfig command or
the Administrative Console. For example, to enable the Stats Collector Plugin to send host CPU metric,
memory metrics, and server status metrics using dsconfig:

dsconfig set-plugin-prop \
 --plugin-name "Stats Collector" \
 --set enabled:true \
 --set host-info:cpu \
 --set host-info:disk \
 --set status-summary-info:basic

If you are using the Administrative Console:

1. Click Show Advanced Configuration.
2. In the LDAP (Administration and Monitoring) section, click Plugin Root
3. Edit the Stats Collector plugin.

After you enable the Stats Collector and create the StatsD monitoring endpoint, you can:

▪ Use the data with Splunk as explained in Sending metrics to Splunk on page 162.
▪ Configure other tools that support StatsD, such as CloudWatch or a Prometheus StatsD exporter, to

use the data. For more information about this configuration, see your tool's StatsD documentation.
Configure the StatsD monitoring endpoint to use the correct host and port. The dsconfig create-
monitoring-endpoint example above uses a host of localhost and a port of 8125. You can also set
these values in the Administrative Console.

Sending metrics to Splunk

About this task

With the StatsD Endpoint type, you can send metric data to a Splunk installation.

In Splunk, you can use SSL to secure ports that are open for StatsD.

i Note:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 163

StatsD metrics are typically sent over UDP. By using UDP, the client sending metrics does not have to
block as it would if using TCP. However, using TCP guarantees order and ensures no metrics are lost.

You can configure open UDP (or TCP) ports in Splunk to accept only connections from a certain hostname
or IP address.

To securely send UDP (or TCP) data to Splunk, you can:

Steps

1. Send the data to a Splunk Universal Forwarder.

2. Have the forwarder communicate with the Splunk Indexer over SSL.

Capture debugging data
If problems arise (whether from issues in PingDataGovernance Server itself or a supporting component,
such as the JVM, the operating system, or the hardware), you can capture diagnostic data. With this data,
you can troubleshoot the problem quickly to determine the underlying cause and the best course of action
to take to resolve it. This chapter describes how to capture the diagnostic data.

Export policy data

About this task

This section provides instructions to export all Trust Framework and policy data from the
PingDataGovernance Policy Administration GUI, which is powered by Symphonic, to a snapshot that
captures all of the policy data contained within a branch of the PingDataGovernance Policy Administration
GUI. Snapshots provide a convenient way to load policy data into a separate PingDataGovernance Policy
Administration GUI instance.

To export policy data, perform the following steps:

Steps

1. Go to Change Control.

2. Click Version Control.

3. Click the name of the branch to export.

4. Click Options and select Export Snapshot.
A snapshot file is downloaded to your computer.

Enable detailed logging

This section provides instructions for enabling detailed debug logging for troubleshooting purposes. This
level of logging captures request and response data that contains potentially sensitive information.

i Note: Do not use this level of logging when working with actual customer data.

Policy Decision logger

Enabled by default, the Policy Decision logger records decision responses that are received from the
PDP. Regardless of whether PingDataGovernance Server is configured to evaluate a policy in Embedded
or External mode, a policy-decision file logs every policy decision per request. This file is located at
PingDataGovernance/logs/policy-decision and contains the following information:

▪ Policy-decision response – Each client request triggers a policy-decision response that specifies the
inbound actions to perform, and another policy-decision response that specifies the outbound actions to

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 164

perform. If you think of a policy-decision response as a set or decision tree of policies, all inbound and
outbound requests are read from that set or tree.

Policy rules determine whether a request is denied, permitted, or indeterminate.
▪ Most recent policy decision – To debug the most recent inbound request, open the policy-decision

log file and locate the highest DECISION requestID in the section near the bottom of the file. In
the following example, [08/May/2019:15:35:04.791 -0500] "DECISION requestID=46"
represents the most recent request, and action equals "inbound-GET".

Alternatively, you can use the most recent request timestamp to locate the most recent request.
▪ Policy advice – If the policy contains advice, it is logged after the policy-decision response JSON.

Advice features the same corresponding requestID, as the following example shows:

To increase the level of detail that is returned in PDP decision responses, configure the Policy Decision
Service as follows:

dsconfig set-policy-decision-service-prop \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request

Debug Trace logger

The Debug Trace logger records detailed information about the processing of HTTP requests and
responses. The following example enables this log:

dsconfig set-log-publisher-prop \
 --publisher-name "Debug Trace Logger" \
 --set enabled:true

By default, the corresponding log file is located at PingDataGovernance/logs/debug-trace.

Debug logger

The Debug logger records debugging information that a developer might find useful. The following example
enables this log:

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.broker.http.gateway \
 --set debug-level:verbose

dsconfig create-debug-target \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 165

 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.config.GatewayConfigManager \
 --set debug-level:verbose

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.core.policy.PolicyEnforcementPoint \
 --set debug-level:verbose

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

By default, the corresponding log file is located at PingDataGovernance/logs/debug.

Trace a policy-decision response

About this task

Before attempting to troubleshoot or trace a policy-decision response, make certain that the Trace log is
enabled within PingDataGovernance Server. For more information, see Configure PingDataGovernance
logging on page 35.

Each policy-decision response is presented in JSON format. To view the details of a policy-decision
response, perform the following steps:

Steps

1. From within the policy-decision file, copy the policy-decision response JSON.

2. In the Policy Administration GUI, go to Policies.

3. Click the Log Visualizer tab.

4. In the Log Input text box, paste the policy-decision response JSON.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 166

5. Click Visualize.

Results
An interactive decision tree of your policies is displayed.

This image depicts the final decision that is sent to the client. The node to the far left, Global Decision
Point, represents the root node, and the children nodes contain the subset of policies and rules.

The following color-coded icons convey important information:

▪ Green check mark – Indicates that the request permit on the policy or rule.
▪ Red X – Indicates that the request deny on the policy or rule.
▪ Gray N/A – Indicates that the request is not applicable to the policy or rule.

In the previous example, the client received a final decision of deny. The Token Validation policy permitted
the request initially but was overridden after the Random Jokes API policy was applied.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 167

Capture debugging data with the collect-support-data tool

Run the collect-support-data tool to capture the PingDataGovernance Server’s configuration,
server state, environment, and other information that is useful for troubleshooting issues. When you run
collect-support-data, the tool generates a compressed file that can be attached to a message or
report.

 PingDataGovernance/bin/collect-support-data

By default, the tool excludes log files that might contain sensitive customer information, including the
debugging logs that are described in Enable detailed logging on page 163. When you use test data, send
the following log files alongside collect-support-data’s compressed output file:

▪ PingDataGovernance/logs/policy-decision
▪ PingDataGovernance/logs/debug-trace
▪ PingDataGovernance/logs/debug

Upgrade PingDataGovernance Server
Ping Identity issues software release builds periodically with new features, enhancements, and fixes for
improved server performance. PingDataGovernance is unique in that it includes two server applications
that must be upgraded in tandem — the main PingDataGovernance Server, and the Policy Administration
GUI.

i Note: A PingDataGovernance Server used in external PDP mode requires a Policy Administration
GUI with the same version. When upgrading PingDataGovernance Server, the Policy Administration GUI
must also be upgraded.

Upgrade overview and considerations

The upgrade process involves downloading and unzipping a new version of the PingDataGovernance
Server ZIP file on the server to be updated and running the update utility with the --serverRoot or -R
option value from the new root server pointing to the installation to be upgraded.

Consider the following when upgrading:

▪ The update affects only the server being upgraded. The process does not alter the configuration of
other servers, so updates of those servers need to be performed separately. Instructions for updating
the PingDataGovernance Policy Administration GUI server can be found in a later section of this
chapter.

▪ The update tool will verify that the version of Java that is installed meets the new server requirements.
To simplify the process, install the version of Java that is supported by the new server before running
the tool.

▪ Upgrade for PingDataGovernance Server is only supported from versions 7.0.0.0 or higher. If upgrading
from a version of PingDataGovernance prior to 7.3.0.0 there will be configuration loss. The update tool
has a warning message about this.

Upgrading PingDataGovernance Server

About this task

Perform the following steps to upgrade a PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 168

Steps

1. Download and unzip the new version of the PingDataGovernance Server in a location outside the
existing server's installation. For these steps, assume the existing server installation is in /opt/
dg/PingDataGovernance and the new server version has been unzipped into /home/stage/
PingDataGovernance.

2. Provide a copy of the PingDataGovernance license file for the versionto which you are upgrading in the
/home/stage/PingDataGovernance directory or give the location of the license file to the tool using
the --licenseKeyFile option.

3. Run the update tool provided with the new server package to update the existing
PingDataGovernance Server. The update tool might prompt for confirmation on server configuration
changes if it detects customization.

/home/stage/PingDataGovernance/update --serverRoot /opt/dg/
PingDataGovernance

Reverting an update

About this task

After PingDataGovernance Server has been updated, you can revert to the previous version (one level
back) using the revert-update tool. The revert-update tool accesses a log of file actions taken by
the updater to put the file system back to its previous state. If you have run multiple updates, you can run
the revert-update tool multiple times to sequentially revert to each prior update. You can only revert
back one level at a time with the revert-update tool. For example, if you had to run the update twice
since first installing PingDataGovernance Server, you can run the revert-update tool to revert to its
previous state, then run the revert-update tool again to return to its original state.

When starting the server for the first time after a revert has been run, the server will display warnings about
"offline configuration changes," but these are not critical and will not appear during subsequent start-ups.

To revert a server update, perform the following step:

▪ Run revert-update in the server root directory to revert back to the most recent previous version of
the server

/opt/dg/PingDataGovernance/revert-update

Upgrade the PingDataGovernance Policy Administration GUI

About this task

This section describes how a server administrator can upgrade the PingDataGovernance Policy
Administration GUI when a new version is released. You can use the PingDataGovernance Server’s
update utility to upgrade the server to a new version. The following topics describe a scenario where
an administrator wants to transfer an existing server’s configuration to a new server installation.
In these examples, assume that the current Policy Administration GUI is located in /opt/dg/
PingDataGovernance-PAP.

Back Up Policies

About this task

Policy writers may want to back up existing policies before upgrading the Policy Administration GUI. Do
this by exporting policy snapshots as described in the following steps:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 169

Steps

1. Log in to the Policy Administration GUI and choose any existing branch to go to the main landing page.

2. Select Change Control# Version Control to display your current branches.

3. Click a branch from the list that you wish to export. You should see a list of the commits for that branch.
Identify the commit that represents the snapshot that you want to export (the most recent version of the
branch is named Uncommitted changes) and click the hamburger icon in the Options column.

4. Choose to export the snapshot. Your browser will download the file.

5. Repeat for any additional branches that you wish to back up.

Transfer Configuration Files

About this task

This section describes how to copy key configuration files to a new server installation.

i Note: Log files will not be transferred to the new server location.

Steps

1. Go to your existing PingDataGovernance Policy Administration GUI installation directory and stop the
server.

cd /opt/dg/PingDataGovernance-PAP
bin/stop-server

2. Rename the existing PingDataGovernance Policy Administration GUI directory.

mv /opt/dg/PingDataGovernance-PAP /opt/dg/PingDataGovernance-PAP-previous

3. Unzip the new PingDataGovernance Policy Administration GUI distribution to the desired location. In
this example, the new Policy Administration GUI directory will be /opt/dg/PingDataGovernance-
PAP.

unzip PingDataGovernance-PAP-x.x.x.x.zip -d /opt/dg

4. Copy the following files from the existing PingDataGovernance Policy Administration GUI directory to
the new location.

cp /opt/dg/PingDataGovernance-PAP-previous/Symphonic.mv.db /opt/dg/
PingDataGovernance-PAP

i Note: If your existing PingDataGovernance Policy Administration GUI installation uses a custom
certificate keystore, you should also copy this file to the new location and specify it when running setup
in Configure and Start the Server. For example:

cp /opt/dg/PingDataGovernance-PAP-previous/keystore.p12 /opt/dg/
PingDataGovernance-PAP

Upgrade the Policy Database

About this task

The new server installation may require changes to the policy database structure. The server comes with a
script that performs these upgrades.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 170

Steps

1. To upgrade the policy database file Symphonic.mv.db), run the following command:

cd /opt/dg/PingDataGovernance-PAP
./bin/update-db

2. Once the database has been upgraded, move it to the expected location:

mv /opt/dg/PingDataGovernance-PAP/Symphonic.mv.db /opt/dg/
PingDataGovernance-PAP/admin-point-application/db/Symphonic.mv.db

Configure and Start the Server

About this task

Use the setup tool to generate a new configuration.yml file. This will ensure that any configuration
properties required by the new server version are present.

i Note: The setup tool requires a valid license file, which you can place either in the server’s root
directory or specify by using the --licenseKeyFile option.

./bin/setup --licenseKeyFile /path/to/PingDataGovernance.lic

Follow the prompts for your desired installation.

i Note: When upgrading from a DataGovernance version prior to 8.0.0.0, you will need to modify the
output configuration file located at <server-root>/config/configuration.yml. In a text editor, change
the following value:

Database.User: "pap_user"

to:

Database.User: "sa"

After performing the steps above, start the server by running the following command.

./bin/start-server

Upgrade Trust Framework and Policies

About this task
PingDataGovernance ships with a default trust framework and policy snapshot that policy writers should
use as a starting point when developing their policies. Occasionally a server upgrade results in changes to
the default trust framework and policies, and policy writers will need to upgrade any policies that had been
based on defaultPolicies.SNAPSHOT.

Steps

1. Log in to the Policy Administration GUI and choose any branch to go to the main landing page.

2. Select Change Control from the navigation bar on the left, and open the Merge Snapshot tab.

3. Click the file selection option, and go to the resources/policies/upgrade-snapshots folder of
the new Policy Administration GUI deployment.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 171

4. Select the correct SNAPSHOT file based on the version you are upgrading from and the version to
which you are upgrading (for example, when upgrading from version 7.3.0.0 to version 8.0.0.0, use
resources/policies/upgrade-snapshots/7.3.0.0-to-8.0.0.0.SNAPSHOT).

5. Merge the partial snapshot.

6. Merge conflicts may occur where objects have been updated. If you have not modified the objects in
conflict, you may safely select Keep Snapshots.

PingDataGovernance Policy Administration Guide

Getting started

Introduction

About this task

This guide introduces the features of the PingDataGovernance Policy Administration GUI (Policy Admin
GUI), which is powered by Symphonic®, and provides information about creating access control policies
that reflect your business requirements. It also provides a tour of the various concepts that are involved in
modeling policies in the Policy Admin GUI.

To get started with the Policy Admin GUI, complete the following tasks:

Steps

1. Log in to the Policy Admin GUI – In demo environments, you can use the default user name admin and
the password password123.

2. Create a branch – This branch stores your policies and other entities.

3. Define the Trust Framework – This allows you to define the elements that will form the building blocks
of your policies – the WHO, WHAT, WHERE, WHY, and WHEN.

4. Define your policies and policy sets – Build your policies to reflect your business needs.

5. Test polices and policy sets – Verify that your policies correctly implement your business rules.

6. Conduct analysis – Carry out detailed, cross-policy analysis to determine potential conflicts,
redundancies, failure impacts, and so on.

7. Commit changes – This creates a snapshot, which is an immutable representation of the Trust
Framework and Policies at a point in time.

8. Create a deployment package – This creates a file that can be deployed to PingDataGovernance
Server instances across multiple environments.

Next steps

After you log in to the Policy Admin GUI, you are prompted to set the branch on which to work. You can
create a new (empty) branch, select an existing branch, or import a branch from a snapshot file.

The PingDataGovernance Policy Administration GUI embraces similar principles to general software
source control. As such, it begins with the creation of a branch. When you first deploy the Policy Admin
GUI, the Branches repository is empty, and the system prompts you to create or import a branch. You
must complete one of these actions to continue using the product.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 172

To create a new branch, enter a name for your branch in the Branch name field in the Create a Branch
section, and click Create new branch.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 173

Version control

Branches

Creating a new top-level branch

About this task

There are two ways in which you can create a new branch.

i Note: Branch names must be unique. No two branches in the PingDataGovernance Policy
Administration GUI can share the same name.

▪ From the Version control tab, you can create a new root, or top-level, branch:

1. Click + and select Create new root branch.
2. Fill in the Name field.
3. Click Create new branch.

▪ You can also create a new branch from the startup screen displayed when you log in to the Policy
Admin GUI.

Importing a branch

About this task

Branches can be imported from previously exported snapshot files. This is a useful way of sharing and
restoring Trust Framework definitions and Policies across users and environments.

i Note: A snapshot file contains all the entities and policies from an existing branch and can be shared
like any other file. For more information about creating snapshots, see Creating a branch from a snapshot
on page 174.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 174

Steps

1. Click + and select Import Snapshot.

2. Select the appropriate snapshot file.

3. Specify a name for the branch.

4. Click Import.

Deleting a branch

About this task

Deleting a branch removes the branch, its history, and any snapshots created on it from the system.
Because this operation is irreversible, the system prompts you to confirm whether to proceed.

Steps

1. Select the branch to delete.

2. Click Delete Branch.

Next steps

To recover data from a deleted branch, load a snapshot that was exported from the branch if one exists. If
no such snapshot is available, contact your system administrator, who might be able to recover the deleted
branch from a database backup.

Snapshots

Creating a branch from a snapshot

About this task

You can create a branch from a snapshot. This branch shares the history and contents of the branch on
which it is based up to the time of snapshot.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 175

Steps

1. Select the snapshot from which to branch.

The snapshot must be a committed snapshot. To branch from the latest uncommitted changes, make
certain to commit before proceeding.

2. Click the menu burger and select Create new branch from commit.

3. Specify a name for the branch.

4. Click Save Branch.

Results

The system creates a new branch with the selected snapshot as the branch-point.

Partial snapshot export and merging

With the partial snapshot export feature, you can package a subset (partial) of the policies or trust
framework entities for export. Then you can import the partial snapshot, either as a new branch (import) or
into an existing branch (merge).

Partial export

About this task

Partial export lets you build an export snapshot of specifically selected entities from a combination of the
Trust Framework, Policy Sets, and the Library set.

Steps

1. Select the desired items from the list on the left.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 176

2. Click Add selection to snapshot at the top of the pane on the left.

This step adds the entity to the selected table on the right. Because all dependencies are included
automatically in the exported snapshot, you do not need to explicitly select each individual dependency.

3. Click Export.

Merging

About this task

Merging a snapshot adds or updates all of the entities into the currently selected branch.

Steps

1. Select the appropriate file.

2. Click Merge.

Results

The system displays a Summary page that details the result of the merge.

Next steps

In some cases, the merge function detects conflicts that arise when the current branch version differs
from the snapshot version of the same entity. For example, this situation might occur if you update one of
the merged entities in your current branch and then try to re-merge the snapshot. In such a scenario, the
system displays the following Merge Conflict Resolution page.

For each conflict that is detected, you can choose whether to keep your local changes or to overwrite them
with the changes from the merged snapshot.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 177

After you resolve the conflicts, click Merge.

Trust framework

Trust Framework overview

The Trust Framework tool lets you define all the entities within your organizations about which you want to
build policies at a later time. Anything that you want to express in your policies must be defined in the Trust
Framework. As a result, your policies become strongly typed to the definitions in your Trust Framework,
with strict restrictions on intermixing of values with differing data types.

Definitions are broken down into the following types:

▪ Domains
▪ Services
▪ Attributes
▪ Actions
▪ Identity properties
▪ Identity providers
▪ Identity classifications
▪ Named conditions

Domains (PDP API only)

Use the Domains section, which is available only on PDP API-enabled servers, to define the
organizational structure, as well as any other organizations with which you intend to interact and,
consequently, on which you want to specify authorization policies. We recommend that you keep the
domain ontology relatively clean and simple, as it can always be extended later if you choose to get to
more granular levels.

You can import these values from your existing organizational directory, such as Active Directory. Make
certain that you do not import redundant and unnecessary entities.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 178

Services

The Services section enables the definition of the following types of services:

▪ The resources to which you want to control access (what your policies will protect)
▪ The information points that are used as a source of data for the attributes that comprise policy decisions

Resources

For a resource, define only the top-level fields, such as Name, Parent, and Description. Unless you also
plan to also use the service as an information point, leave the Service Type as None.

Information points

Setting up services as information points makes use of various service connectors. To complete this task,
make a selection from the Service Type drop-down list and fill in the fields.

Many common settings apply to all service endpoints. When a service is invoked during attribute resolution
and returns a value, the response can be mapped to a type, or a processor can be applied either to
transform the response or to extract a specific part of it.

The following processors are supported:

▪ JSON Path
▪ XPath
▪ Spring Expression Language (SpEL)

This approach is useful when existing services return more information than is required, or return
information that must be converted to a different format.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 179

Common settings

The settings in this section apply to all service types.

Request timeout

The number of milliseconds that PingDataGovernance Server waits for the request to complete. If this
time elapses before a successful response is received, the request is canceled. If retries are configured,
the request is attempted again. If all requests fail to complete in time, the service result is an error that
represents the timeout.

Number of retries

If the initial request fails or times out, this value indicates the number of times PingDataGovernance Server
attempts the request again. To try the request only once, set this value to zero.

Retry strategy

Options are:

▪ Fixed Interval (default)

PingDataGovernance Server waits for the retry delay between each attempt to perform a service
request.

▪ Exponential Backoff

PingDataGovernance Server waits for an exponentially increasing amount of time between attempts.

Retry delay

For a fixed interval strategy, this value represents the number of milliseconds that PingDataGovernance
Server waits between request attempts.

For Exponential Backoff, PingDataGovernance Server multiplies this value by 2^n, where n represents
the number of retries already made. For example, if the retry delay is 1000 and Exponential Backoff is
selected, PingDataGovernance Server makes the initial request, then waits 1000ms before making a
second attempt, 2000ms before the third attempt, 4000ms before the fourth attempt, and so on.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 180

Delay jitter

This setting is a percentage value that indicates the amount of variability to apply to the retry delay on each
attempt. For example, if this value is set to 10%, the delays in the previous example are 1000±100ms,
2000±100ms, 4000±100ms, and so on.

RESTful services

PingDataGovernance Server can perform the following requests to HTTP services:

▪ GET
▪ POST
▪ PUT
▪ DELETE
▪ HEAD

Text, JSON, and XML content can be sent and received with such requests.

HTTP authentication is supported by using a simple user name and password, or by using an OAuth2
token. Additionally, you can send custom headers with any request, which you can make dynamically in
various ways by interpolating attribute values into various parameters.

Core settings

▪ URL format – URL for the REST endpoint that is accessed. Attributes can be interpolated anywhere
in the URL. Because no escaping of attribute values takes place, make certain that this action is
completed in the attribute definition, if necessary.

▪ HTTP method – Method to send in the HTTP request.
▪ Content type – Content-Type header to send, which relates to the body of the request.
▪ Body – Body to send with the request. Attributes can be interpolated anywhere in the body with no

escaping.

Authentication

The Authentication picker selects one of the following HTTP authentication types, which correspond to an
authorization header that is sent with the request:

▪ None – Default value that indicates no authorization header is sent.
▪ Basic – Reveals the choices for attributes whose values are sent as the user name and password of an

HTTP request with basic authentication.
▪ OAuth2 – Reveals a token selector. The selected attribute is sent as the authorization token in an HTTP

request with bearer authentication.

Headers

Any number of custom headers can be added to the request. The header names are fixed strings, but their
values can be constants or attribute values. To switch between constant and attribute, toggle C / A, which
is located next to a header value.

Value settings

For a RESTful service, value settings describe the expected response from the request. If no
preprocessing of the response is required, leave the Processor set to None and set the Type field to
String for plain text, or to JSON or XML for those types.

If the response requires preprocessing, select the required SpEL, XPath, or JSON Path processor and
enter the appropriate expression. The Type field is set to the type of the result of this expression.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 181

For example, if the RESTful service returns the following JSON body:

{
 "id": 123,
 "name": "John Smith"
}

and a JSON Path processor is selected with expression $.name, then the Type must be String, and
the final value for the Service is John Smith.

Secret

To mark a service's response as secret and to ensure that the data is never leaked to log files, enable the
Secret button.

LDAP services

PingDataGovernance Server can make LDAP queries to resolve attribute values.

Configuration

Many settings are required to configure an LDAP service. A publicly available LDAP service is used as an
example.

Host and port

The host name and port number of the LDAP server.

Host: ldap.forumsys.com
Port: 389

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 182

User name or bind DN and password

The user or bind credentials for the LDAP server.

Bind DN: cn=read-only-admin,dc=example,dc=com
Password: password

Search base DN or LDAP filter

These settings define the LDAP query that is made.

Search Base DN: dc=example,dc=com
LDAP Filter: ou=mathematicians

Results

Because the result of an LDAP query is converted to an XML document, the service value type must be set
to XML. The previous example query results in the following document.

<searchResponse>
 <searchResultEntry dn="OU=MATHEMATICIANS,DC=EXAMPLE,DC=COM">
 <attr name="ou">mathematicians</attr>
 <attr name="objectClass">groupOfUniqueNames</attr>
 <attr name="objectClass">top</attr>
 <attr name="uniqueMember">uid=euclid,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=riemann,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=euler,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=gauss,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=test,dc=example,dc=com</attr>
 <attr name="cn">Mathematicians</attr>
 </searchResultEntry>
</searchResponse>

Individual parts or collections of the data can be extracted from the resulting XML document by using
XPath processors.

Camel services

Overview

In addition to retrieving information from HTTP and LDAP information points, you can retrieve information
from any endpoint that the Apache Camel enterprise integration platform supports. To view the full list of
supported systems, go to the list of Camel components on the Apache Camel website.

Camel components are configured by using a combination of URI, Headers, Body, and Configuration
settings. The appropriate values to provide for each setting depend on the component that is used. Refer
to the documentation on the Camel website for the particular component that you want to use.

Copyright ©2022

https://camel.apache.org/
https://camel.apache.org/components/latest/

PingDataGovernance | PingDataGovernance Policy Administration Guide | 183

URI

Camel endpoints are identified by URIs. As well as identifying the system, URIs can specify configuration
options for components. For information about configuring a URI for the component to which you want to
connect, go to the Apache Camel website.

i Note: Attribute values can be interpolated into the URI.

Headers

Additional information can be sent to the external information point by using Camel headers. If the
component to which you will connect uses headers, you can read more about them in the instructions for
your component on the Apache Camel website.

i Note: Attribute values can be interpolated into headers.

Body

Some Camel components operate on a message body, which you can provide by using this setting. If
the component to which you will connect requires a message body, you can read more about it in the
instructions for your component on the Apache Camel website.

i Note: Attribute values can be interpolated into the body.

Configuration

Some Camel components require you to configure helper components for them to work. Specify these
components by using the Groovy scripting language to write a Spring Bean configuration block. For
information about writing such a configuration, go to Class GroovyBeanDefinitionReader.

The Camel JDBC component makes use of the Headers and Body settings, and requires a JDBC data
source to be set up in the Camel Configuration setting.

i Warning: Attribute values cannot be interpolated into the configuration.

Attributes

Attributes provide the context that enables fine-grained policies. Attributes can retrieve data from multiple
information endpoints and can allow for the inclusion of values and results inside the rules of a particular
policy.

Consider the manner in which the attributes will be structured, as well as the naming conventions that will
be used, so that policy writers and editors can build policies without requiring a deep understanding of the
complex underlying data endpoints. The intention is to abstract this complexity and to expose the attributes
in business terms that business users and policy builders can understand.

To create an attribute, click + on the Attributes tab.

Copyright ©2022

http://www.groovy-lang.org/
https://docs.spring.io/spring-framework/docs/4.3.13.RELEASE/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html

PingDataGovernance | PingDataGovernance Policy Administration Guide | 184

Attribute naming

Attributes can be given any name that is unique and does not contain a period (.). To ensure that the
attribute can be interpolated, avoid the following characters:

▪ {
▪ }
▪ |

Resolver settings

Attributes are resolved only when an applicable rule requires the value of the attribute to evaluate the
conditions of one or more rules. For example, if a rule requires the Risk Score for a customer's device
and compares it to a value of High, Medium, or Low, the attribute resolver attempts to resolve the attribute
only when it reaches the policy. Depending on the order of the policies, you might not need to resolve all
attributes.

Each attribute can have multiple resolver types and is resolved in the order in which it was defined.
Attributes can be reordered by dragging and dropping them to the appropriate position.

The following sections describe the various resolver types.

Request

This resolver type looks inside the authorization request itself to determine whether the attribute has been
provided by the caller.

Constant

This resolver setting takes a constant value that is defined on the resolver itself. The type and value of the
constant must be specified.

i Note: As with all other resolved values, constants undergo any value processing that is defined on the
attribute. To define a constant that does not undergo value processing, consider using a default value.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 185

Service

This resolver setting uses a Trust Framework# service endpoint to invoke the service at runtime and to
resolve the attribute. The service might rely on other attributes that are supplied to invoke it.

PingDataGovernance Server handles this process automatically.

Attribute

Attributes can also be resolved from other attributes. This approach is useful when you have attributes that
contain multiple pieces of information and you want to create nested or child attributes as subset extracts
from them.

For example, the Customer.Name attribute might return the following JSON representation:

{ "firstname": "Joe", "middlename": "Bod", "surname": "Bloggs" }

In this example, the Customer.Name.Surname attribute could be created to resolve against the
Customer.Name attribute and could use a JSON parser to extract only the Surname property of the JSON.

System

The PingDataGovernance Policy Administration GUI provides many of out-of-the-box System attributes
that can be used without additional configuration. For example, the CurrentDateTime returns the current
system datetime, as the name implies.

Configuration key

Attributes can be resolved against configuration key items. These key-pair values are defined in the
configuration.yml file as part of the initial PingDataGovernance Server and PingDataGovernance
Policy Administration GUI configuration.

Conditional resolvers

Because all resolver types support the ability to add conditional logic, the resolver is invoked only under
certain defined conditions. To add a conditional logic builder to a resolver, click Add Condition beside the
appropriate resolver item.

The following example implies that the service resolver Information Point.Credential Datastore
is used only when the attribute Customer.Status has a value of Confirmed.

Attribute caching

PingDataGovernance Server and the PingDataGovernance Policy Administration GUI support caching
for attributes. The ability to cache resolved attributes can deliver significant performance gains for
PingDataGovernance Server. As a result, we recommend that you carefully consider this concept to
ensure optimum configuration.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 186

This section focuses on the individual cache options that can be set at the attribute level.

The cache settings for attributes offer the following approaches:

▪ Time-based – Allows you to set the duration for which the cache lives (Time to Live) before expiring.
If the attribute does not exist in the cache, PingDataGovernance Server resolves automatically by
using the appropriate attribute resolvers. After it is resolved, it is added to the cache. All subsequent
attribute usages use the cached value until it expires from the cache, which results in another attribute
resolution.

▪ Attribute-based – Allows the application of an additional scope to the cache. This approach lets you
attach the value of an attribute to the scope of the cache, like customerId or sessionid. Consequently,
the cache is returned only when the scope is matched.

i Note: The cache key for a Trust Framework attribute value includes a hash of the values that are
required for it to resolve. If one of these values changes, the cache key is invalidated automatically. You
can think of this arrangement as an aggregation of scope parameters that guard against inconsistencies
between your cached values.

Value settings

The Value Settings section of services and attributes lets you dictate the value type. It also provides
optional processor steps to transform the resolved value.

The PingDataGovernance Policy Administration GUI supports the following value processors:

▪ JSON Path
▪ XPath
▪ Spring Expression language (SpEL)

JSON Path

JSON Path can be used to extract data from JSON objects. For example, you might want to extract the
price fields of all requested items from a service that resolves as follows:

{
 "name": "Joe Bloggs",
 "requestedItems": [
 {
 "id": "b5f963fa-111e-49ff-994b-b89a20a2c1d5",
 "price": 125.00
 },
 {
 "id": "84e204dd-44f5-4a84-8e58-972c2a9c80b4",
 "price": 299.99
 }
]
}

In such a scenario, you can create an attribute that resolves against the service and can use the following
expression to set the value processor to JSON Path:

$.requestedItems[*].price

This attribute can be used in conditions or in further attribute resolution. For more information about JSON
Path expressions, refer to these articles on the creator's website.

Copyright ©2022

https://goessner.net/articles/JsonPath/

PingDataGovernance | PingDataGovernance Policy Administration Guide | 187

XPath

As the XML-equivalent of JSON Path, XPath follows a similar syntax. For more information about XPath
expressions, refer to the XPath tutorial on w3schools.com.

i Important: Support is provided for XPath 1.0 only. Functions that have been added in later versions
might be unavailable.

SpEL

The Spring Expression language (SpEL) can be used to perform complicated data processing. With
SpEL, expressions are applied directly to the resolved value. For example, you might want to search for a
substring that matches the following regular expression:

\[[0-9]*\.[0-9]\]

To accomplish the task, set the processor to SpEL, and set the expression as follows:

matches(\[[0-9]*\.[0-9]\])

Attribute values can be interpolated into the SpEL expression directly, which is useful if you want to
combine multiple attribute values into a single value. To interpolate an attribute, wrap its full name in
double curly brackets, as follows:

{{Customer.Age}} - {{State.Drinking Age}} >= 0

For more information, refer to the official Spring Framework documentation.

Because SpEL can be powerful, you might want to limit the tasks that users can
complete with it. For instance, you can configure a list of allowed classes under core,
AttributeProcessing.SpEL.AllowedClasses. The following example whitelists, or allows, DataTimeFormatter
and URLEncoder.

core:

 AttributeProcessing.SpEL.AllowedClasses:java.time.format.DateTimeFormatter,java.net.URLEncoder

If this configuration option is absent, all java.lang classes are blacklisted, or disallowed, for use in SpEL
expression, with the following exceptions:

▪ Byte
▪ ChronoUnit
▪ Date
▪ DayOfWeek
▪ Double
▪ Instant
▪ Integer
▪ LocalDate
▪ Long
▪ Math
▪ Random
▪ SimpleDateFormat
▪ String
▪ UUID

All other classes are allowed.

Copyright ©2022

https://www.w3schools.com/xml/xpath_intro.asp
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-language-ref

PingDataGovernance | PingDataGovernance Policy Administration Guide | 188

If this configuration option is present, all classes are blacklisted unless they are specified explicitly in the
previous list of fully qualified classnames.

Default value

An attribute can be given an optional default value in the event that it cannot be resolved. This approach
can also be used to encode constant attributes within the Trust Framework by not setting any resolvers
and, consequently, always resolving to the default value.

Actions

Actions represent arbitrary values that a typical authorization request might ask to perform on a
specific resource, such as view or update. The following actions are typically configured in the
PingDataGovernance Policy Administration GUI:

▪ inbound-GET
▪ inbound-PATCH
▪ inbound-POST
▪ inbound-PUT
▪ outbound-GET
▪ outbound-PATCH
▪ outbound-POST
▪ outbound-PUT
▪ create
▪ delete
▪ modify
▪ retrieve
▪ search
▪ search-results

Identity classifications and IdP support

The PingDataGovernance Policy Administration GUI provides the ability to generate smart identity
classifications. The purpose of these classifications is to abstract the underlying identity providers (IdPs)
from their presumed level of trust. The outcome is that you will be able to build policies that target levels of
trust instead of specific IdPs.

Trust levels are defined by the following distinct parts:

▪ Identity properties – Arbitrary properties that can relate to specific IdPs
▪ Identity providers
▪ Identity classifications – Levels of classifications

The following sections describe these parts in more detail.

Identity providers

Use the Identity Providers page to define different IdPs and to attach identity properties to them.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 189

This step might appear irrelevant when your enterprise expects to use only one or two identity providers,
but it provides significant abstraction for more complicated ecosystems in which tens or hundreds of IdPs
are participating.

Identity properties

Use the Identity Properties page to define objects and elements to attach to specific identity providers.

These elements will be used later to map IdPs to specific identity classification levels. This example
features a Social property that can be attached to any social IdP.

Identity classifications

Use the Identity Classes page to create different levels of classification.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 190

For each classification level, attach the properties that an IdP must have to be considered inside the level.

Named conditions

Named conditions provide the ability to create reusable conditional logic that helps abstract some of the
logical complexity from the people who build the policies.

Named conditions also provide an effective way to minimize repetition throughout policies. Policy builders
remain able to create their own conditions, which can coexist with the named conditions.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 191

Further, named conditions can be used to replace entire conditions, and can also function as components
of more complicated condition expressions. To add a named condition within the condition builder, click +
Named Condition.

Testing

The PingDataGovernance Policy Administration GUI provides testing capabilities for applicable definition
types. To prepare a test request, select a definition of type attribute or service and go to the Test tab.

To form a request, select the following main elements:

▪ Domain
▪ Service
▪ IdP
▪ Action

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 192

▪ Attributes

If the information endpoints that your attribute resolvers require are running, click Execute. If your
endpoints are not running or are otherwise unavailable, as is often the case in development, use the
Overrides section to provide stubbed values for attributes and services that might be required during the
evaluation process. This step overrides the attribute and service resolution, and uses the specified values
instead.

After the request is evaluated, you are presented with the following set of result tabs:

▪ Request – Shows the actual JSON request that is sent to the decision engine.
▪ Response – Contains the complete (high verbosity) response for the decision.
▪ Output – Provides a summary of the decision.
▪ Attributes – Contains an expandable list of all attributes that are executed as part of the test.
▪ Services – Contains an expandable list of all services that are executed as part of the test.

Policy management

Policy management overview

The Policy Manager provides the tools for implementing fine-grained and dynamic, access-control policies,
allowing you to govern the manner in which your organization's services and data are used.

Use the Policy Manager to create policies that answer the question, "Should this resource-access request
be permitted or denied"? In a traditional role-based access control (RBAC) system, this question can be
rephrased as, "Who is the user making the access request, and have they been assigned a role that is
permitted access to the resource?" Although you can model such a policy, the PingDataGovernance Policy
Administration GUI functions essentially as an attribute-based access-control (ABAC) system. In such a
system, the question can be rephrased as, "Given the facts that I know about the user, the resource being
accessed, what the user wants to do with the resource, how sure I am the user is who she says she is,
and any other pertinent facts about the world at this point in time, should the user's access request be
permitted, and must anything else be done in addition to permitting or denying access?"

That length of that question speaks to the inherent power of the Policy Administration GUI. Fortunately, the
Policy Manager makes harnessing this power quite straightforward.

Policy sets, policies, and rules

A typical enterprise-level organization might impose hundreds or thousands of conditions and constraints
around access control. Such constraints comprise the business rules that define the circumstances under
which certain resources can be accessed.

These rules can be grouped together naturally, which allows people to reason about them without focusing
on all of them at once. For example, a set of policies around authentication might require a user to
authenticate to a certain level before they can access a certain resource. Another set of policies might
gather together all of the business rules around accessing the resources of a particular business unit. Yet
another set of policies might define the audit processes that are triggered whenever access to a set of
restricted resources is attempted.

This structure is inherent in the problem domain of resource-access control and is reflected in the
PingDataGovernance Policy Administration GUI by three types of entities – policy sets, policies, and rules
– and the relationship between them. This section examines these entity types, discusses how they are
composed together, and provides an overview of their properties.

Policies and policy sets

To view the Policy Manager, click Policies on the main navigation bar.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 193

Existing policy nodes are organized in a tree structure within the navigation panel on the left side of the
page. We recommend adding a root policy set to contain all other policy sets. This tactic is useful when you
build a deployment package from the entire policy tree.

Creating policies and policy sets

1. On the policy navigation panel, click the Policies tab.
2. Click Creation (blue button) to open a popup window.
3. Select and start the creation process of a policy or policy set, as appropriate.

Policies and policy sets can be named anything you like. However, we recommend that you use relevant
and contextual names, especially as the policy tree grows larger and more complex. When naming
policies, consider the business rule that they are trying to model and verify that the names check
adequately represent the operational policies of the organization.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 194

In this example, the policy is named My Basic Policy. The red dot in the upper-right corner signifies
that, because the name has been changed, the policy contains unsaved changes. If you try to leave the
page, a popup window prompts you to save your changes.

To save a policy, click Save Changes.

Adding targets to a policy

After you change the name of a policy, add targets to identify the requests to which the policy applies.

To expand the target section in the Policy, clicking Show "Applies to".

A target defines a set of access requests to which a policy applies. To make a policy apply for all requests
to a certain database, for example, add the database domain as a target. Because no targets have been
attached yet to the policy in this example, it applies to all requests.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 195

Use the target section in conjunction with the toolbox in the left panel, which displays the elements created
in the Trust Framework. Drag the appropriate domains, services, identity classes, and actions from the
toolbox to the target section on the policy. For example, to target Mobile Banking requests, drag that
domain to the target section. To target all banking groups, add the Banking Channels domain, which is
the parent of the Online Banking domain as well as the Mobile Banking domain. Because the top level is
also a target, this step adds a total of three targets.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 196

In the following image, the Mobile Banking domain has been dragged to the target section in the Policy.

The target is displayed as a label that can be removed by clicking X.

In the following image, four definitions have been added as targets to the policy.

This example features three domains because the Banking Channels definition is the parent of the other
definitions. Logically, one of the channels is selected by applying an OR operation within the definition
type.

The following graph shows the manner by which the group of targets is evaluated.

Conditional targets

Conditional targets extend the capability of the "Applies to" concept, as follows:

▪ Permit the interweaving of targets with other conditional logic
▪ Allow standalone logic to determine if and when a policy or rule applies

To enable this functionality, click Show "Applies When".

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 197

The following types of conditions can be included in a logical expression:

▪ Attribute comparison – Allows the comparison of an attribute with another attribute or with a constant.
▪ Request comparison – Allows the matching of incoming requests by answering questions like, "Is the

requested service equal to Banking.Payment?"
▪ Named condition – Click + Named Condition to add a Named Condition drop-down list that displays

pre-saved named conditions.

The following image provides an example.

To switch between Attribute Comparison mode and Request Comparison mode, click A and R,
respectively, to the left of the comparator.

Advice

Advice is additional information that can be attached to a decision response. It is returned to the
governance engine so that, depending on the evaluation response from the policy, the appropriate action
can be taken. If a policy is set up to verify the authentication level of a user, and if the policy evaluates that
a user does not possess the required access privileges, details can be sent about the reason for denying
access.

To indicate that the final decision applies only if an advice can be fulfilled, advice can be marked as
obligatory. Typically, the service that calls PingDataGovernance Server handles this responsibility.

Each advice contains the following mandatory fields:

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 198

▪ Name – Human-readable label for reference in the Policy Manager.
▪ Code – Identifier that distinguishes between different types of advice.
▪ Applies To – Type of decision to which the advice is attached.

If an advice applies, it is used in the final response if its origin decision contributes to the final result. The
decision agrees with every decision between its origin and the top-level policy or policy set.

Advice carries additional data in the form of payloads and attributes, as follows:

▪ The optional field Payload can consist of static or interpolated data.
▪ The Attributes field lets you return a key-value mapping of attributes that might be relevant to the

advice.

The following table identifies significant advice properties.

Property Description

Name Friendly name for the advice.

Obligatory If true, the advice must be fulfilled as a condition of authorizing the request.

If PingDataGovernance cannot fulfill an obligatory advice, it fails the operation and
returns an error to the client application.

If a non-obligatory advice cannot be fulfilled, an error is logged, but the client's
requested operation continues.

Code Identifies the advice type. This value corresponds to an advice ID that the
PingDataGovernance configuration defines.

Applies To Specifies the policy decisions, such as permit or deny, that include the advice
with the policy result.

Payload Set of parameters governing the actions that the advice performs when it is applied.
The appropriate payload value depends on the advice type.

PingDataGovernance Server supports the following advice types:

▪ Add Filter on page 143
▪ Allow Attributes on page 143
▪ Combine SCIM Search Authorizations on page 144
▪ Denied Reason on page 144
▪ Exclude Attributes on page 144
▪ Filter Response on page 145
▪ Include Attributes on page 145
▪ Modify Attributes on page 208
▪ Modify Query on page 208
▪ Prohibit Attributes on page 146

To develop custom advice types, use the Server SDK.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 199

i Note: Many advice types let you use the JSONPath expression language to specify JSON field paths.
To experiment with JSONPath, use the Jayway JSONPath Evaluator.

Provided advice

The PingDataGovernance Policy Administration GUI comes with preconfigured advice types that are also
configured in PingDataGovernance Server. As a result, policy writers can use this advice out of the box,
and PingDataGovernance Server fulfills the advice as documented. To view the full set of provided advice
types, click Create new Advice.

The documentation for the provided advice types can be viewed from within the Policy Admin GUI. After
you click Create new Advice, hover over an advice type to view its description.

Copyright ©2022

https://jsonpath.herokuapp.com/

PingDataGovernance | PingDataGovernance Policy Administration Guide | 200

Selecting an advice type prepopulates the Description and Code fields and provides an example Payload
value. Most users replace the example Payload value with one that is appropriate for their policy.

For more information, see Advice types.

Custom advice

Policy writers are not limited to the Advice types that are available out of the box in the
PingDataGovernance Policy Administration GUI. They can also use a custom advice that leverages the

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 201

PingDataGovernance Server SDK. For information about the implementation and configuration of such
advice, refer to the PingDataGovernance Server Administration Guide.

After the advice is configured properly, it can be used in a policy by selecting Custom Advice from the
Create new Advice drop-down list.

Properties

Properties are used to add metadata to a policy in the format of a key-value pair.

Rules and combining algorithms

Each policy can include multiple rules to produce a permit, deny, indeterminate, or not applicable. To
evaluate the overall decision of a policy, a combining algorithm is applied. The default algorithm that is set
on a new policy is Unless One Decision is Deny, the Decision will be Permit. This algorithm always
evaluates to permit unless the decision is deny.

The following list identifies the available combining algorithms and describes their effects:

Combining
algorithm

Summary Details

PermitUnlessDenyUnless one decision is deny,
the decision is permit.

The policy defaults to permit unless any of its children
produce the decision deny.

DenyUnlessPermitUnless one decision is
permit, the decision is deny.

The policy defaults to deny unless any of its children
produce the decision permit.

PermitOverridesA single permit overrides
any deny decisions.

If any children produce the decision permit, the policy
returns permit. If this action does not occur, the policy
returns indeterminate if a child produces indeterminate.
Otherwise, the policy returns deny if a child produces deny,
and returns not applicable if all children are not applicable.

DenyOverridesA single deny overrides any
permit decisions.

If any children produce the decision deny, the policy returns
deny. If this action does not occur, the policy returns
indeterminate if a child produced indeterminate. Otherwise,
the policy returns permit if a child produces permit, and
returns not applicable if all children are not applicable.

FirstApplicable The first applicable decision
is the final decision.

The children are evaluated in turn until one produces an
applicable value of permit, deny, or indeterminate. If no
applicable decisions are produced, the policy returns not
applicable.

OnlyOneApplicableOnly one child can produce
a decision. If more than one
is produced, the result is
indeterminate.

The children are evaluated in turn. If at any point two
children produce a decision other than not applicable, the
policy returns indeterminate. Otherwise, if precisely one
child produces an applicable decision, the policy uses it. If
no children produce applicable decisions, the policy returns
not applicable.

DenyUnlessThresholdPermit if the weighted
average of applicable
child decisions meets the
threshold; otherwise deny.

The policy's children are assigned weights between 0
and 100. If a child returns permit, the weight is added
to a running total. If a child returns deny, the weight is
subtracted from the running total. After all children are
evaluated, the total is divided by the number of children
and is compared against the threshold. If the average is
greater than or equal to the threshold, the policy returns
permit. Otherwise, the policy returns deny.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 202

Rule structure

Rules contain logical conditions that evaluate to true or false. Each rule can be given an effect of permit
or deny. The effect is what the rule evaluates to when its child condition or group of conditions evaluates
to true. A rule can be set so that, if a condition evaluates to true and the effect is set to deny, the rule
evaluates to deny.

Like policies and policy sets, rules can include targets that can be applied to achieve a more fine-grained
approach. For example, one rule can target the Mobile Banking channel, and another rule can target the
Online Banking channel.

If the condition in this example evaluates to true, the effect is permit.

Testing

The PingDataGovernance Policy Administration GUI provides testing capabilities to evaluate test
authorization requests against any or all policy nodes. To specify the node or nodes against which policies
are tested, select the root node from the tree on the left side of the page.

In the following example, the evaluation is run against all policies because the root policy set is selected.

Select the following main elements to form a request:

▪ Domain
▪ Service
▪ IdP

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 203

▪ Action

If the information endpoints that your attribute resolvers require are running, click Execute. If your
endpoints are not running or are otherwise unavailable, as is often the case in development, use the
Overrides section to provide stubbed values for the attributes and services that might be required during
evaluation. This step overrides the attribute resolution and uses these values instead.

After a request is evaluated, you are presented with the following set of result tabs:

▪ Request – Shows the actual JSON request that is sent to the decision engine.
▪ Response – Contains the complete, high-verbosity response for the decision.
▪ Attributes – Contains an expandable list of the attributes that are executed as part of the test.
▪ Services – Contains an expandable list of the services that are executed as part of the test.
▪ Visualization – Contains a visual representation of the decision tree.
▪ Output – Provides a summary of the decision.

Analysis

The PingDataGovernance Policy Administration GUI provides full policy-analysis capabilities to generate
a report of potential conflicts, redundancies, shadows, and failure-impact assessments, based on the
selected policy root node and its children. To execute the analysis across your complete policy landscape,
select the root node.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 204

The following key options are available for analysis:

▪ Conflicts – Highlights real policy conflicts, such as the conflict that arises when a policy permits access
to a resource while another policy denies access under the same conditions.

▪ Redundancy – Highlights policies that are redundant, based one or more policies, and whose presence
makes no difference to the response.

▪ Shadows – Highlights policies that another policy can potentially replace.
▪ Global Redundancy – Similar to Redundancy but applies to library policies that are used in multiple

locations.
▪ Failure Impact – Highlights information points whose failure might alter the decision.

Select the options to analyze and click Execute.

Change control

After you build, test, and analyze your policies, commit your changes to move them to a state from which
they can be deployed to an instance of PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 205

The Change Control page lists previously committed snapshots and all uncommitted changes. To commit
new changes, click Commit New Changes. This step creates a new snapshot that forms the starting point
of a deployment package.

Deployment packages

A deployment package represents a compiled version of the policy tree and is the key element that is
deployed to PingDataGovernance Server.

Advice types

Advice types overview

This section describes the advice types that are built into PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 206

Add Filter

Advice ID: add-filter

Description: Adds administrator-required filters to SCIM search queries.

Applicable to: SCIM

The Add Filter advice places restrictions on the resources that are returned to an application that can
otherwise use SCIM search requests. The filters that the advice specifies are ANDed with any filter that the
SCIM request includes.

The payload for this advice is a string that represents a valid SCIM filter, which can contain multiple
clauses that are separated by AND or OR. If multiple instances of Add Filter advice are returned from policy,
they are ANDed together to form a single filter that is passed with the SCIM request. If the original SCIM
request body included a filter, it is ANDed with the policy-generated filter to form the final filter value.

Allow Attributes

Advice ID: allow-attributes

Description: Specifies the attributes that a JSON request body can create or modify for POST, PUT, or
PATCH.

Applicable to: All, although only SCIM is supported when the HTTP method is PATCH.

The payload for this advice is a JSON array of strings. Each string is interpreted as the name of a resource
attribute that the client can modify, create, or delete. If the client request contains changes for an attribute
that the advice does not name, the request is denied with a 403 Forbidden response. If multiple instances
of Allow Attributes advice are returned from policy, the union of all named attributes is allowed. The
optional wildcard string "*" indicates that the request can modify all attributes, and can override the other
paths that are present in the policy result.

Combine SCIM Search Authorizations

Advice ID: combine-scim-search-authorizations

Description: Optimizes policy processing for SCIM search responses.

Applicable to: SCIM

By default, SCIM search responses are authorized by generating multiple policy decision requests with the
retrieve action, one for each member of the result set. The default mode enables policy reuse but might
result in greater overall policy processing time.

When this advice type is used, the current SCIM search result set is processed by using an alternative
authorization mode in which all search results are authorized by a single policy request that uses the
search-results action. The policy request includes an object with a single Resources field, which
is an array that consists of each matching SCIM resource. Advices that are returned in the policy result
are applied iteratively against each matching SCIM resource, allowing for the modification or removal of
individual search results.

This advice type does not use a payload.

For more information about SCIM search handling, see About SCIM searches on page 125.

Denied Reason

Advice ID: denied-reason

Description: Allows a policy writer to provide an error message that contains the reason for denying a
request.

Applicable to: DENY decisions.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 207

The payload for Denied Reason advice is a JSON object string with the following fields:

▪ status – Contains the HTTP status code that is returned to the client. If this field is absent, the default
status is 403 Forbidden.

▪ message – Contains a short error message that is returned to the client.
▪ detail (optional) – Contains additional, more detailed error information.

The following example might be returned for a request made with insufficient scope:

{"status":403, "message":"insufficient_scope", "detail":"Requested operation
 not allowed by the granted OAuth scopes."}

Exclude Attributes

Advice ID: exclude-attributes

Description: Specifies the attributes that are excluded from a JSON response.

Applicable to: PERMIT decisions, although [Include or Exclude] Attributes advice cannot be applied
directly to a SCIM search.

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath into the
response body of the request that is being authorized. The portions of the response that each JSONPath
selects are removed before the response is returned to the client. Each JSONPath can point to multiple
attributes in the object, all of which are removed.

The following example instructs PingDataGovernance Server to remove the attributes secret and
data.private:

["secret","data.private"]

For more information about the processing of SCIM searches, see Filter Response on page 145.

Filter Response

Advice ID: filter-response

Description: Directs PingDataGovernance Server to invoke policy iteratively over each item of a JSON
array that is contained within an API response.

Applicable to: PERMIT decisions from Gateway, although Filter Response advice cannot be applied
directly to a SCIM search. However, the SCIM service performs similar processing automatically when it
handles a search result. For every candidate resource in a search result, a policy request is made for the
resource with an Action value of retrieve.

Filter Response advice allows policies, when presented with a request to permit or deny a multi-valued
response body, to require that a separate policy request be made to determine whether the client can
access each individual resource that a JSON array returns.

The following table identifies the fields of the JSON object that represents the payload for this advice.

Field RequiredDescription

Path Yes JSONPath to an array within the API's response body. The advice implementation
iterates over the nodes in this array and makes a policy request for each node.

Action No Value to pass as the action parameter on subsequent policy requests. If no value is
specified, the action from the parent policy request is used.

Service No Value to pass as the service parameter on subsequent policy requests. If no value is
specified, the service value from the parent policy request is used.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 208

Field RequiredDescription

ResourceTypeNo Type of object contained by each JSON node in the array, selected by the Path field.
On each subsequent policy request, the contents of a single array element are passed
to the policy decision point as an attribute with the name that this field specifies. If no
value is specified, the resource type of the parent policy request is used.

On each policy request, if policy returns a deny decision, the relevant array node is removed from the
response. If the policy request returns a permit decision with additional advice, the advice is fulfilled
within the context of the request. For example, this advice allows policy to decide whether to exclude or
obfuscate particular attributes for each array item.

For a response object that contains complex data, including arrays of arrays, this advice type can descend
through the JSON content of the response.

i Note: Performance might degrade as the total number of policy requests increases.

Include Attributes

Advice ID: include-attributes

Description: Limits the attributes that a JSON response can return.

Applicable to: PERMIT decisions, although [Include or Exclude] Attributes advice cannot be applied
directly to a SCIM search.

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath into the
response body of the request that is being authorized. The response includes only the portions that one of
the JSONPaths selects. When a single JSONPath represents multiple attributes, all of them are included. If
multiple instances of Include Attributes advice are returned from a policy, the response includes the union
of all selected attributes.

For more information about the processing of SCIM searches, see Filter Response on page 145.

Modify Attributes

Advice ID: modify-attributes

Description: Modifies the values of attributes in the JSON request or response.

Applicable to: All, although the Modify Attributes advice cannot be applied directly to a SCIM search.

The payload for this advice is a JSON object. Each key-value pair is interpreted as an attribute modification
on the request or response body of the request that is being authorized. For each pair, the key is a
JSONPath that points to the attribute that requries modification, and the value is the value to set for the
attribute. The value can be any valid JSON value, including a complex value like an object or array.

Modify Query

Advice ID: modify-query

Description: Modifies the query string of the request that is sent to the API server.

Applicable to: All.

The payload for this advice is a JSON object. The keys are the names of the query parameters that must
be modified, and the values are the new values of the parameters. A value can be one of the following
options:

▪ null – Query parameter is removed from the request.
▪ String – Parameter is set to that specific value.
▪ Array of strings – Parameter is set to all of the values in the array.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 209

If the query parameter already exists on the request, it is overwritten. If the query parameter does not
already exist, it is added. For example, if a request is made to a proxied API with a request URL of
https://example.com/users?limit=1000, a policy can be used to limit certain groups of users
to request only 20 users at a time. A payload of {"limit": 20} causes the URL to be rewritten as
https://example.com/users?limit=20.

Prohibit Attributes

Advice ID: prohibit-attributes

Description: Specifies the attributes that a JSON request body cannot create or modify with POST, PUT,
or PATCH methods.

Applicable to: All, although only SCIM is supported when the HTTP method is PATCH.

The payload for this advice is a JSON array of strings. Each string is interpreted as the name of a resource
attribute that the client is not permitted to modify, create, or delete. If the client request contains changes
for an attribute that the advice specifies, the request is denied with a 403 Forbidden response.

REST API

REST API documentation

Swagger documentation is available through the PingDataGovernance Policy Administration GUI and has
full testing capabilities. For more information, click API Reference in the Policy Administration GUI.

Copyright ©2022

	Contents
	PingDataGovernance Server Release Notes
	PingDataGovernance Server 8.0.0.5 release notes
	PingDataGovernance Server Release Notes archive
	PingDataGovernance Server 8.0.0.4 Release Notes
	PingDataGovernance Server 8.0.0.3 Release Notes
	PingDataGovernance Server 8.0.0.2 Release Notes
	PingDataGovernance Server 8.0.0.1 Release Notes
	PingDataGovernance Server 8.0.0.0 Release Notes
	PingDataGovernance Server 7.3.0.10 release notes
	PingDataGovernance Server 7.3.0.9 Release Notes
	PingDataGovernance Server 7.3.0.8 Release Notes
	PingDataGovernance Server 7.3.0.7 Release Notes
	PingDataGovernance Server 7.3.0.6 Release Notes
	PingDataGovernance Server 7.3.0.5 Release Notes
	PingDataGovernance Server 7.3.0.4 Release Notes
	PingDataGovernance Server 7.3.0.3 Release Notes
	PingDataGovernance Server 7.3.0.2 Release Notes
	PingDataGovernance Server 7.3.0.1 Release Notes
	PingDataGovernance Server 7.3.0.0 Release Notes

	PingDataGovernance Server Administration Guide
	PingDataGovernance™ Product Documentation
	Introduction to PingDataGovernance Server
	Key components

	Explore PingDataGovernance Server
	Install and configure PingDataGovernance Server
	Install PingDirectory Server
	Install PingDataGovernance Server
	Configure the PingDataGovernance User Store
	Configure the PingDataGovernance OAuth subject search
	Configure PingDataGovernance logging

	Install and configure the PingDataGovernance Policy Administration GUI
	Import default policies
	Configure PingDataGovernance Server for policy development
	Configure the policy service in External mode

	Create the first API policy
	Configure the API security gateway
	Create the API external server
	Create the Gateway API Endpoint
	Test the gateway with cURL

	Add a policy for programming jokes
	Create attributes for a Joke API response
	Create a service for the Random Jokes API
	Create a policy for the Random Jokes API
	Add logic to reject programming jokes
	Add advice to set the HTTP response code
	Test the policy in the GUI
	Test the API gateway with cURL

	Add a policy for the user city
	Find a user
	Create an attribute for the user location
	Add logic to check the user location
	Test the gateway with cURL

	Example files

	Create the first SCIM policies
	Create the policy tree
	Create SCIM access token policies
	Create a policy for permitted access token scopes
	Test the policy with cURL
	Define the email scope
	Test the email scope with cURL
	Define the profile scope
	Test the profile scope with cURL
	Define the scimAdmin scope
	Add the scimAdmin retrieve rule
	Add the scimAdmin create/modify rule
	Add the scimAdmin search rule
	Add the scimAdmin delete rule

	Create a policy for permitted OAuth2 clients
	Test the client policy with cURL

	Create a policy for permitted audiences
	Test the audience policy with cURL

	Create a policy for role-based access control
	Test the policy with cURL

	Example files

	Install PingDataGovernance Server
	Before you begin
	System requirements
	Platforms
	Docker
	Java Runtime Environment
	Browsers

	About license keys
	Installing Java
	Preparing a Linux environment
	Set the file descriptor limit
	Set the maximum user processes
	Disable file system swapping
	Manage system entropy
	Enable the server to listen on privileged ports

	Installing PingDataGovernance Server
	Installing PingDataGovernance Server manually
	Obtaining the installation packages
	Installing the server
	About the layout of the PingDataGovernance Server folders
	About the server installation modes
	Install the server interactively
	Log in to the Administrative Console

	Installing PingDataGovernance Policy Administration GUI
	About the layout of the PingDataGovernance Policy Administration GUI folders
	Install the PingDataGovernance Policy Administration GUI interactively
	Log in to the PingDataGovernance Policy Administration GUI
	Change the Policy Administration GUI authentication mode
	Configure Authentication Server for OpenID Connect single sign-on

	Additional configuration steps
	Configure the Policy Decision Service
	Configure a user store
	Configure Access Token Validation

	Next steps

	Using server profiles to install PingDataGovernance Server
	Variable substitution
	Layout of a server profile
	setup-arguments.txt
	dsconfig/
	server-root/
	server-sdk-extensions/
	variables-ignore.txt
	server-root/permissions.properties
	misc-files/

	Workflows
	Creating a server profile
	Installing a new environment
	Scaling up your environment
	Rolling out an update

	Using Docker to install PingDataGovernance Server
	Clustering and scaling

	Running PingDataGovernance Server
	Starting PingDataGovernance Server
	Running PingDataGovernance Server as a foreground process
	Starting PingDataGovernance Server at boot time (Unix/Linux)
	Starting PingDataGovernance Server at boot time (Windows)
	Registering PingDataGovernance Server as a Windows service
	Running multiple service instances
	Deregistering and uninstalling services
	Log files for services

	Stopping PingDataGovernance Server
	Restarting PingDataGovernance Server
	Uninstalling PingDataGovernance Server

	About the API security gateway
	Request and response flow
	Gateway configuration basics
	API security gateway authentication
	API security gateway policy requests
	Policy request attributes
	Gateway API Endpoint configuration properties that affect policy requests
	Path parameters
	Basic example
	Advanced example

	About error templates
	Example

	About the Sideband API
	API gateway integration
	Sideband API configuration basics
	Sideband API authentication
	Authenticating to the Sideband API
	Creating a shared secret
	Deleting a shared secret
	Rotating shared secrets
	Customizing the shared secret header

	Authenticating API server requests

	Sideband API policy requests
	Policy request attributes
	Sideband API Endpoint configuration properties
	Path parameters
	Path parameters: Basic example
	Path parameters: Advanced example

	Error templates
	Error templates: Example

	About the SCIM service
	Request and response flow
	SCIM configuration basics
	About the create-initial-config tool
	Example: Mapped SCIM resource type for devices

	SCIM endpoints
	SCIM authentication
	SCIM policy requests
	Policy request attributes
	About SCIM searches
	SCIM search policy processing
	Search request authorization
	Search response authorization

	Lookthrough limit
	Disable the SCIM REST API

	About the PDP API
	Request and Response Flow
	Requests
	Authorization
	Decision Processing
	XACML-JSON response conversion

	Policy administration
	Create policies in a development environment
	Change the active policy branch
	Example configuration

	Use policies in a production environment
	Default policies
	Customized policies

	Environment-specific Trust Framework attributes
	Store keys and values in PingDataGovernance Server
	Define a policy configuration key

	External PDP mode
	Store PingDataGovernance credentials as environment variables
	Add PingDataGovernance environment variables to the configuration file
	Define a new attribute
	Retrieve the ConsentServicePassword value
	Remove the hard-coded password
	Test your changes

	Embedded PDP mode
	Access a policy configuration key

	Advice
	Add Filter
	Allow Attributes
	Combine SCIM Search Authorizations
	Denied Reason
	Exclude Attributes
	Filter Response
	Include Attributes
	Modify Attributes
	Modify Query
	Prohibit Attributes

	Access token validators
	About access token validator processing
	Access token validator types
	PingFederate access token validator
	JWT access token validator
	Mock access token validator
	Third-party access token validator

	Server configuration
	Administration accounts
	About the dsconfig tool
	PingDataGovernance Administration Console
	About the configuration audit log
	About the config-diff tool
	Certificates
	Inter-server certificate
	Replace the inter-server certificate
	Prepare a new keystore with the replacement key pair
	Use an existing key pair
	Replace the certificate associated with the original key pair

	Import earlier trusted certificates into the new keystore
	Update the server configuration to use the new certificate
	Replace the previous ads-truststore file with the new one
	Retire the previous certificate

	Server certificate
	Replace the server certificate
	Prepare a new keystore with the replacement key pair
	Use an existing key pair
	Replace the certificate associated with the original key pair

	Import earlier trusted certificates into the new keystore
	Update the server configuration to use the new certificate
	Replace the keystore and truststore files with the new ones
	Retire the previous certificate

	Manage monitoring
	StatsD monitoring endpoint
	Sending metrics to Splunk

	Capture debugging data
	Export policy data
	Enable detailed logging
	Policy Decision logger
	Debug Trace logger
	Debug logger

	Trace a policy-decision response
	Capture debugging data with the collect-support-data tool

	Upgrade PingDataGovernance Server
	Upgrade overview and considerations
	Upgrading PingDataGovernance Server
	Reverting an update
	Upgrade the PingDataGovernance Policy Administration GUI
	Back Up Policies
	Transfer Configuration Files
	Upgrade the Policy Database
	Configure and Start the Server
	Upgrade Trust Framework and Policies

	PingDataGovernance Policy Administration Guide
	Getting started
	Introduction

	Version control
	Branches
	Creating a new top-level branch
	Importing a branch
	Deleting a branch

	Snapshots
	Creating a branch from a snapshot
	Partial snapshot export and merging
	Partial export
	Merging

	Trust framework
	Trust Framework overview
	Domains (PDP API only)
	Services
	Resources
	Information points
	Common settings
	RESTful services
	LDAP services
	Camel services

	Attributes
	Attribute naming
	Resolver settings
	Conditional resolvers
	Attribute caching
	Value settings

	Actions
	Identity classifications and IdP support
	Identity providers
	Identity properties
	Identity classifications

	Named conditions
	Testing

	Policy management
	Policy management overview
	Policy sets, policies, and rules
	Policies and policy sets
	Creating policies and policy sets
	Adding targets to a policy
	Conditional targets
	Advice
	Provided advice
	Custom advice

	Properties
	Rules and combining algorithms
	Rule structure

	Testing
	Analysis
	Change control
	Deployment packages

	Advice types
	Advice types overview
	Add Filter
	Allow Attributes
	Combine SCIM Search Authorizations
	Denied Reason
	Exclude Attributes
	Filter Response
	Include Attributes
	Modify Attributes
	Modify Query
	Prohibit Attributes

	REST API
	REST API documentation

