
PingIntelligence

 | Contents | ii

Contents

PingIntelligence for APIs Overview... 9

PingIntelligence for APIs Release Notes.. 9
PingIntelligence 4.3 Release Notes.. 9

PingIntelligence PoC... 11
PingIntelligence Docker PoC deployment...11

Docker PoC setup.. 11
Installation requirements...12
Download and untar Docker package..12
Configure Docker PoC for sideband.. 14
Install and load Docker images..15
Setup the PoC environment... 15
Start the training... 16
Generate sample attacks..16
API deception... 16
API discovery..17
Access PingIntelligence Dashboard... 17
Dashboard...23
ABS detailed reporting..27
Shutdown the PoC environment.. 29
Appendix: Verify the Setup...29

PingIntelligence Kubernetes PoC deployment..30
PingIntelligence Kubernetes PoC deployment... 30
Installing Docker on RHEL or Ubuntu..30
Installing minikube and kubectl.. 31
Installing Kubernetes cluster node... 31
Deploying PingIntelligence in Kubernetes cluster.. 32

PingIntelligence Cloud service deployment.. 35
PingIntelligence Cloud service... 35
Downloading and installing ASE software..37
Configure PingIntelligence Cloud Connection..38
Obfuscate access and secret key.. 39
Start and stop ASE.. 39
Enable ASE to ABS engine communication.. 40
Integrate PingIntelligence into your API environment.. 40
Configure ASE and Dashboard..41
Add APIs to ASE..41
AI engine training... 43
Connect to the PingIntelligence dashboard... 43
Access ABS reporting...43

PingIntelligence Production Deployment..44
Automated deployment..44

PingIntelligence for APIs setup.. 44
PingIntelligence deployment modes...46

Copyright ©2022

 | Contents | iii

Prerequisites... 47
Download the deployment package... 48
Step 1 - User and authentication... 49
Step 2 - Configure licenses..52
Step 3 - Configure hosts file and download software.. 52
Change default settings..59
Step 4 - Configure system parameters.. 69
Step 5 - Install the PingIntelligence for APIs software...70
Install PingIntelligence as a systemd service...71
Verify PingIntelligence Installation..72
Next steps - Integrate PingIntelligence into your environment...75
Shut down the deployment...76
Logs.. 77

Manual deployment... 79
PingIntelligence manual deployment..79
Part A – Install ABS and MongoDB...80
Part B – Install ASE... 92
Part C – Integrate ASE and ABS...104
Part D – Install PingIntelligence Dashboard.. 107
Part E – Access ABS reporting..112
Part F - Integrate API gateways for sideband deployment.. 114

API Security Enforcer..115
Introduction.. 115
Administration.. 118

ASE license.. 118
ASE interfaces.. 118
Customizing ASE ports...120
Configure time zone... 120
Tune host system for high performance.. 121
Start and stop ASE.. 122
Change default settings..122
Obfuscate keys and passwords... 124
Delete UUID to propagate changed password.. 125
PKCS#12 keystore... 125
Directory structure.. 126
ASE cluster setup...126
Configure SSL for external APIs.. 132
Configure SSL for management APIs..135
Configure native and PAM authentication..137
ASE management, access and audit logs... 139
Change management log levels...142
Purge log files...143
Configure syslog... 143
Email alerts and reports... 144

Sideband ASE... 150
ASE configuration - ase.conf..152
API naming guidelines..159
Defining an API – API JSON configuration file.. 159
Activate API cybersecurity..164
API deception environment.. 176
ABS AI-based security..178
Configure Google Pub/Sub...181
CLI for sideband ASE...183

Inline ASE..191

Copyright ©2022

 | Contents | iv

ASE configuration - ase.conf..191
API naming guidelines..199
Define an Inline API JSON configuration file... 200
API routing.. 204
Real-time API cybersecurity... 207
API deception environment.. 225
ASE DoS and DDoS protection... 228
ABS AI-based security..238
CLI for inline ASE...241

ASE REST APIs using Postman...251
ASE self-signed certificate with Postman...251
View ASE REST APIs in Postman...252

REST API for inline and sideband ASE... 254
Audit log...277
Supported encryption protocols...280
Autoscaling ASE in AWS environment... 281

Create an AMI for ASE.. 281
Creating an IAM role in the security, identity, and compliance.. 282
Create the security group...284
Creating launch configuration...284
Creating an auto-scale group...285

ASE log messages..285

ABS AI Engine... 287
Introduction.. 287
Administration.. 287

ABS License and timezone.. 288
Change default settings..288
Obfuscate passwords... 290
ABS POC mode... 291
Start and Stop ABS..292
ABS users for API reports..293
ABS directory structure...294
Configure SSL.. 295
Import existing CA-signed certificates.. 295
ABS ports..296
ABS configuration - abs.properties...297
Connect ABS to API Security Enforcer..300
ABS cluster... 303
ABS logs... 304
Purge the processed access logs from ABS... 305
Purge MongoDB data...305
Reset MongoDB... 306
Add a member to an existing MongoDB replica set.. 310
Remove a member from a MongoDB replica set...310
Email alerts and reports... 311

ABS REST API format.. 315
Admin REST API...316
AI Engine training..319

Training the ABS model... 320
AI Engine training variables... 320
Training period status...322
Update the training variables... 322
Tune thresholds for false positives.. 324
Resetting trained APIs..328

Copyright ©2022

 | Contents | v

Disable attack detection... 329
API discovery and configuration... 329

API discovery process..331
Discovery Subpaths..333
ABS Discovery API...334
Manage discovery intervals.. 336

Global configuration update REST API.. 337
REST API attacks... 338

REST API attack types...339
Attacks based on username activity.. 341
Attacks based on API Key activity... 342
Attacks based on cookie activity.. 343
Attacks based on token activity..344
Attacks based on IP activity...345

WebSocket API attack detection...347
Attack detection on root API... 349
Manage attack blocking...350

ABS blacklist reporting... 350
Enable or disable attack IDs.. 353
TTL for client identifiers in ABS... 355
Automated ASE attack blocking...358
Attack management in ASE... 358

Attack reporting... 362
Consolidated result of attack types.. 363
Real-time Detected attacks for inline ASE... 366
Anomalous activity reporting.. 369

Deception and decoy API... 370
Blocked connection reporting.. 372
API forensics reporting..374
API metrics reporting...380

Username based metrics..382
API Key based metrics...383
OAuth token based metrics..386

List valid URL.. 389
Hacker's URL...390
Backend error reporting...392
API DoS and DDoS threshold.. 392
API reports using Postman... 394

ABS self-signed certificate with Postman...394
View ABS reports in Postman..395

ABS CLI...396
ABS external REST APIs..397

Admin REST API..398
Discovery REST API.. 401
Decoy REST API..402
Threshold REST API.. 404
Metrics REST API.. 407
API Key Metrics REST API..410
OAuth2 Token Metrics REST API..412
Username Metrics REST API...414
Anomalies REST API... 418
Anomalies across APIs...420
OAuth2 Token Forensics REST API..421
IP Forensics REST API..423
Cookie Forensics REST API.. 424
Token Forensics REST API... 426

Copyright ©2022

 | Contents | vi

API Key Forensics REST API..427
Username Forensics REST API...429
Attack Types REST and WebSocket APIs...430
Flow Control REST API..431
Blocked Connection REST API..432
Backend Error REST API...433
List Valid URLs REST API...435
List Hacker's URL REST API...437
Delete Blacklist REST API... 438

Threshold range for Tn and Tx...439
Splunk for PingIntelligence..442

Installing and configuring Splunk for PingIntelligence..443
Types of data captured.. 445
Installing and configuring the Splunk Universal Forwarder method..................................... 446
Alert notification on Slack and Email... 447

ABS log messages..451

PingIntelligence Dashboard..454
Introduction.. 454
Installation prerequisite..454
Install PingIntelligence Dashboard.. 456

Configure authentication - SSO or native.. 458
Start and stop Dashboard.. 466
Access PingIntelligence Dashboard... 468
Automatic rollover index... 470

Dashboard... 471
Interactive blacklists..472
Dashboard time series..474
Per API activity... 475
Forensic reports..477
Cross API attacks and recently discovered APIs...482
Attack insights...483

APIs... 486
Administer API groups..488
Search or sort API groups and APIs... 491

Attack management...493
Discovered APIs.. 496

Configure API discovery...497
Edit the discovered APIs.. 502

Configure dashboard engine... 504
Dashboard engine fast forward.. 507
Configure dashboard engine for syslog... 508
attack.log for Splunk...509

Dashboard log messages..510
Purge dashboard logs.. 511
Purge data from Elasticsearch... 512
Purge Web GUI logs.. 513

API Gateway integration... 514
Akana API gateway integration...514

Akana API gateway sideband integration.. 514
Prerequisites... 516
Add PingIntelligence ASE APIs..517
Secure PingIntelligence ASE APIs...520

Copyright ©2022

 | Contents | vii

Capture ASE details... 523
Deploy PingIntelligence policies... 525

Apigee API gateway integration..538
PingIntelligence Apigee Integration.. 538
Prerequisites to deploying PingIntelligence shared flow.. 539
Download automated policy tool.. 540
Configure Apigee properties file...541
Extract user information from access tokens... 544
Deploy the PingIntelligence policy..545
Change deployed policy mode...555
Add APIs to ASE..557
Undeploy the PingIntelligence policy..557
Troubleshoot mismatch of self-signed certificates... 557

AWS API gateway integration...558
PingIntelligence AWS API Gateway Integration...558
Prerequisites... 560
Configure automated policy tool...563
Deploy PingIntelligence Policy for AWS...573
Next steps - Integrate into your API environment..573
Uninstall CloudFront sideband policy... 574

Axway API gateway integration.. 576
Axway sideband integration..576

Azure API gateway integration..600
Azure APIM sideband integration...600
Prerequisites... 602
Deploy PingIntelligence policy..604
Integrate PingIntelligence... 609
Configure ASE persistent connection...609

CA API gateway integration.. 609
PingIntelligence - CA API gateway sideband integration... 609
Prerequisite... 610
Install and configure the PingIntelligence bundle...611
Import PingIntelligence policy...615
Configure ASE token and certificate.. 615
Apply PingIntelligence policy.. 616
Integrate PingIntelligence... 618

F5 BIG-IP integration.. 618
F5 BIG-IP PingIntelligence integration... 618
Prerequisite... 619
Deploy PingIntelligence policy..620

IBM DataPower gateway integration...630
IBM DataPower Gateway sideband integration..630
Prerequisites... 631
Deploy PingIntelligence policy..632

Kong API gateway integration...637
PingIntelligence - Kong API gateway integration... 637
Prerequisites... 638
Deploy PingIntelligence policy..639

Mulesoft API gateway integration... 643
Mulesoft sideband integration...643
Prerequisites... 645
Deploy PingIntelligence policy..647
Apply PingIntelligence policy.. 651
Remove existing PingIntelligence policy.. 655
Next steps - Integration.. 657

NGINX integration... 657

Copyright ©2022

 | Contents | viii

NGINX sideband integration...657
Prerequisites... 658
NGINX for RHEL 7.6..661
NGINX for Ubuntu 16.04.. 666
Next steps - integration.. 672

NGINX Plus integration... 672
NGINX Plus sideband integration...672
Prerequisites... 674
NGINX Plus for RHEL 7.6..677
NGINX Plus for Ubuntu 16.0.4...685
NGINX Plus for Debian 9...692

PingAccess API gateway integration.. 700
PingAccess sideband integration... 700

PingFederate integration... 711
PingFederate sideband integration...711
Prerequisites... 712
Deploying the PingIntelligence policy...714

WSO2 API gateway integration.. 717
PingIntelligence WSO2 integration...717

PingIntelligence Docker toolkit.. 717
PingIntelligence Docker toolkit.. 717
Untar the Docker toolkit... 718
Build the PingIntelligence Docker images...719
Environment variables exposed in Docker images...721
Using environment variables - example..726

PingIntelligence Hardening Guide... 728
PingIntelligence security hardening guide...728

Copyright ©2022

 | PingIntelligence for APIs Overview | 9

PingIntelligence for APIs Overview

Digital transformation initiatives founded on APIs are making business logic and data readily accessible
to internal and external users. However, APIs also present a new opportunity for hackers to reach into
data and systems, and predefined rules, policies and attack signatures can’t keep up with this evolving
threat landscape. PingIntelligence for APIs uses artificial intelligence (AI) to expose active APIs, identify
and automatically block cyberattacks on APIs, and provide detailed reporting on all API activity. Leveraging
AI models specifically tailored for API security, PingIntelligence for APIs brings cyberattack protection and
deep API traffic insight to existing API Gateways and application server-based API environments.

PingIntelligence for APIs detects anomalous behavior on APIs, as well as the data and applications
exposed via APIs, and can automatically block attacks across your API environment. For example,
attempts to bypass login systems using botnet credential stuffing attacks or stolen tokens are recognized
as cyberattacks. Attempts to exfiltrate, change or delete data that fall outside the range of normal behavior
for an API can also be blocked and reported on in near real time.

PingIntelligence for APIs Release Notes

PingIntelligence 4.3 Release Notes

New in PingIntelligence Dashboard

PingIntelligence 4.3 Dashboard has the following updates:

▪ Logical API grouping - The new logical grouping feature provides the capability to organize APIs in
PingIntelligence Dashboard into logical groups. You can create API groups as per your requirements.
For example, you can group your APIs location-wise or functionality-wise, and so on. The API grouping
feature makes searching for a specific API quick and simple. For more information, see Logical API
grouping.

▪ Attack remediation - The Attack remediation visualization is now included on the attack insight
page, and allows you to access the Attack management Dashboard to unblock the client or tune the
thresholds to eliminate false positives for clients exhibiting similar behavior. For more information, see
Attack remediation.

▪ SSO support using OIDC specifications - PingIntelligence for APIs Dashboard now supports Single
Sign On (SSO) for user authentication. It seamlessly integrates with PingFederate, which provides
authorization information for an end-user after successful authentication. The Dashboard is qualified
with both PingFederate 9.3 and PingFederate 10.1. For more information, see Configure authentication
- SSO.

▪ Automatic rollover indexing -To maintain low latency during search operations, the PingIntelligence
for APIs Dashboard now implements automatic rollover indexing. It uses Index Lifecycle Management
(ILM) policy support of Elasticsearch. The policy allows for an automatic rollover of all the time series
indices leading to reduced read and write times. For more information, see Automatic rollover index on
page 470.

New in ABS AI Engine

PingIntelligence 4.3 ABS AI engine has the following updates:

▪ Enhanced user-based attack detection - ABS AI engine has been tuned to deliver detection of data
injection and data exfiltration attacks based on observing abnormal user behavior. Many organizations
using token-based authentication will refresh tokens every few minutes to minimize the impact of a

Copyright ©2022

https://www.pingidentity.com/en/platform/apiintelligence.html

 | PingIntelligence for APIs Release Notes | 10

compromised token. PingIntelligence user-based attack detection analyzes aggregate user activity
across multiple tokens to detect and optionally block anomalous data extraction and injection on API
services . For more information, see Attacks based on username activity on page 341.

▪ Reset trained APIs - You can reset the training models for a specific API using the new reset REST
API. The REST API can then be retrained to address changes in the API functionality, definition, or
traffic mix. Using the reset API, you can retrain one or more APIs with a single API call. If ABS AI
engine is deployed in a cluster setup, you can run the reset API on any of the ABS cluster nodes. For
more information, see Resetting trained APIs on page 328.

New in ASE

PingIntelligence 4.3 ASE has the following updates:

▪ Enhanced JWT Username capture - ASE supports decoding a list of Usernames in JWT. If the
Username claim in the JWT payload has multiple Usernames, ASE extracts the first Username from the
list. For more information, see Extract user information from JWT in sideband mode on page 167 and
Extract user information from JWT in inline mode on page 213.

▪ Balancer log rotation - The new rotate-logs script is added to the util directory of ASE,which
can be scheduled at regular time intervals for rotating the ASE balancer logs. The script backs up both
balancer logs and controller logs. For more information, see ASE management, access and audit logs
on page 139.

New in sideband integration policies

▪ PingFederate policy - The new PingIntelligence sideband policy supports integration with
PingFederate. The policy extracts metadata from an authentication request or response processed by
PingFederate.This metadata is passed to PingIntelligence to detect anomalous behavior and attacks by
the client. For more information, see PingFederate sideband integration on page 711.

▪ NGINX Plus policy update - The updated PingIntelligence sideband policy now supports Debian 9. For
more information, see NGINX Plus for Debian 9 on page 692.

▪ MuleSoft policy update - The updated PingIntelligence sideband policy adds support for APIs that
are configured with Basic endpoint in the MuleSoft API gateway. For more information, see Mulesoft
sideband integration on page 643.

▪ WSO2 Opensource policy update - The updated PingIntelligence sideband policy has been qualified
for failover between primary and secondary ASE. It has also been qualified to support dynamic setting
of oauth2_access_token parameter in API JSON file depending on the number of secured resources in
an API. For more information, contact Ping Identity sales team.

New in Automated deployment

▪ PingIntelligence 4.3 automated deployment has new settings to support PingIntelligence for APIs
Dashboard Single Sign On (SSO) configuration and Automatic rollover indexing. New variables are
added to dashboard-defaults.yml file. For more information, see Change Dashboard default
settings on page 63.

Resolved Tickets

Following tickets have been resolved in PingIntelligence 4.3 release:

Ticket ID Description

ASE - CON-828 An issue related to out of order rebooting of ASE cluster nodes
is resolved. This eliminates restrictions in the order in which
ASE nodes are restarted in a cluster.

ASE - CON-854 Resolved an issue encountered in ASE while attempting to
upload deleted log files from ASE to ABS.

Copyright ©2022

 | PingIntelligence PoC | 11

Ticket ID Description

ASE - CON-790 Fixed an issue that prevented ASE from uploading access
logs to ABS when a load balancer is present in between, with
connection keep-alive set to true in ASE and SSL enabled in
ABS.

Dashboard - PI4API-109 Enforced a limit to the maximum number of allowable active
sessions to PingIntelligence for APIs Dashboard.

PingIntelligence PoC

PingIntelligence Docker PoC deployment

Docker PoC setup

This guide describes the installation and execution of PingIntelligence for APIs software in a Docker
environment for inline and sideband deployment. The automation script imports and installs the Docker
images. A script is run to generate normal API traffic to train the AI engine. After training is complete,
another script is run to send a mixture of normal and attack traffic. The guide then explains how to access
a graphical dashboard which shows activity on the test environment and detailed reporting on the API
activity.

This Docker Evaluation Guide provides instructions for deploying a test configuration as shown in the
diagram. The docker setup can be deployed in an inline mode where the client traffic directly reaches
ASE. It can also be deployed in sideband mode where the API traffic reaches the API gateway and the
API gateway sends the request to ASE. For more information on sideband and inline deployment, see
Sideband ASE on page 150 and Inline ASE on page 191.

Copyright ©2022

 | PingIntelligence PoC | 12

i Note: The Docker images provided are only for evaluation purpose of PingIntelligence for APIs
product. They should not be used in production deployments or for setting up environments for security
testing.

Installation requirements

Here is a summary of the software and documentation to download from the download site as noted
below.

Docker images

Download the Docker PoC package. The Docker package creates the following five containers on the host
machine:

1. API Security Enforcer (ASE)
2. API Behavioral Security Engine (ABS)
3. PingIntelligence for APIs Dashboard
4. Client that sends the traffic
5. Google Go App server

ASE and ABS license: ASE and ABS licenses are required to start both the products. Contact the
PingIntelligence team to access the trial license.

Postman reporting

ABS generates various REST API reports. You can view these reports using Postman client or any
other REST API client. PingIntelligence provides a Postman collection to view the various ABS reports.
Download the Postman client from the Postman site.

Documentation

Refer the following Admin Guides:

▪ ASE Admin Guide - Refer the ASE admin guide to learn about administering ASE, inline ASE, real-
time cybersecurity and so on.

▪ ABS Admin Guide - Refer to the ABS admin guide to learn about administering ABS, AI engine
training, various REST API reports and so on.

▪ Dashboard on page 23 - Refer to the Dashboard admin guide to learn about how to access and
use Dashboard.

Server requirements

The set up requires one machine which hosts all the six Docker images. The server requirement for the
machine is specified in the following table:

OS Ubuntu 16.04

Hardware 8 CPUs, 32 GB RAM, 500 GB Storage

i Note: The server requirement is for a single server for evaluation purpose only.

Docker version

The setup requires the Community Version (CE) of Docker 17.06 or higher. Make sure that the Docker
infrastructure is set up before proceeding with installation and setup of PingIntelligence for APIs software.

Download and untar Docker package

Download the Docker package from the download site and save it in the /opt directory.

Copyright ©2022

https://pingidentity.com/en/resources/downloads.html
https://www.getpostman.com/
https://www.pingidentity.com/en/resources/downloads.html

 | PingIntelligence PoC | 13

Complete the following steps before Installing and loading the Docker images:

1. Untar the package by running the following command:

$sudo tar -xf /opt/pi-api-docker-poc-4.3.tar.gz
2. Change the directory to /opt/pingidentity/docker-poc.

i Note: By default the Docker PoC package is configured to be deployed in inline mode. If you want to
deploy Docker in sideband mode, see Configure Docker PoC for sideband on page 14.

Install ASE and ABS license
PingIntelligence ASE and ABS require a valid license to start. The license file for both the products is
named PingIntelligence.lic. Complete the following

▪ ASE:

Copy the ASE license file in the pingidentity/docker-poc/license/ase directory. Make sure
that the license file is named as PingIntelligence.lic Following is a sample of the ASE license
file:

ID=981894
Product=PingIntelligence
Module=ASE
Version=4.1
IssueDate=2020-01-01
EnforcementType=0
ExpirationDate=2020-06-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been copied in
the pingidentity/docker-poc/license/ase directory, run the following command:

grep 'Module' license/ase/PingIntelligence.lic
Module=ASE

▪ ABS:

Copy the ABS license file in the pingidentity/docker-poc/license/abs directory. Make sure
that the license file is named as PingIntelligence.lic. Following is a sample of the ABS license
file:

ID=981888
Product=PingIntelligence
Module=ABS
Version=4.1
IssueDate=2020-01-01
EnforcementType=0
ExpirationDate=2020-06-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been copied in
the pingidentity/docker-poc/license/abs directory, run the following command:

grep 'Module' license/ase/PingIntelligence.lic
Module=ABS

Copyright ©2022

 | PingIntelligence PoC | 14

Configure Docker PoC for sideband

You can optionally configure the Docker PoC environment for a sideband deployment with an API
Gateway. The Docker PoC package ships with sample API swagger definition files which can be adapted
to support your API Gateway environment. PingIntelligence sideband policies and documentation can be
downloaded from the Ping download site.

Configure Docker package for sideband

Navigate to config directory and edit the poc.config file to set mode as sideband. Following is a
sample poc.config file.

API Security Enforcer mode.
allowed values: inline, sideband
ase_mode=inline

initial training period in hours
training_period=1

poc mode for training
poc_mode=true

###
Below Configuration is applicable only when ase_mode is set to sideband
 ##
###

API gateway ip address or dns name
gateway_ip=
API gateway port
gateway_port=443
set gateway protocol if API gateway is configured with ssl
else set it to tcp
allowed values: tcp, ssl
gateway_protocol=ssl

The following table describes the variables.

Variable Description

ase_mode Defines the deployment mode of ASE. Possible
values are inline and sideband. Default value is
inline.

training_period Training period of AI engine in hours. Minimum
value is 1-hour.

poc_mode Defines the mode in which ABS AI engine trains its
models. Default value is true. It is recommended
to keep the value as true. If you change it to
false, it may take longer time to set all the attack
thresholds.

gateway_ip Configure the URL for API gateway.

gateway_port Port number of API gateway URL

gateway_protocol API gateway protocol. Possible values are ssl or
tcp.

Copyright ©2022

 | PingIntelligence PoC | 15

Install and load Docker images

To install and load Docker images, enter the command on the host Ubuntu 16.04 machine. This command
loads and installs the Docker images from the images directory:

/opt/pingidentity/docker-poc$sudo ./bin/start.sh install

ubuntu@ip-172-31-90-119:~/pingidentity/docker-poc/bin$ sudo ./start.sh
 install
Tue Oct 13 05:05:14 UTC 2020 : loading ASE image
Loaded image: pingidentity/ase:4.3
Tue Oct 13 05:05:15 UTC 2020 : loading ABS image
Loaded image: pingidentity/abs:4.3
Tue Oct 13 05:05:16 UTC 2020 : loading Dashboard image
Loaded image: pingidentity/dashboard:4.3
Tue Oct 13 05:05:19 UTC 2020 : loading mongo image
Loaded image: pingidentity/mongo:4.2.0
Tue Oct 13 05:05:20 UTC 2020 : loading client image
Loaded image: pingidentity/client:4.3
Tue Oct 13 05:05:20 UTC 2020 : loading server image
Loaded image: pingidentity/server:4.3
Tue Oct 13 05:05:21 UTC 2020 : Installation completed successfully

Setup the PoC environment

To start the Docker containers and setup, enter the following command the on the host Ubuntu 16.04
machine:

/opt/pingidentity/docker-poc$sudo ./bin/start.sh setup

Tue Mar 31 05:12:28 UTC 2020 : Starting setup scripts
vm.max_map_count = 262144
Training period configured: 1 hour(s)
Creating network pingidentity_net
Creating service pingidentity_ase
Creating service pingidentity_dashboard
Creating service pingidentity_server
Creating service pingidentity_client
Creating service pingidentity_mongo
Creating service pingidentity_abs
Tue Mar 31 05:12:30 UTC 2020 : Setup successful

Verify ASE and ABS startup

Wait for a minute after the successful completion of the set up and enter the following command to verify
that ASE and ABS have started:

#sudo docker service logs pingidentity_ase | grep 'API Security Enforcer
 started'
#sudo docker service logs pingidentity_abs | grep 'ABS started'

If a wrong license is installed, the following error is displayed:

/opt/pingidentity/docker-poc#sudo ./bin/start.sh setup
Tue Dec 31 05:12:45 UTC 2019 : Starting setup scripts
Creating network pingidentity_net
open /opt/pingidentity/docker-poc/license/ase/PingIntelligence.lic: no such file or directory
Tue Dec 31 05:12:46 UTC 2019 : Error : Error during setup

Copyright ©2022

 | PingIntelligence PoC | 16

i Note: If PingIntelligence Dashboard is configured with SSO mode, then update the content of cert/
webgui-sso-oidc-provider.crt with the PingFederate public certificate.

Start the training

The PingIntelligence for APIs AI engine needs to be trained before it can start detecting attacks on your
APIs. Enter the following command to start the training. The training duration is 85 minutes.

/opt/pingidentity/docker-poc$sudo ./bin/start.sh training

root@vortex-108:/opt/pingidentity/docker-inline-poc$sudo ./bin/start.sh
 training
Tue Mar 31 06:44:25 UTC 2020 : Starting model training scripts
Tue Mar 31 06:44:25 UTC 2020 : Model training started. Wait 1 hr 25 minutes
 for the model training to complete.

Generate sample attacks

To generate sample attacks on the preconfigured APIs, enter the following command:

/opt/pingidentity/docker-poc$sudo ./bin/start.sh attack

root@vortex-108:/opt/pingidentity/docker-poc$sudo ./bin/start.sh attack
Tue Mar 31 09:13:02 UTC 2019 : Starting attack scripts
Tue Mar 31 09:13:02 UTC 2019 : Attack started.

API deception

You can view the deception APIs by running the following command. The deception API is part of the set
up. The deception command completes the following steps:

▪ Enables ASE detected attacks
▪ Fetches the list of configured APIs from ASE
▪ Sends traffic to the decoy API and receives a 200 OK response
▪ Send traffic to a regular API (for example, shopapi). The connection is blocked because any client

which previously accessed a decoy API is not allowed access to “production” APIs.

i Note: API deception works only for inline Docker PoC setup.

Execute the following script to test API deception:

root@vortex-108:/opt/pingidentity/docker-poc$sudo./bin/start.sh deception
Enabling enable_ase_detected_attack on ASE...
Press any key to continue
ASE Detected Attack is now enabled
Fetching the list of APIs from ASE
Press any key to continue
decoy (loaded), http, decoy: out-context, client_spike_threshold: 0/
second, server_connection_queueing: disabled
shop-books (loaded), http, client_spike_threshold: 300/second,
 server_connection_queueing: disabled
shop-electronics (loaded), http, decoy: in-context,
 client_spike_threshold: 700/second, server_connection_queueing: enabled
shop (loaded), http, decoy: in-context, client_spike_threshold: 300/
second, server_connection_queueing: disabled
Sending traffic to "decoy API" with client IP 10.10.10.10...
Press any key to continue
curl -v http://localhost:8000/decoy/myhome -H "X-Forwarded-For: 10.10.10.10"
* Trying 127.0.0.1...

Copyright ©2022

 | PingIntelligence PoC | 17

* Connected to localhost (127.0.0.1) port 8000 (#0)
> GET /decoy/myhome HTTP/1.1
> Host: localhost:8000
> User-Agent: curl/7.47.0
> Accept: */*
> X-Forwarded-For: 10.10.10.10
>
< HTTP/1.1 200 OK
< Server: ASE
< Content-Length: 2
< Connection: close
<
* Closing connection 0
OK
Accessing regular API using client IP 10.10.10.10...
Press any key to continue
curl -v http://localhost:8000/shopapi/login -H "Host: shopapi" -H "Content-
Type: application/text" -H "X-Forwarded-For: 10.10.10.10" -d 'user=root'
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 8000 (#0)
> POST /shopapi/login HTTP/1.1
> Host: shopapi
> User-Agent: curl/7.47.0
> Accept: */*
> Content-Type: application/text
> X-Forwarded-For: 10.10.10.10
> Content-Length: 9
>
* upload completely sent off: 9 out of 9 bytes
< HTTP/1.1 401 Unauthorized
< Server: ASE
< Connection: close
< content-length: 19
<
* Closing connection 0
Error: Unauthorized
Error: Unauthorized

API discovery

Automated API Definition (AAD) tool is installed as part of the setup. ABS discovers the APIs when the
discovery is enabled. The automated setup sets up the discovery mode. APIs are discovered by ABS when
a global API is defined in PingIntelligence ASE. AAD fetches the discovered APIs from ABS and adds
them in ASE. API model training starts after the APIs are added in ASE. For more information, See API
discovery and configuration on page 329.

Access PingIntelligence Dashboard

Access the PingIntelligence for APIs Dashboard from a browser at this default URL: https://
<pi_install_host>:8030 .

Users

There are two pre-configured login users in PingIntelligence for APIs Dashboard :

▪ admin
▪ ping_user

Multiple users can share the admin and ping_user logins simultaneously on PingIntelligence
Dashboard. The admin user has access to all PingIntelligence Dashboard functions. A ping_user can
only view all the API dashboards.

Copyright ©2022

 | PingIntelligence PoC | 18

At the login screen, login as admin or ping_user. The default password for both the users is changeme.

i CAUTION: You must change the default password for production deployments. However, in a Docker
PoC deployment use the default password.

You can change the password using the following CLI command.

<pi_install_dir>/webgui/bin/cli.sh -u admin update_ui_password --username
 -value <admin or ping_user> --new-password -p
Enter admin password > <current admin password>
Enter new password > <new password>
Reenter new password > <new password>
success: password updated.

i Note: If the Dashboard is not accessible, check if the default port (8030) was changed by your system
administrator.

PingIntelligence Dashboard is categorized into the following components:

▪ Main Dashboard - Available for admin and ping_user
▪ APIs - Available only for admin user
▪ Discovered APIs - Available only for admin user
▪ Attack Management - Available only for admin user
▪ License

Copyright ©2022

 | PingIntelligence PoC | 19

Session management

The PingIntelligence Dashboard allows you to configure the maximum number of active sessions. You can
set the pi.webgui.session.max-active-sessions parameter in the <pi_install_dir>/webgui/config/
webgui.properties file to limit the maximum number of allowable active sessions. The default value is
50.

Delete active sessions- You can delete active sessions using the following CLI command. The current
active users will be prompted to re-login in to the Dashboard.

<pi_install_dir>/webgui/bin/cli.sh -u <username> -p <password>
 delete_sessions

i Note: You need to have Admin user privileges to delete active user sessions.

API

The API tab displays all the APIs available in ABS AI engine.

▪ API name: API name used by PingIntelligence
▪ Prediction mode: A true status means that at least one system generated threshold value is set,

while a false status means that the API is still under training mode
▪ Training duration: The minimum configured time in hours configured in ABS AI engine to train an

API. This is configured in abs_init.js in ABS. For more information, see AI Engine training on page
319

▪ URL: API basepath URL configured in the API JSON file. For more information, see API JSON
definition

▪ Host name: Host name of the API configured in the API JSON file. For more information, see API
JSON definition

▪ Protocol: The protocol configured in the API JSON file. For more information, see API JSON definition
▪ API type: API type can be regular, decoy - incontext, or decoy-out-of-context. For more

information on deception, see API deception environment on page 225
▪ Token: A true status means that PingIntelligence will use OAuth tokens for reporting and attack

detection. For more information, see API JSON definition
▪ API Key header and API key query string (QS): The API Key values configured in the API JSON file

and used for reporting and attack detection.. For more information, see API JSON definition
▪ Cookie: The cookie value configured in the API JSON file and used for reporting and attack detection.

Displays blank, if cookie was not configured in API JSON. For more information, see API JSON
definition

▪ Servers: The backend API server configured in the API JSON file - "*" supports all the host names. For
more information, see API JSON definition

Using the toggle button, you can hide or display information for the API in the PingIntelligence
Dashboard.. This provides the flexibility to display only selected APIs. Even if an API is
hidden from the API dashboard, the dashboard engine keeps fetching API data from ABS
AI engine. The hidden API is moved to the end of list. If the APIs are paginated, the hidden
APIs are moved to the last page. When you toggle the button to display a hidden API,

Copyright ©2022

 | PingIntelligence PoC | 20

the dashboard displays data for the API on the Dashboard. Here is a screenshot of APIs

tab:

Attack management

The attack management feature of PingIntelligence for APIs Dashboard supports unblocking of clients and
tuning thresholds values for attacks. Click on the Attack Management tab on the left pane to access it.

i Note: The Attack management feature is available only for an Admin user. You need to have Admin
user privileges to perform Unblock and Tune operations on a client identifier.

Copyright ©2022

 | PingIntelligence PoC | 21

The following screenshot illustrates the Attack Management

UI.

Interactive blacklists

The PingIntelligence for APIs Dashboard provides the capability of unblocking or tuning a blacklist directly
from the Dashboard. The user can select the client identifier and the Attack management action from the
Dashboard. For more information, see Interactive blacklists on page 24. The following screen shot
shows the client identifier blacklists across APIs in the Dashboard.

i Note: When the user initiates Attack management from the Dashboard, the values for the client
identifiers are auto-populated except the API key key-name.

Unblock a client identifier

Complete the following steps to unblock a client identifier:

1. Select the type of client identifier from the Client Identifier Type list.
2. Enter the value of the client identifier.

i Note: For API Key and Cookie, enter the name and the value.

3. Select the Unblock Client check box.
4. Click Run.

Copyright ©2022

 | PingIntelligence PoC | 22

The following screen shot illustrates the unblock client operation.

The unblock operation deletes the client identifier from the PingIntelligence ASE and ABS AI engine
blacklist. To verify that the client identifier has been deleted from ASE, run the view_blacklist CLI
command or blacklist REST API in ASE. To verify that the client identifier has been deleted from ABS, use
the attacklist REST API. For more information on ABS blacklist, see ABS blacklist reporting on page
350.

i Note: The API keys will not be deleted from the blacklist immediately in ASE if the API Key key-name
is not entered. The deletion is delayed until ASE retrieves the blacklist data from ABS.

Tune threshold

To address false positives, the Attack Management feature supports automatic threshold tuning. When
tuning thresholds for a specific client identifier, the Attack management functionality does the following:

1. It fetches all the attacks flagged for the client identifier from ABS AI Engine.
2. After it has identified all the attacks, it increases the threshold values for those attacks. At this point, the

threshold has moved from system defined to user defined. For more information on thresholds, see
Tune thresholds for false positives on page 324.

Complete the following steps to tune thresholds:

1. Select the type of client identifier from the Client Identifier Type list.
2. Enter the value of the client identifier.
3. Select the Tune Threshold check box.

Copyright ©2022

 | PingIntelligence PoC | 23

4. Provide the approximate number of days since the client was blocked. The maximum value is 30-days.

i Note: The value for How many days ago client was blocked? gets auto-populated when Attack
Management is initiated from the Dashboard interactive blacklist. The value is calculated as follows,

How many days ago client was blocked? = Current date - Attack detection
 date + 1

When auto-populating, if the calculated value is more than 30 days, it is trimmed down to 30.You
can use the same formula when populating the value manually. The Attack detection date for a client
identifier is available in the interactive blacklists.

5. Click Run.

The following screen shot illustrates tuning threshold for a client identifier.

Dashboard

The Dashboard provides a near real-time snapshot of your API environment. It provides insights on user
activity, attack information, blocked connections, forensic data, and much more. The Dashboard makes
periodic REST API calls to the ABS (API Behavioral Security) AI engine, which returns JSON reports that

Copyright ©2022

 | PingIntelligence PoC | 24

are used to generate visualizations and API metrics. The following illustration shows the data flow for API

dashboard.

To view the API dashboard, click on Dashboard. The Dashboard provides information on the following::

▪ Global metrics like:

▪ Blacklist across APIs for each client identifier. For more information, see Interactive blacklists on
page 24.

▪ Total attacks across APIs
▪ Total requests across APIs
▪ Number of APIs in your environment

▪ Time series visualization of total number of requests and attacks. For more information, see Dashboard
time series on page 26.

▪ Data on Per API activity. For more information, see Per API activity on page 475.
▪ Data on attacks across APIs. For more information, see Cross API attacks and recently discovered

APIs on page 482.
▪ Forensic reports across APIs. For more information, see Forensic reports on page 477.
▪ Recently discovered APIs in the environment.

Interactive blacklists

PingIntelligence for APIs Dashboard provides the capability of interactive blacklist management. A blacklist
is a list of client identifiers that were detected executing an attack. The dashboard enables you to unblock
the blacklisted client identifiers or tune the threshold values for attack types. It supports the following client
identifier types- IP address, Cookie, Token, API Key, and Username. You can view the top-500 entries on
each blacklist from the dashboard.

Copyright ©2022

 | PingIntelligence PoC | 25

Click on the count for any blacklist type, for example, IP Blacklist. The dashboard lists the blacklisted IP
addresses along with the Detected date..

The following screenshot shows the expanded blacklist:

For each blacklisted IP address, you get the option to Unblock or Tune in the Action list. Clicking on either
action redirects the dashboard to the Attack management application. Attack management allows you to
run the operations for unblocking the client identifiers and tuning the threshold values.

i Note: The Action list is available only for an Admin user. You need to have Admin user privileges to
perform Unblock and Tune operations on a client identifier.

Copyright ©2022

 | PingIntelligence PoC | 26

The following screen shot shows the Attack management

UI.

The values in Client Identifier Type and Enter IP Address get auto-populated into the Attack
management application from the dashboard. The AMT Action is auto-selected. Click Run to execute the
operation. For more information on Attack management, see Attack management on page 20.

i Note: Dashboard does not populate the API key key-name in the Attack management application
when the client identifier is API key. It only populates the API key value.

Dashboard time series

PingIntelligence Dashboard shows the attacks in a time-series format. To adjust the timeframe viewed on
the Dashboard, click between the time-period arrows located on the top right corner of the dashboard and
select the desired time period.

See the example in the following screen

capture:

Copyright ©2022

 | PingIntelligence PoC | 27

The following screen capture shows the total requests and number of attackers data in time series

format.

ABS detailed reporting

ABS Engine’s REST API interface provides access to a range of JSON reports on attacks, metrics, and
anomalies. To view these reports, Ping Identity provides templates which can be loaded into Postman to
simplify viewing of the JSON reports.

Install and Configure Postman Software

1. Download and install the Postman application 6.2.5 or higher.
2. Download “API Reports Using Postman Collection” from the Automated Docker PoC Installation

section of the download site. ABS_4.1_Environment and ABS_4.1_Reports are files for Postman.
3. Launch the Postman application. Make sure to disable SSL verification in Postman. For more

information, see Using self-signed certificate with Postman
4. Import the downloaded reports files by clicking the Import button

5.
Click the gear button in the top right corner

6. In the pop-up window, click ABS_4.2_Environment.

Copyright ©2022

https://www.getpostman.com/
https://download.elasticbeam.com/

 | PingIntelligence PoC | 28

7. In the Edit Environment pop-up window, configure the following values and click Update.

a. Server IP Address – IP address of the Docker machine
b. Port – Default is 8080
c. Access_Key, Secret_Key - Default Access_Key is abs_ak and default Secret_Key is abs_sk
d. API_Name – the name of API to view in reports
e. Later_date, Earlier_date – a range of dates to query

8. In the main Postman app window, select the report to display in the left column and then click Send.

Other reports which can be generated for a specified time-frame (make sure you specify a time range
which covers the time that you ran the attack scripts) include:

▪ Metrics – shows all activity on the specified API

Copyright ©2022

 | PingIntelligence PoC | 29

▪ Attacks (set Type=0) – shows a list of all attack categories and client identifiers (for example, token, IP
address, cookie) associated with the attack

▪ Backend Errors – shows activity which generated the errors
▪ IP Forensic Info - set the IP address to an attacker identified in the Attacks report– shows all API activity

for the specified IP
▪ Token Forensic Info - set the Token address to an attacker identified in the Attacks report - shows all

API activity for the specified token

Shutdown the PoC environment

You can stop the Docker PoC setup by entering the following command to delete all containers and the
data.

root@vortex-108:/opt/pingidentity/docker-inline-poc$sudo ./bin/stop.sh
Tue Dec 31 09:13:02 UTC 2019 : Starting stop scripts
Removing service pingidentity_aad
Removing service pingidentity_abs
Removing service pingidentity_ase
Removing service pingidentity_client
Removing service pingidentity_mongo
Removing service pingidentity_server
Removing service pingidentity_webgui
Removing network pingidentity_net
Tue Dec 31 09:14:03 UTC 2019 : Stop successful

Appendix: Verify the Setup

Carry out the following basic steps to verify the setup:

1. Listing the Docker Containers

List all the containers with the docker ps command.
2. Get Console Access:

To get console access for any of the Docker, fetch the Container ID of the Docker using the docker
ps command output and use it in the following command:

#docker exec -it <docker-container-id> /bin/bash
3. PingIntelligence for APIs Products:

The Intelligence products are installed in the /opt/pingidentity directory within the Docker.
4. Checking the service names:

To get the service names of the containers, run the following command:

#docker service ls

The service name is the second column in the output.
5. Checking the logs of service:

To check the log of any service, use the following command:

#docker service logs <service name>

For example docker service logs pingidentity_ase

Copyright ©2022

 | PingIntelligence PoC | 30

PingIntelligence Kubernetes PoC deployment

PingIntelligence Kubernetes PoC deployment

PingIntelligence ships an example yml file with its Docker toolkit package. You can use this example
yml file to deploy PingIntelligence on a Kubernetes cluster node. This document describes installing
PingIntelligence on an on-premise Kubernetes cluster node. The setup uses Minikube for PingIntelligence
deployment.

The example yml file creates the following resources in the Kubernetes cluster:

▪ 4 statefulsets with one container each for MongoDB, ABS AI engine, ASE, and Dashboard.
▪ 5 external services (NodePort type) - Two each for ABS AI engine and ASE and one for the

Dashboard.
▪ 3 internal services (clusterIP type) - One each for MongoDB, ABS AI engine and ASE.

Prerequisites

PingIntelligence PoC deployment on Kubernetes cluster node has the following prerequisites:

▪ A virtual machine or a bare metal server with 8 CPUs, 32 GB of RAM, and 500 GB of hard disk.
▪ Docker engine - version 19.03.7 on Ubuntu or version 1.13 on RHEL. If you want a native Kubernetes

cluster installation, then Minikube requires a pre-installed docker engine.
▪ Minikube version 1.7.3
▪ Kubectl CLI version 1.6.0 to interact with Kubernetes cluster.

Deployment overview

Deploying PingIntelligence in a Kubernetes cluster consists of the following steps:

1. Install Docker on RHEL or Ubuntu host
2. Install Minikube
3. Download and install kubectl
4. Creating a single node Kubernetes cluster with Minikube
5. Deploy PingIntelligence in Kubernetes cluster

i Note: This deployment of PingIntelligence on a Kubernetes cluster node is suitable for POC
environments only. It is not suitable for production environments or for security testing environments.

Installing Docker on RHEL or Ubuntu

About this task

The following steps describe installing Docker engine on Ubuntu and RHEL

Steps

1. Install docker-ce on an RHEL or Ubuntu host by entering the commands show below.

RHEL

$ sudo yum install -y yum-utils device-mapper-persistent-data lvm2
$ sudo yum-config-manager --enable rhel-7-server-extras-rpms

Copyright ©2022

 | PingIntelligence PoC | 31

$ sudo yum install docker

Ubuntu

$ sudo apt update
$ sudo apt-get install docker-ce=19.03.7

2. Start docker by entering the following command

$ sudo systemctl start docker

Installing minikube and kubectl

About this task

Complete the following steps to install minikube and kubectl on your host machine:

Steps

1. Install minikube on RHEL or Ubuntu host.

RHEL 7.6

$ sudo yum install -y https://storage.googleapis.com/minikube/releases/
latest/minikube-1.7.3-0.x86_64.rpm

Ubuntu

$ curl -LO https://storage.googleapis.com/minikube/releases/latest/
minikube_1.7.3-0_amd64.deb && sudo dpkg -i minikube_1.7.3-0_amd64.deb

2. Download kubectl

$ curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.16.0/bin/linux/amd64/kubectl && chmod +x ./kubectl

3. Install kubectl

$ sudo install kubectl /usr/bin/

Installing Kubernetes cluster node

About this task

Complete the following step to install Kubernetes cluster node:

Steps

Run the following command

$ sudo minikube start --kubernetes-version v1.16.0 --vm-driver=none

Copyright ©2022

 | PingIntelligence PoC | 32

The following diagram shows the PingIntelligence deployment in a Kubernetes

cluster

Deploying PingIntelligence in Kubernetes cluster

About this task

Complete the following steps to deploy PingIntelligence in a Kubernetes cluster:

Steps

1. Download PingIntelligence Docker toolkit from the download site.

2. Untar the docker toolkit by entering the following command.

tar -zxf <PingIntelligence Docker toolkit>

3. Build the PingIntelligence docker images by completing the steps mentioned in Build the
PingIntelligence Docker images on page 719 topic.

4. Navigate to pingidentity/docker-toolkit/examples/kubernetes directory to edit the
pi4api-k8s-poc file.

5. Edit the environment variable in pi4api-k8s-poc file to configure the ASE deployment mode. The
values can be inline or sideband. Following is a snippet of the file showing the environment variable.

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: ase
 labels:

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence/pingintelligence-software.html

 | PingIntelligence PoC | 33

 app: ase
spec:
 serviceName: ase-internal-service
 replicas: 1
 selector:
 matchLabels:
 app: ase
 template:
 metadata:
 labels:
 app: ase
 spec:
 terminationGracePeriodSeconds: 60
 securityContext:
 runAsUser: 10001
 fsGroup: 0
 containers:
 - name: ase
 image: pingidentity/ase:4.3
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8080
 name: management
 - containerPort: 9090
 name: logs
 command:
 - "/bin/bash"
 - "-c"
 - "/opt/pingidentity/ase/entrypoint.sh"
 env:
 - name: TZ
 value: "Etc/UTC"
 - name: MODE
 value: "inline"

 - name: ENABLE_CLUSTER
 value: "true"
 - name: ENABLE_ABS
 value: "true"
 - name: ABS_ENDPOINT
 value: "abs-0.abs-internal-service:8080"
 - name: ABS_ACCESS_KEY
 value: "abs_ak"
 - name: ABS_SECRET_KEY
 value: "abs_sk"

6. Add ABS and ASE license in the ConfigMaps section of the pi4api-k8s-poc file.

apiVersion: v1
kind: ConfigMap
metadata:
 name: abs-license
data:
 PingIntelligence.lic: |
 ID=
 Organization=
 Product=PingIntelligence
 Module=ABS
 Version=4.3
 IssueDate=
 EnforcementType=
 ExpirationDate=

Copyright ©2022

 | PingIntelligence PoC | 34

 MaxTransactionsPerMonth=
 Tier=
 SignCode=
 Signature=

apiVersion: v1
kind: ConfigMap
metadata:
 name: ase-license
data:
 PingIntelligence.lic: |
 ID=
 Product=PingIntelligence
 Module=ASE
 Version=4.3
 IssueDate=
 EnforcementType=
 ExpirationDate=
 MaxTransactionsPerMonth=
 Tier=
 SignCode=
 Signature=

7. Create a namespace.

$ sudo su
kubectl create namespace pingidentity

8. Apply the edited pi4api-k8s-poc.yml file to deploy the resources on the Kubernetes cluster.

kubectl apply -f pi4api-k8s-poc.yml -n pingidentity

daemonset.apps/startup-script created
statefulset.apps/mongo created
statefulset.apps/abs created
statefulset.apps/ase created
statefulset.apps/dashboard created
service/abs-external-service created
service/ase-external-service created
service/dashboard-external-service created
service/mongo-internal-service created
service/abs-internal-service created
service/ase-internal-service created

Next steps
Verify that the deployment is successful by entering the following command.

kubectl get pod -n pingidentity
NAME READY STATUS RESTARTS AGE
abs-0 1/1 Running 0 139m
ase-0 1/1 Running 0 25m
mongo-0 1/1 Running 1 139m
startup-script-5d5d6 1/1 Running 0 119m
dashboard-0 1/1 Running 1 139m

Fetch the IP addresses of ASE, ABS, and Dashboard by entering the following command.

kubectl get svc -n pingidentity
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

Copyright ©2022

 | PingIntelligence PoC | 35

abs-external-service NodePort 10.100.81.119 <none>
 8080:31080/TCP,9090:31090/TCP 3m12s
abs-internal-service ClusterIP None <none> 8080/
TCP 3m12s
ase-external-service NodePort 10.104.103.138 <none>
 80:31000/TCP,443:31443/TCP 3m12s
ase-internal-service ClusterIP None <none> 8020/
TCP,8010/TCP 3m12s
mongo-internal-service ClusterIP None <none> 27017/
TCP 3m12s
dashboard-external-service NodePort 10.100.8.48 <none>
 443:31030/TCP 3m12s

If you are deploying in the sideband mode, take the NodePort IP address of ASE to use in API gateway
integration.

PingIntelligence Cloud service deployment

PingIntelligence Cloud service

PingIntelligence Cloud deployment has two components which work together to complete your
PingIntelligence PoC environment. The PingIntelligence Cloud environment is distributed between the
following:

▪ PingIntelligence ABS, Dashboard, and MongoDB are hosted as a cloud service managed by Ping
Identity

▪ PingIntelligence Cloud Connector (referred to as PingIntelligence ASE in the documentation) is
deployed in your API environment.

PingIntelligence Cloud service can be deployed in two modes:

▪ Inline mode
▪ Sideband mode

Inline mode

In inline mode, ASE receives API client traffic and routes the traffic to API servers. It can be deployed
behind an existing load balancer, such as AWS ELB. In inline mode, ASE terminates SSL connections
from API clients and then routers the API requests to the target APIs – running on an API Gateway
or app servers, such as Node.js, WebLogic, Tomcat, PHP, etc. To configure ASE to work in Inline

Copyright ©2022

 | PingIntelligence PoC | 36

mode, set the mode=inline in the ase.conf file. The following diagram shows the inline deployment:

Sideband Mode

In sideband mode, ASE receives API calls from an API gateway which uses policies to send API request
and response metadata to ASE. In this mode, the API Gateway still terminates the client requests and
manages the traffic flow to the API servers. PingIntelligence currently supports sideband policies on the
following platforms, PingIntelligence API gateway integrations. .

Copyright ©2022

 | PingIntelligence PoC | 37

To configure ASE to work in sideband mode, set the mode=sideband in the
ase.conf file. The following diagram shows the sideband mode of deployment:

For more informatio on different ASE modes, see the ASE Admin Guide.

Downloading and installing ASE software

About this task

ASE supports RHEL7.6 or Ubuntu 16.04 LTS on an EC2 instance, bare metal x86 server, and VMware
ESXi. You can install ASE as a root or a non-root user. You can install ASE either by downloading the ASE
software from the download site or by using the ASE Docker image provided to you.

Install ASE by downloading the ASE software

Complete the following steps to install ASE:

Copyright ©2022

 | PingIntelligence PoC | 38

Steps

1. Go the download site

2. Under PingIntelligence, click on Select and navigate to the ASE section to download the ASE binary.
Make sure you choose the correct platform binary.

3. After downloading the file, copy the ASE file to the /opt directory if you are installing as a root user.
You can choose any other location if you want to install ASE as a non-root user.

4. Change the working directory to /opt

5. At the command prompt, type the following command to untar the ASE file:

tar -zxvf <filename>

For example:

tar -zxvf ase-rhel-4.0.1.tar.gz

6. To verify that ASE successfully installed, the ls command at the command prompt. This will list the
pingidentity directory and the build's tar file. For example:

/opt/pingidentity/ase/bin/$ ls
pingidentity ase-rhel-4.0.1.tar.gz

ASE License

To start ASE, you need a trial license which is valid for 30-days. At the end of the trial period, ASE stops
accepting the traffic.

i Note: Contact PingIdentity sales to get an ASE trial license.

Configure ASE license

After receiving the ASE license key, download and save the license file as PingIntelligence.lic.
Copy the license file to the /opt/pingidentity/ase/config directory and start ASE.

Update an existing license If your license expires, obtain an updated license from PingIntelligence for
APIs sales and replace the license file in the /opt/pingidentity/ase/config directory. Stop and
then start ASE to activate the new license.

Configure PingIntelligence Cloud Connection

Navigate to /opt/pingidentity/ase/config/abs.conf and refer to the PingIntelligence cloud
information received via email to configure the following:

▪ Set abs_endpoint to ABS IP
▪ Set access_key to ABS access key
▪ Set secret_key to ABS secret key
▪ Set enable_ssl to true

Here is a sample abs.conffile:

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a
 semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.

; a comma-separated list of abs nodes having hostname:port or ipv4:port as
 an address.
abs_endpoint=127.0.0.1:8080

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html

 | PingIntelligence PoC | 39

; access key for abs node
access_key=OBF:AES://ENOzsqOEhDBWLDY
+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0

; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU
+RY5CxUhp3NLcNBel+3Q

; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true

; Configure the location of ABS's trusted CA certificates. If empty, ABS's
 certificate
; will not be verified
abs_ca_cert_path=

Obfuscate access and secret key

Using the ASE command line interface, obfuscate the access key and secret key in abs.conf. The
access key and secret key has been sent to you through the PingIdentity welcome email.

ASE ships with a default master key (ase_master.key) which is used to obfuscate other keys and
passwords. You can generate your own ase_master.key. For more information, see Obfuscate key and
passwords

i Note: During the process of obfuscation password, ASE must be stopped.

Obfuscate access and secret keys

Enter the access key and secret key provided to you in clear text in abs.conf. Run the
obfuscate_keys command to obfuscate:

/opt/pingidentity/ase/bin/cli.sh obfuscate_keys -u admin -p

Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, and config/cluster.conf before proceeding

If config keys and passwords are already obfuscated using the current master
 key, they are not obfuscated again

Following keys will be obfuscated:
config/ase.conf: sender_password, keystore_password
config/abs.conf: access_key, secret_key
config/cluster.conf: cluster_secret_key

Do you want to proceed [y/n]:y
obfuscating config/ase.conf, success
obfuscating config/abs.conf, success
obfuscating config/cluster.conf, success

Start ASE after keys are obfuscated.

i Important: ase_master.key must be present in the /opt/pingidentity/ase/config/
directory for ASE to start.

Start and stop ASE

Start ASE

Copyright ©2022

 | PingIntelligence PoC | 40

PrerequisiteFor ASE to start, the ase_master.key must be present in the /opt/pingidentity/ase/
config directory. If you have moved the master key to a secured location for security reasons, copy it to
the config directory before executing the start script.

Change working directory to bin and run the start.sh script.

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 4.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Stop ASE

Change working directory to bin and run the stop.sh script.

/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please
 wait…
API Security Enforcer stopped

Enable ASE to ABS engine communication

To start communication between ASE and the AI engine, run the following command:

./cli.sh enable_abs –u admin -p

To confirm an ASE Node is communicating with ABS, issue the ASE status command:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled (If ABS is enabled, then ASE is
 communicating with ABS)
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB
abs_attack_request_minutes=10

Integrate PingIntelligence into your API environment

Sideband configuration

If you configured PingIntelligence ASE for sideband connectivity with an API Gateway, then refer to the
deployment guide for your environment:

▪ Akana API gateway sideband integration on page 514
▪ PingIntelligence Apigee Integration on page 538
▪ PingIntelligence AWS API Gateway Integration on page 558
▪ Axway sideband integration on page 576
▪ Azure APIM sideband integration on page 600
▪ PingIntelligence - CA API gateway sideband integration on page 609
▪ F5 BIG-IP PingIntelligence integration on page 618
▪ IBM DataPower Gateway sideband integration on page 630
▪ PingIntelligence - Kong API gateway integration on page 637
▪ Mulesoft sideband integration on page 643
▪ NGINX sideband integration on page 657

Copyright ©2022

 | PingIntelligence PoC | 41

▪ NGINX Plus sideband integration on page 672
▪ PingAccess sideband integration on page 700
▪ PingIntelligence WSO2 integration on page 717

After completing the setup steps in the integration guide, go to AI Engine training.

Configure ASE and Dashboard

To configure the ASE system and Dashboard to work with PingIntelligence cloud, use the configuration
details that you received in an email from PingIntelligence. The following details have been emailed to you:

ABS configuration

▪ ABS IP
▪ ABS access key
▪ ABS secret key

Dashboard Configuration

▪ Dashboard IP
▪ Dashboard username
▪ Dashboard password

Add APIs to ASE

To secure an API with PingIntelligence for APIs software, an administrator can add an API definition
to the Ping Identity ASE, which will then pass the API information to the AI Engine for reporting and
attack detection. Complete the following steps to configure a simple REST API. For more information on
advanced options, see the ASE Admin Guide.

1. Navigate to /opt/pingidentity/ase/config/api and copy the file rest_api.json.example
to rest_api.json

2. Open the rest_api.json file and update the following information:

a. Update the “url” to the base path of the API, for example, “/apiname”
b. Replace the server IP addresses and ports with the addresser/ports of your app servers.
c. Review the following parameter list and make other edits as applicable.

Key API JSON file parameters to configure include:

Parameter Description

protocol API request type with supported values of:

ws - WebSocket ; http - HTTP

url The value of the URL for the managed API. You can configure up to six levels of sub-paths. For example,

"/shopping"- name of a 1 level API

"/shopping/electronics/phones" –3 level API

"/" – entire server (used for ABS API Discovery or load balancing)

hostname Hostname for the API. The value cannot be empty.

“*” matches any hostname.

cookie Name of cookie used by the backend servers.

Copyright ©2022

 | PingIntelligence PoC | 42

oauth2_access_token When true, ASE captures OAuth2 Access Tokens.

When false, ASE does not look for OAuth2 Tokens. Default value is false.

For more information, see Configuring OAuth2 Token.

apikey_qs When API Key is sent in the query string, ASE uses the specified parameter name to capture the API key value.

For more information, see Configuring API Keys.

apikey_header When API Key is part of the header field, ASE uses the specified parameter name to capture the API key value.

For more information, see Configuring API Keys.

login_url Public URL used by a client to connect to the application.

health_check When true, enable health checking of backend servers.

When false, no health checks are performed.

Ping Identity recommends setting this parameter as true.

health_check_interval The interval in seconds at which ASE sends a health check to determine backend server status.

health_retry_count The number of times ASE queries the backend server status after not receiving a response.

health_url The URL used by ASE to check backend server status.

server_ssl When set to true, ASE connects to the backend API server over SSL. If set to false, ASE uses TCP to connect to the backend server.

Servers:

host

port

server_spike_threshold

server_connection_quota

The IP address or hostname and port number of each backend server running the API.

See REST API Protection from DoS and DDoS for information on optional flow control parameters.

The following API Pattern Enforcement parameters only apply when API Firewall is activated

Flow Control

client_spike_threshold

server_connection_queueing

bytes_in_threshold

bytes_out_threshold

ASE flow control ensures that backend API servers are protected from surges (for example DDoS, traffic spike) in API traffic.

See WebSocket API Protection from DoS and DDoS for information on parameters.

protocol_allowed List of accepted protocols

Values can be HTTP, HTTPS, WS, WSS.

i Note: When Firewall is enabled, protocol_allowed takes precedence over the protocol parameter.

methods_allowed List of accepted REST API methods. Possible values are:

GET, POST, PUT, DELETE, HEAD

content_type_allowed List of content types allowed. Multiple values cannot be listed. For example, application/json.

Copyright ©2022

 | PingIntelligence PoC | 43

Decoy Config

decoy_enabled

response_code

response_def response_message

decoy_subpaths

When decoy_enabled is set to true, decoy sub-paths function as decoy APIs .

response_code is the status code (for example, 200) that ASE returns when a decoy API path is accessed.

response_def is the response definition (for example OK) that ASE returns when a decoy API path is accessed.

response_message is the response message (for example OK) that ASE returns when a decoy API path is accessed.

decoy_subpaths is the list of decoy API sub-paths (for example shop/admin, shop/root)

See API deception for details

After configuring the API JSON file, add it to ASE for it to take effect. To add a runtime API, execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh add_api {file_path/api_name} –u admin -p

Verify/List the API

To verify whether the API that you added has been successfully added or not, run the list API command:

opt/pingidentity/ase/bin/cli.sh list_api -u admin -p

AI engine training

The PingIntelligence AI Engine needs to be trained before it can detect anomalies or attacks on API
services or generate reports. The AI training runs until a minimum amount of data is received, and the
training period is completed for the given API.

ABS must be trained on all APIs before they can be secured. Whenever a new API is added, ABS
automatically trains itself before looking for attacks

For detailed information on training the AI Engine, see the ABS Admin guide.

Connect to the PingIntelligence dashboard

The PingIntelligence Dashboard provides information on the APIs monitored by PingIntelligence for APIs.
Until the training period is complete (based on volume of traffic) for an API, only a minimal amount of
Dashboard data will be available. If traffic volume is low, it may take several days before many of the
Dashboard graphs have data.

To connect to the Dashboard and work with PingIntelligence cloud, use the connection details that you
received in the welcome email from Ping Identity. The following details are emailed to you :

▪ Dashboard URL - It is used to load the PingIntelligence for APIs Dashboard
▪ Dashboard User Name
▪ Dashboard User Password

For more information on accessing and using Dashboard, see Access the PingIntelligence Dashboard .

For more information on PingIntelligence for APIs Dashboard, see PingIntelligence Dashboard.

Access ABS reporting

The ABS AI Engine generates attack, metric, and forensics reports which are accessed using the ABS
REST API to access JSON formatted reports. Ping Identity provides templates to use Postman, a free tool
for formatting REST API reports.

i Note:

Copyright ©2022

https://support.pingidentity.com/s/document-item?bundleId=pingintelligence-40&topicId=PingIntelligence_for_APIs_Dashboard_Admin_Guide/accessing_the_abs_dashboard.html

 | PingIntelligence Production Deployment | 44

Until the training period is complete (based on volume of traffic) for an API, only a minimal amount of
reporting data will be available. If traffic volume is low, it may take several days before some of the reports
(e.g. attack reports) have data.

Install Postman with PingIntelligence for API reports

Ping Identity provides configuration files which are used by Postman to access the ABS REST API JSON
information reports. Make sure to install Postman 6.2.5 or higher.

Using ABS self-signed certificate with Postman

ABS ships with a self-signed certificate. To use Postman with the self-signed certificate of ABS, disable the
certificate verification option by following the steps at this link

View ABS reports in Postman

To view the reports in Postman, complete the steps mentioned in the View ABS reports in Postman topic.
In configuring the environment, the following details are required:

1. Server: Use the ABS URL provided in the email
2. Port: Use the port number located at the end of the ABS URL in the email
3. Access_Key: Use the ABS access key provided in the email
4. Secret_key: Use the ABS secret key provided in the email

API_Nameis the name of the API. Do not edit any variables that start with “system”.

i Note: For detailed information on ABS reports, see Attack Reporting in the ABS Admin Guide.

Following is a list of reports that you can generate using Postman or any other REST API client:

▪ Metrics report
▪ Anomalies report
▪ API key metrics report
▪ OAuth2 token metrics report
▪ OAuth2 token forensics report
▪ IP forensics report
▪ Cookie forensics report
▪ Various attack types
▪ Flow control report
▪ Blocked connections report
▪ Backend error report
▪ List of valid URLs
▪ List of hacker’s URLs

PingIntelligence Production Deployment

Automated deployment

PingIntelligence for APIs setup

PingIntelligence for APIs software combines real-time security and AI analytics to detect, report, and
block cyberattacks on data and applications exposed via APIs. The software consists of two platforms:
API Security Enforcer and API Behavioral Security Artificial Intelligence engine, and PingIntelligence
Dashboard component.

Copyright ©2022

https://www.getpostman.com/

 | PingIntelligence Production Deployment | 45

This guide describes the installation and execution of an Ansible package which automatically builds
a PingIntelligence for APIs environment with PingIntelligence for RHEL 7.6 or Ubuntu 16.04 LTS. The
package installs and configures the following components:

▪ ASE (deployed between the API clients and API Gateway or backend server)
▪ ABS AI Engine
▪ MongoDB database
▪ PingIntelligence for APIs Dashboard

The following diagram shows the complete deployment architecture of the

setup.

API Security Enforcer (ASE)

Applies real-time inline inspection of API traffic to detect and block attacks. ASE works with the ABS
engine to identify attacks.

API Behavioral Security (ABS)

Executes AI algorithms to detect in near real-time cyberattacks targeting data, applications, and systems
via APIs. Attack information can be automatically pushed to all ASEs to block ongoing breaches and
prevent reconnection.

PingIntelligence for APIs Dashboard

PingIntelligence for APIs Dashboard offers you the following:

▪ View the various APIs in your API environment along with the API creation date
▪ View the training status and other information of your APIs
▪ View your API dashboard
▪ Unblock a specific client identifier
▪ Tune threshold
▪ View ABS license information

The dashboard engine utilizes Elasticsearch and Kibana to provide a graphical view of an API environment
including user activity, attack information, and blocked connections. The dashboard engine makes periodic
REST API calls to an ABS AI engine which returns JSON reports that are used to generate graphs in
PingIntelligence Dashboard.

Copyright ©2022

 | PingIntelligence Production Deployment | 46

Users

You can install all the PingIntelligence products either as a user with sudo access or a normal user
(without sudo access). Make sure that the entire deployment is a homogenous deployment. Either all the
products should be installed as a sudo user or as a normal user.

Time zone

All the PingIntelligence products namely ASE, ABS, and PingIntelligence Dashboard should be in the
same timezone, either local or UTC. Make sure that the third-party product, MongoDB, is also in the same
timezone as PingIntelligence products.

PingIntelligence deployment modes

Inline mode

In PingIntelligence inline deployment mode, API Security Enforcer (ASE)sits at the edge of your network
to receive the API traffic. It can also be deployed behind an existing load balancer such as AWS ELB. In
the inline mode, ASE deployed at the edge of the datacenter, terminates SSL connections from API clients.
It then forwards the requests directly to the correct APIs – and app servers such as Node.js, WebLogic,
Tomcat, PHP, etc.

To configure ASE to work in the Inline mode, set the mode=inline in the ase-defaults.yml file.

Following is a high-level description of traffic flow:

1. Client request is received by ASE. The request is logged in access log file. ASE then forwards the
request to the backend server. The response is received by ASE and logged in the access log file.

2. The request and response in the access log file is sent to ABS AI engine for processing. ABS AI engine
generates the attack list which is fetched by ASE. The future requests received by ASE are either
forwarded to the backend server or blocked by ASE based on the attack list.

3. The AI engine data is stored in MongoDB
4. PingIntelligence for APIs Web GUI fetches the data from ABS to display in the dashboard.

Sideband mode

When PingIntelligence is deployed in the sideband mode, ASE works behind an existing API gateway.
The API request and response data between the client and the backend resource or API server is sent to
ASE. In this case, ASE does not directly terminate the client requests.

Copyright ©2022

 | PingIntelligence Production Deployment | 47

To configure ASE to work in the sideband mode, set the mode=sideband in the ase-defaults.yml file.

Following is a description of the traffic flow through the API gateway and Ping Identity ASE.

1. Incoming request to API gateway
2. API gateway makes an API call to send the request detail in JSON format to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP against the AI

generated Blacklist. If all checks pass, ASE returns a 200-OK response to the API gateway. Else, a
different response code is sent to the Gateway. The request is also logged by ASE and sent to the AI
Engine for processing.

4. If the API gateway receives a 200-OK response from ASE, then it forwards the request to the backend
server, else the Gateway returns a different response code to the client.

5. The response from the backend server is received by the API gateway.
6. The API gateway makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to the API gateway.
8. API gateway sends the response received from the backend server to the client.

i Note: Complete the ASE sideband mode deployment by referring to API gateway specific deployment
section on the PingIntelligence documentation site.

Prerequisites

Commonly used terms for deployment machines

Following terms are frequently used during automated deployment steps:

▪ Management host - Management host machine or a management machine is the machine where the
PingIntelligence automated deployment is downloaded and run.

▪ Host machine - A host machine is the machine where PingIntelligence components are installed.

Copyright ©2022

https://support.pingidentity.com/s/pingintelligence-for-apis-help

 | PingIntelligence Production Deployment | 48

Prerequisite

The following prerequisites must be met before proceeding with the installation:

▪ Management machine operating system - Automated deployment requires RHEL 7.6 operating
system on the management host.

▪ Host machine operating system - Host machine operating system can be RHEL 7.6 or Ubuntu 16.04
LTS.

i Important: Make sure that the deployment is homogenous with respect to the provisioned host
machines. Either all the host machines should be running RHEL 7.6 or Ubuntu 16.04 LTS. Do not
create a set up having both types of host machines.

▪ Ansible - The management host machine should have ansible 2.6.2 installed
▪ Python - The management host machine should have Python 2.7
▪ User - Automated installation requires a user with password-less authentication for SSH connection

to the host machines. User should also have password-less sudo access to all the host machines.
Alternatively, you can also set up a user with password by editing the hosts file. For more information
on hosts file, see Step 3 - Configure hosts file and download software on page 52.

▪ fiewalld package - All the host machines should have an active firewalld [python 2.7]
package on both Ubuntu and RHEL machines. If the package is not available, then manually open
the ports that are used in the deployment. For more information on ports, see the respective Change
default settings topics.

▪ If you are deploying the setup on a Ubuntu machine, make sure that the MongoDB host machine has
libcurl4-openssl-dev.

▪ Ensure that there are no pre-existing Java installations on the host machines. You can use the
command, # java -version to verify this. We highly recommend that you uninstall all existing
versions of Java from the host machines, before proceeding with the installation of PingIntelligence
components.

Download the deployment package

Setup the management host

PingIntelligence automated deployment requires RHEL 7.6 management host machine to start the
deployment. The automated deployment installs different PingIntelligence components from this
management machine.

1. Login to the Management machine as a root user.
2. Download the Ansible deployment package and save it to the /opt directory
3. Untar the downloaded file:

#tar -xf /opt/pi-api-deployment-4.3.tar.gz

Untarring the file creates the following sub-directories in the pi-api-deployment directory:

Directory Description

ansible Contains the different yml files

bin Contains the start.sh and stop.sh scripts. Do not edit the
contents of this directory.

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html

 | PingIntelligence Production Deployment | 49

certs Contains ASE, ABS, Elasticsearch, Kibana,Dashboard, and
MongoDB self-signed certificates and keys. Elasticsearch and
Kibana certificates are in the dashboard directory.

i Note: If you want to use your own certificates and keys, then
replace the default certificates and keys with your certificates.
Use the same file names as that of the files present in the certs
directory. Make sure that the keys are password-less.

config Contains the default settings file for ASE, ABS, and Dashboard.
These files are used to configure the various variables for installing
PingIntelligence components.

data System directory. Do not edit any of its content.

util Contains utilities to run PingIntelligence components as a service.

external The third-party components like MongoDB are downloaded in the
external directory.

keys After the installation is complete, the master keys of all the
products are saved here.

license Contains ase and abs directories that have the ASE and ABS
license file.

logs Contains the log files for automated installation

software Contains the binary files for PingIntelligence components:

▪ ASE
▪ ABS
▪ Dashboard

The directory also contains updated_packages sub-directory
which stores the PingIntelligence updated binaries with new
master keys. You can use these binaries for future use.

Step 1 - User and authentication

This covers concept and steps to create an SSH user and configure password-less authentication for the
SSH user or using a password to connect to the host machines. Creating a new user is an optional step.
You can use the default user configured in the hosts file.

▪ User creation (optional)
▪ Authentication

User Creation (Optional)

Complete the following steps on all the provisioned host machines if you do not have a user as mentioned
in the prerequisites section. If you already have a user as described in the prerequisite section, you can
skip the following steps:

1. Create ec2-user. The hosts file in the automation package has ec2-user as the default user. You
can create your own username.

#useradd ec2-user
2. Change the password

#passwd ec2-user

Copyright ©2022

 | PingIntelligence Production Deployment | 50

3.
i Note: If you plan to install PingIntelligence software as a non-sudo user, then skip steps 3-5.

Add the user to the wheel group

#usermod -aG wheel ec2-user
4. Configure password-less sudo access

#visudo
%wheel ALL=(ALL) NOPASSWD: ALL

5. Verify the /etc/ssh/sshd_config file for PubKeyAuthentication. If it is set to no, then set it to
yes and restart sshd service using the following command:

#systemctl restart sshd

The following diagram shows the management host and PingIntelligence
host machines communicating either through password-less SSH
communication or communicating after authenticating using a password.

Authentication

PingIntelligence automated deployment provides the following two methods for authentication between the
management host machine and PingIntelligence host machines.

▪ Password-less authentication - There are two methods to achieve password-less authentication.
▪ Authentication using a password - Authentication using a password requires sshpass module to be

installed on the RHEL host machine.

Copyright ©2022

 | PingIntelligence Production Deployment | 51

Password-less authentication

You can set up a password-less authentication from the management machine to other machines where
PingIntelligence components are installed. There are two possible methods to configure password-less
authentication.

Method 1

1. Run the following command on the management machine. The management machine is the machine
from which the automated deployment script is run to deploy the various PingIntelligence software.

ssh-keygen -t rsa

This command generates the ssh-keys. Accept all the default options. Make sure that you do not set
the password for the key.

2. Run the following command for each VM except the Ping Management VM:

ssh-copy-id pi-user@<ping-machine IPv4 address>

For example, ssh-copy-id pi-user@192.168.11.148 (ping-ase)

Method 2

1. Run the following command on the management machine. The management machine is the machine
from which the automated deployment script is run to deploy the various PingIntelligence software.

ssh-keygen -t rsa

This command generates the ssh-keys. Accept all the default options. Make sure that you do not set
the password for the key.

2. Fetch the generated key in step 1 from /home/$USER/.ssh/id_rsa.pub
3. Copy and add this key in the /home/$USER/.ssh/authrorized_keys file on all the machines

where PingIntelligence components are installed.

i Important: If method 1 or method 2 of configuring password-less authentication does not succeed,
contact your system administrator.

Authentication using a password

You can also use password to authenticate with PingIntelligence and MongoDB host machines. Configure
the password of the host machine in the hosts file. Complete the following prerequisites to authenticate
using a password:

Prerequisites:

▪ Install sshpass module on the management host machine. Note that the management host machine is
a RHEL 7.6 machine.

▪ The password that you configure for the user in the hosts file must already be configured on the host
machines.

To add the password in the hosts file, edit the hosts file to configure password in ansible_ssh_pass
parameter as shown in the hosts file snippet below.

Ansible SSH user to access host machines
ansible_ssh_user=ec2-user
Uncomment the ansible_ssh_pass line and configure password of
 ansible_ssh_user if you want to use SSH connection with password.
If you do not use this option, then the SSH user uses password-less
 authentication.
#ansible_ssh_pass=<SSH_user_password>

Copyright ©2022

 | PingIntelligence Production Deployment | 52

Verify SSH connectivity

You can manually verify SSH connectivity between the management host machine and the
PingIntelligence machine by entering the following command.

ssh user@remote-machine "ls"

Step 2 - Configure licenses

PingIntelligence ASE and ABS require a valid license to start. The license file for both the products is
named PingIntelligence.lic.

▪ ASE:

Copy the ASE license file in the license/ase directory. Make sure that the license file is named as
PingIntelligence.lic Following is a sample of the ASE license file:

ID=981894
Product=PingIntelligence
Module=ASE
Version=4.2
IssueDate=2020-07-01
EnforcementType=0
ExpirationDate=2020-12-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been copied in
the /license/ase directory, run the following command:

grep 'Module' license/ase/PingIntelligence.lic
Module=ASE

▪ ABS:

Copy the ABS license file in the license/abs directory. Make sure that the license file is named as
PingIntelligence.lic. Following is a sample of the ABS license file:

ID=981888
Product=PingIntelligence
Module=ABS
Version=4.2
IssueDate=2020-07-01
EnforcementType=0
ExpirationDate=2020-12-30
Tier=Subscription
SignCode=
Signature=

Verify that the correct file has been copied: To verify that the correct license file has been copied in
the /license/abs directory, run the following command:

grep 'Module' license/abs/PingIntelligence.lic
Module=ABS

Step 3 - Configure hosts file and download software

The hosts file contains the various parameters to be configured for installation of PingIntelligence
components. Complete the following steps to configure the hosts file.

Copyright ©2022

 | PingIntelligence Production Deployment | 53

The configuration file has parameters where link to download third-party component is configured. If the
Management machine does not have internet access, download the third-party components manually.

i Note: Make sure that the entire deployment is homogenous with respect to the provisioned machines.
All the PingIntelligence components should either be installed on an RHEL machine or on Ubuntu
machines.

Configure the following fields in the config/hosts file:

Variable Description

IP addresses

▪ [ase]
▪ [abs]
▪ [mongodb]
▪ [dashboard]
▪ [elasticsearch]
▪ [kibana]
▪ [abs_reporting_node]
▪ [webgui]

Configure the following IP addresses:

▪ [ase] - ASE IP address
▪ [abs] - ABS IP address
▪ [mongodb] - MongoDB IP address and port. Providing the port

number is mandatory.
▪ [dashboard] - Dashboard IP address
▪ [elasticsearch] - Elasticsearch IP address
▪ [kibana] - Kibana IP address
▪ [abs_reporting_node] - ABS reporting node IP address

i Important: The IP address for [abs]
and[abs_reporting_node] should be different. If you
are installing all the components on a single host, leave
the[abs_reporting_node] field blank.

▪ [webgui] - Web GUI IP address. Web GUI and dashboard
engine are part of the same package, however, you can install
them on separate machines. If you want to install Web GUI and
dashboard engine in the same machine, configure the same IP
address in [dashboard] and [webgui]

If you are setting up a POC environment, then all the components:
ASE, ABS, MongoDB, Dashboard, WebGUI, ElasticSearch, and
Kibana can share a single IP address.

i Note: Leave the abs_reporting_node field blank, when all
the components have the same IP address..

For production deployments:

▪ ASE, ABS AI Engine, and MongoDB should be deployed on
separate servers for redundancy.

▪ Dashboard, WebGUI, Kibana, and ABS Reporting node
(optional) can be deployed on a single server.

▪ ElasticSearch should be deployed on a standalone server.

Copyright ©2022

 | PingIntelligence Production Deployment | 54

installation_path Configure the path where you would want the PingIntelligence
components to be installed. The default value is /home/ec2-user.

i Important: The path that you provide in
theinstallation_path variable must exist on the machine. The
automation script does not create this path. If you are installing
all the PingIntelligence components on different machines, then
manually create the same path on each machine before running the
automation script.

install_with_sudo When set to false, the script installs PingIntelligence for a normal
user. When set to true, the script installs PingIntelligence as a root
user if the port number of ports configured are less than 1024.

install_as_service Set it to true if you want to install PingIntelligence components as
a service. To install PingIntelligence components, you must be a
root user. Set install_with_sudo as true.

If you install PingIntelligence components as a service, the
components are automatically restarted when the system
is rebooted. Check the ansible.log file to verify starting
PingIntelligence components as a service.

install_mongo Set it to true if you want automated deployment to install
MongoDB. Set it to false if you want to use an existing MongoDB
installation. Default value is true.

i Important: Configure the MongoDB IP address and port
number even if install_mongo is set to false. MongoDB details
are required to configure abs.properties file.

install_elasticsearch Set to true if you want automated deployment to install
Elasticsearch. Set it to false if you want to use an existing
Elasticsearch installation. Default value is true. Note the following
points:

▪ If you have set the option as true, provide an IP address in the
hosts file for Elasticsearch. Leave the IP address blank in the
hosts file, if you configured the option as false.

▪ If you have configured the variable as false, configure the URL
of your existing Elasticsearch in dashboard-defaults.yml
file. For more information, see Change Dashboard default
settings on page 63.

i Note: If you are using an existing Elasticsearch installation is
an OSS package, make sure that Kibana 6.8.1 OSS package is
available in external directory.

jdk11_download_url The automated script requires OpenJDK 11.0.2.

i Note: If your machine does not have internet access,
then download the OpenJDK 11.0.2 and save the file as
openjdk11.tar.gz in externaldirectory.

Copyright ©2022

 | PingIntelligence Production Deployment | 55

mongodb_download_url MongoDB download URL. A default URL is populated in the hosts
file.

i Note:

1. The default URL is RHEL version of MongoDB. If you are
installing on Ubuntu, configure the MongoDB Ubuntu download
URL.

2. If your machine does not have internet access, then download
the MongoDB 4.2.0 and save the file as mongodb.tgz in
externaldirectory.

elasticsearch_download_url Elasticsearch download URL. A default URL is populated in the
hosts file.

i Note: If your machine does not have internet access,
then download the Elasticsearch 6.8.1 and save the file as
elasticsearch-6.8.1.tar.gz in externaldirectory.

kibana_download_url Kibana download URL. A default URL is populated in the hosts
file.

i Note: If your machine does not have internet access,
then download the Kibana 6.8.1 and save the file as
kibana-6.8.1.tar.gz in externaldirectory.

ansible_ssh_user Ansible ssh user. The default value is ec2-user.

ansible_ssh_pass Configure the ansible SSH user's password if you want to use
password to authenticate with the host machines.

i Note: If you do not configure password, SSH use establishes a
password-less authenticated connection.

Add Ansible username in the ansible_ssh_user field. The default value is ec2-user.

[ase]
172.16.40.81

[abs]
172.16.40.81

[abs_reporting_node]

[mongodb]
172.16.40.81 mongo_port=27017

[dashboard]
172.16.40.81

[elasticsearch]
172.16.40.81

Copyright ©2022

 | PingIntelligence Production Deployment | 56

[kibana]
172.16.40.81

[webgui]
172.16.40.81

[all:vars]

Installation Path
installation_path="/home/ec2-user"

install_as_service set to true will start ase, abs, aad, dashboard,
 elasticsearch
and kibana as systemd services.
install_as_service=true

configure install_with_sudo to true if any of the ports used for ASE,
ABS, Dashboard are <1024. That component will be started using sudo.
when install_as_service is true, install_with_sudo should be set to true.
install_with_sudo=true

this option can be used if there is an existing mongo installation that
 can be used
set it to false if mongodb need not be installed
install_mongo=true

this option can be used if there is an existing elasticsearch installation
 that can be used.
set it to false if elasticsearch need not be installed.
when install_elasticsearch is set to false, remove any nodes under
 elasticsearch section and
configure elasticsearch_url in config/dashboard-defaults.yml.
install_elasticsearch=true

Download URLs for external packages
jdk11_download_url='https://download.java.net/java/GA/jdk11/9/GPL/
openjdk-11.0.2_linux-x64_bin.tar.gz'
mongodb_download_url='https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-
rhel70-4.2.0.tgz'
elasticsearch_download_url='https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-6.8.1.tar.gz'
kibana_download_url='https://artifacts.elastic.co/downloads/kibana/
kibana-6.8.1-linux-x86_64.tar.gz'

Ansible SSH user to access host machines
ansible_ssh_user=ec2-user
Uncomment the ansible_ssh_pass line and configure password of
 ansible_ssh_user if you want to use SSH connection with password.
If you do not use this option, then the SSH user uses password-less
 authentication.
#ansible_ssh_pass=

Manually download third-party components

The automated deployment downloads the third-party packages when it is executed. However, if your
Management host machine does not have internet access, then download the software using the steps
mentioned below. Download the individual components and save the file in the external directory.

i Important: If your management host machine has internet access, you can skip downloading the
third-party components manually.

Copyright ©2022

 | PingIntelligence Production Deployment | 57

1. Install Ansible version 2.6.2 on the Management host machine. The Management host is the machine
from where the automated deployment script is run to deploy the various PingIntelligence software.

2. Install Python 2.7 on the Management host machine.
3. Download the following packages and copy to the external directory using the specified names:

MongoDB – Download MongoDB 4.2 from:

▪ Linux: https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.0.tgz and save the file in
the external directory as mongodb.tgz.

▪ Ubuntu: http://downloads.mongodb.org/linux/mongodb-linux-x86_64-ubuntu1604-4.2.0.tgz and save
the file in the external directory as mongodb.tgz.

Elasticsearch – Download Elasticsearch from: https://artifacts.elastic.co/downloads/
elasticsearch/elasticsearch-6.8.1.tar.gz and save the file in the external directory as
elasticsearch-6.8.1.tar.gz.

Kibana – Download from: https://artifacts.elastic.co/downloads/kibana/kibana-6.8.1-linux-x86_64.tar.gz
and save the file in the external directory as kibana-6.8.1-linux-x86_64.tar.gz.

Download PingIntelligence for APIs software

Download the following PingIntelligence for APIs software to pi-api-deployment/software directory.

▪ API Security Enforcer (RHEL 7.6 or Ubuntu 16.0.4 LTS)
▪ API Behavioral Security
▪ PingIntelligence Dashboard

i Note: Do not change the name of the downloaded files.

The software directory should include the following files:

-rw-r--r--. 1 pingidentity pingidentity 2.5M Jun 07 00:01 pi-api-
dashboard-4.2.tar.gz
-rw-r--r--. 1 pingidentity pingidentity 159M Jun 07 00:01 pi-api-
abs-4.2.tar.gz
-rw-r--r--. 1 pingidentity pingidentity 38M Jun 07 00:01 pi-api-ase-
rhel-4.2.tar.gz

Checking SSH connectivity

About this task

Check the SSH connectivity from the management host machine to other host machines. The SSH
connectivity check provides details regarding the configured user, IP address of the hosts for which
SSH connectivity works or fails. Run the check before deploying PingIntelligence components. Enter the
following command on the management host command line.

Steps

$./bin/start.sh check

User configured for SSH: ec2-user
Checking sudo connectivity between ansible management host and other
 hosts...
172.16.40.187 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
SSH connectivity to all hosts is successful

Copyright ©2022

https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.0.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-ubuntu1604-4.2.0.tgz
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.1.tar.gz
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.1.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.8.1-linux-x86_64.tar.gz
https://www.pingidentity.com/en/resources/downloads.html

 | PingIntelligence Production Deployment | 58

Capturing host information...
Host information is captured successfully

Few possible errors during SSH connectivity

During SSH connectivity check between management host machine and PingIntelligence hosts, you may
encounter some errors because of user permission issues or connectivity issues between machines.
Following are some of the probable error messages that you may see:

▪ You have configured user to use password to authenticate with the hosts machines, however, the
configured password in the hosts file is wrong.

User configured for SSH: ec2-user
Checking connectivity between ansible management host and other hosts...
172.16.40.187 | UNREACHABLE! => {
 "changed": false,
 "msg": "Authentication failure.",
 "unreachable": true
}
Sun Jul 12 19:22:41 MDT 2020: SSH connection error: connectivity to all
 hosts is not successful for ec2-user

▪ ansible_ssh_pass for authentication with password is uncommented in the hosts file, however, the
field has been left empty. Leaving the value empty is equivalent to passworld-less authentication.

User configured for SSH: ec2-user
Checking connectivity between ansible management host and other hosts...
172.16.40.187 | UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh: Permission denied
 (publickey,password).\r\n",
 "unreachable": true
}
Sun Jul 12 19:26:16 MDT 2020: SSH connection error: connectivity to all
 hosts is not successful for ec2-user

▪ install_with_sudo is set to true and there is an error connecting to PingIntelligence host
machines.

User configured for SSH: ec2-user
Checking sudo connectivity between ansible management host and other
 hosts...
172.16.40.187 | FAILED! => {
 "changed": false,
 "module_stderr": "Connection to 172.16.40.187 closed.\r\n",
 "module_stdout": "sudo: a password is required\r\n",
 "msg": "MODULE FAILURE",
 "rc": 1
}
Sun Jul 12 19:30:26 MDT 2020: SSH connection error: sudo connectivity to
 all hosts is not successful for ec2-user

The probable reasons for error in connectivity could be:

▪ The user is not in the sudoers file or the user is not in any group that has sudo privileges
▪ The user does not have NOPASSWD: ALL privileges in the sudoers file.

▪ The IP address configured in the hosts file is not available.

User configured for SSH: ec2-user
Checking sudo connectivity between ansible management host and other
 hosts...
172.16.40.81 | UNREACHABLE! => {

Copyright ©2022

 | PingIntelligence Production Deployment | 59

 "changed": false,
 "msg": "Failed to connect to the host via ssh: ssh: connect to host
 172.16.40.81 port 22: Connection timed out\r\n",
 "unreachable": true
}
Sun Jul 12 21:41:08 MDT 2020: SSH connection error: sudo connectivity to
 all hosts is not successful for ec2-user

▪ selinux dependency - If you encounter the following error, you need to install selinux package on the
host machine on which you see this error. Check the machine mentioned before FAILED! in the output
to identify the machine where selinux needs to be installed.

[localhost]: FAILED! => {"changed": false, "msg": "Aborting, target uses
 selinux but python bindings (libselinux-python) aren't installed!"}
 to retry, use: --limit @/home/ec2-user/411/pingidentity/pi-api-
deployment/ansible/setup.retry

Change default settings

The deployment package provides yml files to change the default settings of ASE, ABS, and Dashboard.
It is recommended to change the default settings before you execute the deployment package. For more
information on each component, see the respective guides at PingIntelligence documentation site. The
following topics describe the default settings of each component:

▪ Change ASE's default settings
▪ Change ABS default settings
▪ Change Dashboard default settings on page 63

i Important: Make sure that the format of default settings file is yml.

Change ASE's default settings

You can change the default settings in ASE by editing the ase-defaults.yml file. The following table
lists the variables that you can set for ASE:

Variable Description

mode Sets the mode in which ASE is deployed.
The default value is inline. Set the value to
sideband if you want ASE to work in the sideband
mode.

http_ws_port Data port used for HTTP or WebSocket protocol.
The default value is 8090.

https_wss_port Data port used for HTTPS or secure WebSocket
protocol. The default value is 8443.

management_port Management port used for CLI and REST API
management. The default value is 8010.

cluster_manager_port ASE node uses this port number to communicate
with other ASE nodes in the cluster. The default
value is 8020.

keystore_password The password for ASE keystore. The default
password is asekeystore.

Copyright ©2022

https://support.pingidentity.com/s/pingintelligence-for-apis-help

 | PingIntelligence Production Deployment | 60

cluster_secret_key This key is used for authentication among ASE
cluster node. All the nodes of the cluster must have
the same cluster_secret_key. This key must
be entered manually on each node of the ASE
cluster for the nodes to communicate with each
other. The default value is yourclusterkey.

enable_sideband_keepalive This key is used only in ASE sideband mode.
Setting it to true, ASE sends a keep-alive in
response header for the TCP connection between
API gateway and ASE. With the default false
value, ASE sends a connection close in response
header for connection between API gateway and
ASE.

Email default settings Configure the following settings:

▪ enable_emails: Set it to true for ASE to
send email notifications. Default value is false.

▪ smtp_host and smtp_port
▪ sender_email: Email address used from

which email alerts and reports are sent.
▪ email_password: Password of sender’s email

account.
▪ receiver_email: Email address at which the

email alerts and reports are sent.

CLI admin password The default value for CLI admin is admin. To
change the password, you need to know the current
password.

timezone Defines ASE's timezone. The possible values are
local or utc

i Important: Make sure to take a backup of the ase-defaults.yml file on a secure machine after the
automated installation is complete.

Following is a sample ase-defaults.yml file:

ase:
 # Deployment mode for ASE. Valid values are inline or sideband
 mode: inline

 # Define ports for the PingIntelligence API Security Enforcer
 # Make sure ports are not same for single server installation
 http_ws_port: 8090
 https_wss_port: 8443
 management_port: 8010
 cluster_manager_port: 8020

 # Password for ASE keystore
 keystore_password: asekeystore

 # cluster_secret_key for ASE cluster
 cluster_secret_key: yourclusterkey

 # enable keepalive for ASE in sideband mode
 enable_sideband_keepalive: false

Copyright ©2022

 | PingIntelligence Production Deployment | 61

 # Configure Email Alert. Set enable_emails to true to configure
 # email settings for ASE
 enable_emails: false
 smtp_host: smtp.example.com
 smtp_port: 587
 sender_email: sender@example.com
 email_password: password
 receiver_email: receiver@example.com

 # CLI admin password
 current_admin_password: admin
 new_admin_password: admin

 # timezone setting
 # allowed values: local, utc
 timezone: local

Change ABS default settings

You can change the default settings in ABS by editing the abs-defaults.yml file. The following table
lists the variables that you can set for ABS:

Variable Description

management_port Port for ABS to ASE and REST API to ABS
communication. The default value is 8080.

log_port Port for ASE to send log files to ABS. The default
value is 9090.

mongo_username and mongo_password MongoDB user name and password. The default
user name is absuser and the default password is
abs123.

mongo_cache_size If you are running all the PingIntelligence
components on the same instance, keep the
MongoDB cache size to a maximum of 25% of the
system memory. If you are running MongoDB on a
separate instance, keep the MongoDB cache size
to a maximum of 40% of the system memory.

mongo_ssl Default value is true. PingIntelligence deployment
ships with a default self-signed certificate. Setting
it to false will establish non-SSL connection
between ABS and Mongo

mongo_replica_set Name of the MongoDB replica set. Default name is
absrs01.

system_memory Memory size in MB allocated to run machine
learning jobs. Recommended to be at least 50% of
system memory.

access_key and secret_key The access key and secret for the admin user. For
more information on different ABS users, see ABS
users

i Note: ":" (colon) is a restricted character and
not allowed in access key and secret key.

Copyright ©2022

 | PingIntelligence Production Deployment | 62

access_key_ru and secret_key_ru The access key and secret for the restricted user.
For more information on different ABS users, see
ABS users

i Note: ":" (colon) is a restricted character and
not allowed in access key and secret key.

jks_password The password of the JKS Keystore. The default
password is abs123.

Email default settings Configure the following settings:

▪ enable_emails: Set it to true for ASE to
send email notifications. Default value is false.

▪ smtp_host and smtp_port
▪ sender_email: Email address used from

which email alerts and reports are sent.
▪ email_password: Password of sender’s email

account.
▪ receiver_email: Email address at which the

email alerts and reports are sent.

CLI admin password The default value for CLI admin is admin. To
change the password, you need to know the current
password.

poc_mode Sets the mode in which AI engine sets the
thresholds for the AI models. If set to true, AI
engine sets thresholds at a lower value. It should
be set to true only for a PoC deployment.

i Important: Make sure to take a backup of the abs-defaults.yml file on a secure machine after the
automated installation is complete.

Following is a sample abs-defaults.yml file:

abs:
 # Define ports for the PingIntelligence ABS
 # Make sure ports are not same for single server installation
 management_port: 8080
 log_port: 9090

 # Mongo DB User and password
 mongo_username: absuser
 mongo_password: abs123
 # Define cache size for MongoDB (% of total RAM).
 # MongoDB will be configured to use this percentage of host memory.
 mongo_cache_size: 25
 # Communication between mongo and ABS
 mongo_ssl: true
 # Mongo replica set name
 mongo_replica_set: absrs01

 # Memory for webserver and streaming server (unit is in MB)
 system_memory: 4096

 # Access keys and secret keys to access ABS

Copyright ©2022

 | PingIntelligence Production Deployment | 63

 access_key: abs_ak
 secret_key: abs_sk
 access_key_ru: abs_ak_ru
 secret_key_ru: abs_sk_ru

 # Password for ABS keystore
 jks_password: abs123

 # Configure Email Alert. Set enable_emails to true to configure
 # email settings for ABS
 enable_emails: false
 smtp_host: smtp.example.com
 smtp_port: 587
 sender_email: sender@example.com
 email_password: password
 receiver_email: receiver@example.com

 # CLI admin password
 current_admin_password: admin
 new_admin_password: admin

 poc_mode: false

Change the default system memory Complete the following steps to change the default system memory
in abs.properties file of ABS.

1. Navigate to the software directory
2. Untar the ABS binary by entering the following command:

tar –zxvf pi-api-abs-4.1.tar.gz

3. Edit the abs.properties file in config directory to change the default value of system_memory
to 50% of host memory. For example, if host ABS system has 16 GB of memory, set the value to 8192
MB.

vi pingidentity/abs/config/abs.properties

4. Save the file
5. Tar the ABS binary and save it with the same file name (pi-api-abs-4.1.tar.gz) in software

directory by entering the following command:

tar -czf pi-api-abs-4.1.tar.gz pingidentity/abs

Change Dashboard default settings

You can change the default settings of PingIntelligence Dashboard by editing the dashboard-
defaults.yml file. The following table lists the variables that you can set for PingIntelligence Dashboard:

Variable Description

port Port number to connect to PingIntelligence
Dashboard.

authentication_mode Defines the mode in which Dashboard
authenticates. The valid values are native and
sso.

i Note: It is recommended to use native
authentication for PoC deployments.

Copyright ©2022

 | PingIntelligence Production Deployment | 64

session_max_age Defines the maximum time for a session. The
configured values should be in the form of
<number><duration_suffix>. Duration should
be > 0. Allowed duration_suffix values: m for
minutes, h for hours, and d for days.

max_active_sessions Defines the maximum number of active UI sessions
at any given time. The value should be greater than
1.

admin_password and ping_user_password The passwords for webgui admin and ping_user
accounts.

i Note: admin_password and
ping_user_password are applicable in native
authentication_mode only.

SSO Configurations - Applicable only when authentication_mode is set as sso

sso_oidc_client_id Client ID value in configured in the Identity provider.

sso_oidc_client_secret Client Secret configured for the corresponding
Client ID.

sso_oidc_client_authentication_method OIDC Client authentication mode. The valid values
are BASIC, POST, or NONE

sso_oidc_provider_issuer_uri HTTPS IP address of OIDC provider. Also, place
the SSO provider's issuer-certificate in the following
path - <installation_path>/pingidentity/
certs/webgui/

sso_oidc_provider_user_uniqueid_claim_nameClaim name for unique ID of the user in UserInfo
response. A new user is provisioned using this
unique ID value.

sso_oidc_provider_user_first_name_claim_nameClaim name for first name of the user in UserInfo
response. Either first name or last name can be
empty, but both should not be empty.

sso_oidc_provider_user_last_name_claim_nameClaim name for last name of the user in UserInfo
response. Either first name or last name can be
empty, but both should not be empty.

sso_oidc_provider_user_role_claim_name Claim name for role of the user in UserInfo
response. Default value is role.

sso_oidc_client_additional_scopes Additional scopes in authorization request. Multiple
scopes should be comma (,) separated values.
OpenID, profile scopes are always requested.

-End-of-SSO-configurations-

SSL configuration for PingIntelligence Dashboard

▪ server_ssl_key_store_password
▪ server_ssl_key_alias

Configure the passwords for keystore and key alias.

Copyright ©2022

 | PingIntelligence Production Deployment | 65

H2 database configuration:

▪ h2_db_password
▪ h2_db_encryption_password

Password for H2 database and password for
encryption

Discovery configuration - The following variables
configure discovery settings for Dashboard:

▪ discovery_source
▪ discovery_mode
▪ discovery_mode_auto_polling_interval
▪ discovery_mode_auto_delete_non_discovered_apis

Discovery source - Defines the details of
discovery source for PingAccess or Axway API
gateway.

PingAccess

▪ pingaccess_url
▪ pingaccess_username
▪ pingaccess_password

Axway

▪ axway_url
▪ axway_username
▪ axway_password

▪ discovery_source - Defines the source of
discovered APIs. The discovery source can be
abs, pingaccess, or axway

▪ discovery_mode - Defines the mode in which
Dashboard publishes APIs to ASE. It can either
auto or manual mode. For more information on
discovery mode, seeDiscovered APIs on page
496

▪ discovery_mode_auto_polling_interval
- If the mode is set to auto in previous option,
then configure the time interval in minutes for
publishing the APIs to ASE. It recommended to
keep a minimum time interval of 10-minutes.

▪ discovery_mode_auto_delete_non_discovered_apis
- If the mode is set to auto, you can configure
whether you want to delete the other APIs from
ASE when Dashboard publishes the discovered
APIs.

Configure PingAccess or Axway URL, username
and password if the discovery source is
pingaccess or axway.

enable_xpack Configures whether the deployment package
installs X-pack. The default value is true. If
you are using an existing Elasticsearch and
authentication is not configured for Xpack, set
enable_xpack to false.

elasticsearch_url If you have set install_elasticsearch
as false in the hosts file, configure the
Elasticsearch URL. Enter the complete URL
including http/https. For example, https://
myelasticsearchurl.pi.com:443. Providing the port
number in the URL is mandatory.

elastic_username If you want to use an already available
Elasticsearch username, configure it in
elastic_username.

kibana_port The port number on which Dashboard
communicates with Kibana..

elastic_password Elasticsearch password. The default value is
changeme.

i Note: Do not change the elastic_password
after PingIntelligence installation is complete.

Copyright ©2022

 | PingIntelligence Production Deployment | 66

kibana_password Kibana password. The default value is changeme.

i Note: Do not change the kibana_password
after PingIntelligence installation is complete.

ping_user_password Password for the default user name ping_user.

ping_admin_password Password for the admin.

rollover_max_size Defines the maximum size of the Elasticsearch
rollover index. When the index size reaches the
defined value, it roll overs. rollover_max_size
value should be a positive non-zero number.
Allowed units are MB and GB.

i Important: Rollover index configuration takes
effect only when enable_xpack is set to true.

rollover_max_age Defines the maximum age of the Elasticsearch
rollover index configuration. rollover_max_age
value should be a positive non-zero number.
Allowed units are h for hours and d for the number
of days.

i Important: Rollover index configuration takes
effect only when enable_xpack is set to true.

If both rollover_max_size and
rollover_max_age are configured, then index
rolls over based on the value which is achieved
first.

Syslog configuration:

▪ enable_syslog
▪ host, port
▪ facility

Configure Syslog details.

Setting enable_syslog to true lets dashboard
engine log the ABS detected attacks in the syslog
server.

Provide the host and port number of syslog server.

restricted_user_access Defines the user for viewing information in API
Dashboard. Set it to true to set the user as a
restricted user. The header in API query string used
depends on the type of user, restricted or admin.
For more information on user headers, see ABS
users for API reports on page 293

i Important: Make sure to take a backup of the dashboard-defaults.yml file on a secure machine
after the automated installation is complete.

Following is a sample dashboard-defaults.yml file:

webgui:
 # Define ports for PingIntelligence WebGUI
 # Make sure ports are not same for single server installation
 port: 8030

Copyright ©2022

 | PingIntelligence Production Deployment | 67

 # allowed values: native, sso.
 # In native mode, webgui users are self managed and stored in webgui.
 # In sso mode, webgui users are managed and stored in an Identity
 provider.
 authentication_mode: native
 # Maximum duration of a session.
 # Value should be in the form of <number><duration_suffix>
 # Duration should be > 0.
 # Allowed duration_suffix values: m for minutes, h for hours, d for days.
 session_max_age: 6h

 # Number of active UI sessions at any time.
 # Value should be greater than 1.
 max_active_sessions: 50

 ## admin_password and ping_user_password are applicable in native
 authentication_mode only.
 # webgui "admin" account password
 admin_password: changeme
 # webgui "ping_user" account password
 ping_user_password: changeme

 ## Below sso configuration properties are applicable in sso
 authentication_mode only.
 # Client ID value in Identity provider.
 sso_oidc_client_id: pingintelligence
 # Client Secret of the above Client ID.
 sso_oidc_client_secret: changeme
 # OIDC Client authentication mode.
 # Valid values: BASIC, POST, or NONE
 sso_oidc_client_authentication_method: BASIC
 # OIDC Provider uri
 # WebGUI queries <issuer-uri>/.well-known/openid-configuration to get OIDC
 provider metadata
 # issuer ssl certificate is not trusted by default. So import issuer ssl
 certificate into config/webgui.jks
 # issuer should be reachable from both back-end and front-end
 sso_oidc_provider_issuer_uri: https://127.0.0.1:9031

 # Place the sso provider issuer-certificate in the following path =>
 <installation_path>/pingidentity/certs/webgui/
 # Name of the file should be => webgui-sso-oidc-provider.crt

 # claim name for unique id of the user in UserInfo response
 # a new user is provisioned using this unique id value
 sso_oidc_provider_user_uniqueid_claim_name: sub
 # claim name for first name of the user in UserInfo response
 # either first name or last name can be empty, but both should not be
 empty
 sso_oidc_provider_user_first_name_claim_name: given_name
 # claim name for last name of the user in UserInfo response
 # either first name or last name can be empty, but both should not be
 empty
 sso_oidc_provider_user_last_name_claim_name: family_name
 # claim name for role of the user in UserInfo response
 sso_oidc_provider_user_role_claim_name: role
 # additional scopes in authorization request
 # multiple scopes should be comma (,) separated
 # openid,profile scopes are always requested
 sso_oidc_client_additional_scopes:
 ## End of sso configuration

 # ssl key store password of webgui hosts

Copyright ©2022

 | PingIntelligence Production Deployment | 68

 server_ssl_key_store_password: changeme
 server_ssl_key_alias: webgui

 # local h2 db datasource properties
 h2_db_password: changeme
 h2_db_encryption_password: changeme

 # allowed values: abs/pingaccess/axway
 discovery_source: abs
 # allowed values: auto/manual
 discovery_mode: auto
 # value is in minutes
 discovery_mode_auto_polling_interval: 10
 discovery_mode_auto_delete_non_discovered_apis: false

 # valid only if discovery_source is set to pingaccess
 pingaccess_url: https://127.0.0.1:9000/
 pingaccess_username: Administrator
 pingaccess_password:

 # valid only if discovery_source is set to axway
 axway_url: https://127.0.0.1:8075/
 axway_username: apiadmin
 axway_password:

dashboard:
 ui:
 # Install elasticsearch with xpack enabled
 # If there is no authentication on pre-existing elasticsearch, set this
 to false
 enable_xpack: true

 # When install_elasticsearch is set to false in config/hosts, this url
 will be used
 # Give the complete url with https/http and elasticsearch port number
 # Make sure elasticsearch_url is accessible from ansible management
 host, dashboard, webgui and kibana nodes.
 elasticsearch_url: https://search-
giueibohzd6pfijfysjfsxucty.pingidentity.com:443

 # User with permission set similar to "elastic" user
 elastic_username: elastic

 # Passwords for "elasticsearch", "kibana", "ping_user" and "ping_admin"
 users
 # Dashboard will be accessible for these accounts
 # Please set strong passwords
 # If enable_xpack is set to false, below passwords are ignored
 elastic_password: changeme
 kibana_password: changeme
 ping_user_password: changeme
 ping_admin_password: changeme

 # Define ports for the PingIntelligence Dashboard
 # Make sure ports are not same for single server installation
 kibana_port: 5601

 # Elasticsearch rollover index configuration.
 # Rollover index configuration takes effect only when enable_xpack is
 set to true.
 # rollover_max_size value should be a positive non-zero number. Allowed
 units are MB and GB.
 rollover_max_size: 30GB

Copyright ©2022

 | PingIntelligence Production Deployment | 69

 # rollover_max_age value should be a positive non-zero number. Allowed
 units are h and d.
 rollover_max_age: 30d

 syslog:
 # Configuration for syslog
 enable_syslog: false
 host: localhost
 port: 614
 facility: LOCAL0

 # ABS Restricted user access (true/false)
 # Set to false for displaying non-obfuscated blacklist in Kibana
 abs:
 restricted_user_access: false

Step 4 - Configure system parameters

The following two system parameters are required to be set before installing the PingIntelligence software:

▪ vm.max_map_count: For Elasticsearch
▪ ulimit: For ASE, ABS, MongoDB and Elasticsearch

Run the following command to configure the system parameters on the respective VMs. The script uses
sudo access for the user on the Elasticsearch, ASE, ABS, and MongoDB hosts. The IP address of these
hosts was configured in the hosts file in Step 1. Make sure that the following command is run only when
install_as_sudo is set to true in the hosts file.

[pi-api-deployment]# ./bin/start.sh configure
Please see /opt/pingidentity/pi-api-deployment/logs/ansible.log for
more details.

An example ansible.log file for a successful launch of EC2 instances is shown below:

[pi-api-deployment]# tail -f logs/ansible.log

==
Current Time: Sun Jun 07 06:05:25 EST 2020
Starting configure scripts
==
Sun Jun 07 06:05:25 EST 2020: Setting up local environment
Sun Jun 07 06:05:25 EST 2020: Installing packages
Sun Jun 07 06:05:25 EST 2020: Installing pip and ansible

PLAY [Configure system settings for elasticsearch]

TASK [Get vm.max_map_count]
 **
TASK [Set vm.max_map_count if less than 262144]

TASK [Get ulimit -n]

TASK [Set ulimit nofile to 65536 if value is low - softlimit]

TASK [Set ulimit nofile to 65536 if value is low - hardlimit]

PLAY RECAP

192.168.11.143 : ok=7 changed=1 unreachable=0 failed=0
192.168.11.144 : ok=3 changed=0 unreachable=0 failed=0

Copyright ©2022

 | PingIntelligence Production Deployment | 70

192.168.11.145 : ok=5 changed=2 unreachable=0 failed=0

Sun Jun 07 06:06:14 EST 2020: Configure successful
==

Manually configuring the system parameters

If the configured user does not have sudo access, then manually edit the vm.max_map_count and
ulimit values. Complete the following steps:

1. Set the vm.max_map_count to 262144 on the Elasticsearch VM. To set the count, enter the following
command:

$sudo sysctl -w vm.max_map_count=262144

To make the setting persistent across reboots, run the following command:

$sudo echo "vm.max_map_count=262144" >> /etc/sysctl.conf

2. Set the ulimit to 65536 on the ASE, ABS, MongoDB, and Elasticsearch hosts. To set the ulimit,
complete the following:

edit /etc/security/limits.conf for increasing the soft limit and hard limit. Add the following two
lines for the user that you have created, for example, pi-user:

pi-user soft nofile 65536
pi-user hard nofile 65536

Step 5 - Install the PingIntelligence for APIs software

Run the following command to setup the deployment. Accept the EULA displayed on the screen for ABS
for installation to start.

[pi-api-deployment]# ./bin/start.sh install
Please see /opt/pingidentity/pi-api-deployment/logs/ansible.log for more
 details.

To verify a successful setup, view the ansible.log file. Here is a log file snippet for a successful setup:

[pi-api-deployment]# tail -f logs/ansible.log
==
Current Time: Sun Jun 07 06:06:22 EST 2020
Starting setup scripts
==
Sun Jun 07 06:06:22 EST 2020: Setting up local environment
Sun Jun 07 06:06:22 EST 2020: Installing packages
Sun Jun 07 06:06:23 EST 2020: Installing pip and ansible
.
.
PLAY RECAP

127.0.0.1 : ok=9 changed=0 unreachable=0 failed=0
192.168.11.143 : ok=25 changed=13 unreachable=0 failed=0
192.168.11.144 : ok=57 changed=39 unreachable=0 failed=0
192.168.11.145 : ok=56 changed=35 unreachable=0 failed=0

Sun Jun 07 06:23:37 EST 2020: Setup successful
==

Copyright ©2022

 | PingIntelligence Production Deployment | 71

Updated PingIntelligence packages

The automated deployment framework creates the updated package for each PingIntelligence component
and stores them in the /opt/pingidentity/pi-api-deployment/software/updated_packages
directory. The keys, passwords, and port number in these packages are the ones that you configured using
the yml files in the/opt/pingidentity/pi-api-deployment/config directory. You can use these
packages to install PingIntelligence components on other instances.

Install PingIntelligence as a systemd service

You can install the various PingIntelligence components as a systemd service. Installing as a service, the
various components are started automatically when the host system restarts. You require sudo access
to install PingIntelligence components as a service. Complete the following steps only if the automated
deployment did not install PingIntelligence components as a service. Run the following command on the
host machine for which you want to verify that is service is installed or not:

systemctl status <service-name>

For example, to check ASE service, enter the following command on ASE host machine:

systemctl status pi-ase.service
● ase.service - ASE
 Loaded: loaded (/etc/systemd/system/ase.service; disabled; vendor preset:
 disabled)
 Active: active (running) since Sun 2019-11-03 23:01:19 MST; 23h ago
.
.
Nov 03 23:01:19 T5-06 systemd[1]: Started ASE.

Prerequisite for installing PingIntelligence service:

▪ Verify that PingIntelligence services are not running. Use the following service names to verify the
status of each component:

▪ ASE: pi-ase.service
▪ ABS: pi-abs.service
▪ MongoDB: pi-mongodb.service
▪ Dashboard: pi-dashboard.service
▪ Web GUI: pi-webgui.service
▪ Elasticsearch: pi-elasticsearch.service
▪ Kibana: pi-kibana.service

▪ Stop the component for which you want to install the service.

Steps: Complete the following steps:

1. Make sure that the component for which you want to install the service is stopped.
2. Log in to the host machine for which you want to install the service. For example, if you want to install

ASE as a service, log in to the ASE host machine.
3. Navigate to the util directory. Enter the following command as a root user to install PingIntelligence

as a service:

#sudo ./install-systemctl-service.sh <component_name> <ansible_user_name>

For example, on ASE host machine:

#sudo ./install-as-service.sh pi-ase pi-user

Install service for each component in a similar way on the respective host machine.

Copyright ©2022

 | PingIntelligence Production Deployment | 72

Order of restarting PingIntelligence components: Edit the service files to make sure that
PingIntelligence components in the following order. Use the Required option to set the order of starting of
service. For more information, see Creating and modifying systemd unit files :

1. MongoDB
2. ABS
3. ASE
4. Elasticsearch
5. Kibana
6. Dashboard
7. Web GUI

Verify PingIntelligence Installation

Verify that all the components have installed and started successfully.

Verify ASE installation

Log in to the ASE host machine and navigate to <installation-path>/pingidentity/ase/bin
directory and run the status command:

/home/pi-user/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
mode : inline
http/ws : port 8090
https/wss : port 8443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

If the status command runs successfully, then ASE has been installed and started.

Verify ABS and MongoDB installation

Log in to the ABS EC2 instance and run the ABS Admin REST API using a REST API client like Postman.
More information on installing and configuring Postman is available in the ABS Admin Guide.

The report can be accessed by calling the ABS system at the following URL:

https://<abs_ip>:<abs_port>/v4/abs/admin. Use the IP address from the hosts file.

If ABS and MongoDB has installed successfully, the Admin REST API output will display the MongoDB
nodes. If the Admin API is not accessible, then ABS has not started. Following is a sample output of the
Admin REST API:

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS
 clusters, and ASE logs",
 "license_info": {
 "tier": "Free",
 "expiry": "Sun Jan 10 00:00:00 UTC 2021",
 "max_transactions_per_month": 0,
 "current_month_transactions": 30,
 "max_transactions_exceeded": false,
 "expired": false
 },
 "across_api_prediction_mode": true,

Copyright ©2022

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-managing_services_with_systemd-unit_files

 | PingIntelligence Production Deployment | 73

 "poc": true,
 "api_discovery": {
 "subpath_length": "1",
 "status": true
 },
 "apis": [
 {
 "api_name": "atm_app_oauth",
 "host_name": "*",
 "url": "/atm_app_oauth",
 "api_type": "regular",
 "creation_date": "Thu Mar 05 08:54:01 UTC 2020",
 "servers": 1,
 "protocol": "https",
 "cookie": "JSESSIONID",
 "token": false,
 "training_started_at": "Fri Feb 14 06:44:06 UTC 2020",
 "training_duration": "1 hour",
 "prediction_mode": true,
 "apikey_header": "X-API-KEY-2",
 "apikey_qs": "",
 "jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }
 },
 {
 "api_name": "root_api",
 "host_name": "*",
 "url": "/",
 "api_type": "regular",
 "creation_date": "Thu Mar 05 08:54:01 UTC 2020",
 "servers": 1,
 "protocol": "https",
 "cookie": "JSESSIONID",
 "token": false,
 "training_started_at": "n/a",
 "training_duration": "n/a",
 "prediction_mode": false,
 "apikey_header": "X-API-KEY-1",
 "apikey_qs": "",
 "jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }
 }
],
 "abs_cluster": {
 "abs_nodes": [
 {
 "node_ip": "127.0.0.1",
 "os": "Red Hat Enterprise Linux Server - VMware, Inc.",
 "cpu": "16",
 "memory": "31G",
 "filesystem": "3%",
 "bootup_date": "Fri Feb 28 08:13:19 UTC 2020"
 },
 {
 "node_ip": "127.0.0.1",
 "os": "Red Hat Enterprise Linux Server - VMware, Inc.",
 "cpu": "16",
 "memory": "31G",

Copyright ©2022

 | PingIntelligence Production Deployment | 74

 "filesystem": "4%",
 "bootup_date": "Tue Mar 24 06:35:47 UTC 2020"
 }
],
 "mongodb_nodes": [
 {
 "node_ip": "127.0.0.1:27017",
 "status": "primary"
 }
]
 },
 "ase_logs": [
 {
 "ase_node": "88968c39-b4ea-4481-a0b4-d0d651468ab5",
 "last_connected": "Thu Mar 05 08:40:14 UTC 2020",
 "logs": {
 "start_time": "Thu Mar 05 08:40:14 UTC 2020",
 "end_time": "Thu Mar 05 08:40:14 UTC 2020",
 "gzip_size": "0.74KB"
 }
 },
 {
 "ase_node": "e6b82ce9-afb3-431a-8faa-66f7ce2148b9",
 "last_connected": "Thu Mar 05 08:54:06 UTC 2020",
 "logs": {
 "start_time": "Thu Mar 05 08:54:06 UTC 2020",
 "end_time": "Thu Mar 05 08:54:06 UTC 2020",
 "gzip_size": "2.82KB"
 }
 },
 {
 "ase_node": "4df50c47-407a-41f9-bda6-b72dc34dadad",
 "last_connected": "Fri Feb 28 07:20:03 UTC 2020",
 "logs": {
 "start_time": "Tue Feb 25 12:50:00 UTC 2020",
 "end_time": "Fri Feb 28 07:20:03 UTC 2020",
 "gzip_size": "76.01KB"
 }
 },
 {
 "ase_node": "1910051e-5bab-44e6-8816-5b5afffdd1cf",
 "last_connected": "Tue Feb 18 08:10:05 UTC 2020",
 "logs": {
 "start_time": "Fri Feb 14 06:42:38 UTC 2020",
 "end_time": "Tue Feb 18 08:10:05 UTC 2020",
 "gzip_size": "2.89MB"
 }
 }
],
 "percentage_diskusage_limit": "80%",
 "scale_config": {
 "scale_up": {
 "cpu_threshold": "70%",
 "cpu_monitor_interval": "30 minutes",
 "memory_threshold": "70%",
 "memory_monitor_interval": "30 minutes",
 "disk_threshold": "70%",
 "disk_monitor_interval": "30 minutes"
 },
 "scale_down": {
 "cpu_threshold": "10%",
 "cpu_monitor_interval": "300 minutes",
 "memory_threshold": "10%",
 "memory_monitor_interval": "300 minutes",

Copyright ©2022

 | PingIntelligence Production Deployment | 75

 "disk_threshold": "10%",
 "disk_monitor_interval": "300 minutes"
 }
 },
 "attack_ttl": {
 "ids": [
 {
 "id": "ip",
 "ttl": 120
 },
 {
 "id": "cookie",
 "ttl": 120
 },
 {
 "id": "access_token",
 "ttl": 120
 },
 {
 "id": "api_key",
 "ttl": 240
 },
 {
 "id": "username",
 "ttl": 360
 }
]
 }
}

Verify Dashboard Installation

To verify the Dashboard installation, enter the Dashboard IP address from the hosts file in your web
browser. Log in using ping_user or admin username and the password configured in the dashboard-
defaults.yml file. If the authentication mode is set to SSO, then log in using your SSO username and
password.

See the ASE, ABS and Dashboard guides for configuration and administration of PingIntelligence products.

Next steps - Integrate PingIntelligence into your environment

After the installation is complete, refer the following topics based on the type of deployment.

Sideband configuration:

After you have completed the deployment, integrate one of the following API gateways with
PingIntelligence components and start sending the API traffic to your API gateway:

▪ Akana API gateway sideband integration on page 514
▪ PingIntelligence Apigee Integration on page 538
▪ PingIntelligence AWS API Gateway Integration on page 558
▪ Azure APIM sideband integration on page 600
▪ Axway sideband integration on page 576
▪ PingIntelligence - CA API gateway sideband integration on page 609
▪ F5 BIG-IP PingIntelligence integration on page 618
▪ IBM DataPower Gateway sideband integration on page 630
▪ PingIntelligence - Kong API gateway integration on page 637
▪ Mulesoft sideband integration on page 643
▪ NGINX sideband integration on page 657
▪ NGINX Plus sideband integration on page 672
▪ PingAccess sideband integration on page 700

Copyright ©2022

 | PingIntelligence Production Deployment | 76

▪ PingFederate sideband integration on page 711
▪ PingIntelligence WSO2 integration on page 717

Inline configuration: If you configured PingIntelligence ASE as Inline ASE on page 191, the next step is
to add API definitions to the PingIntelligence for APIs software. After this is complete, direct your API client
to the IP address of the ASE software on port 80 or 443.

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS Admin Guides:

▪ ASE port information
▪ API naming guidelines
▪ Connect ASE and ABS

After you have added your APIs in ASE, the API model needs to be trained. The training of API model is
completed in ABS. The following topics give a high level view, however it is a good practice to read the
entire ABS Admin Guide.

▪ Train your API model
▪ Generate and view the REST API reports using Postman: To access the ABS REST API reports you

would require the following information:

▪ IP address: IP address of ABS configured in the config/hosts file.
▪ Port number: default value is 8080. It is configured in abs-defaults.yml file
▪ API Name: Name of the API for which you want to generate REST API reports
▪ Later and Earlier date: The date range for which you want to generate the reports

▪ View Access PingIntelligence Dashboard on page 17:

Login to PingIntelligence Dashboard using the ping_user login ID and the password that you
configured during PingIntelligence installation. For more information on password configuration, see
Change Dashboard default settings on page 63. The PingIntelligence for APIs Dashboard takes
approximately one hour to start showing attack information.

Shut down the deployment

To shut down the deployment and remove all VMs and data, run the stop.sh command. When you shut
down the deployment, all the VMs along with the data is deleted.

[pi-api-deployment]# ./bin/stop.sh
Please see /opt/pingidentity/pi-api-deployment/logs/ansible.log for more
 details.

To verify whether the deployment was successfully stopped, check the ansible.log file:

[pi-api-deployment]# tail -f logs/ansible.log
==
Current Time: Sun Jun 07 07:23:11 EST 2020
Starting stop scripts
==
Sun Jun 07 07:23:11 EST 2020: Play stop setup
PLAY RECAP

192.168.11.124 : ok=2 changed=1 unreachable=0 failed=0
192.168.11.145 : ok=2 changed=1 unreachable=0 failed=0
192.168.11.146 : ok=2 changed=1 unreachable=0 failed=0
192.168.11.148 : ok=2 changed=1 unreachable=0 failed=0
192.168.11.149 : ok=4 changed=3 unreachable=0 failed=0
Sun Jun 07 07:32:53 EST 2020: Stop successful
==

Copyright ©2022

 | PingIntelligence Production Deployment | 77

Manually remove the PingIntelligence component service scripts from /etc/systemd/system/pi-*
location.

Logs

The ansible.log file for all the stages is available in the /opt/pingidentity/pi-api-
deployment/logs directory.

The logs directory also stores hostinfo.log file. This log file stores information about all the
hosts. Every time the automated deployment is run, the hostinfo.log file is appended with the host
information. Following is a snippet of the log file.

*** Wed Apr 01 02:07:26 UTC 2020

==
Hostname: ping-rhel-3
Inventory Hostname: 172.16.40.69
PI components installed on this host:
- mongodb

Date & Time: 2020-03-31 20:05:46 MDT
Timezone: MDT
Distribution: RedHat
Release: Maipo
Distribution Version: 7.6
Kernel: 3.10.0-957.10.1.el7.x86_64
Architecture: x86_64
CPU Core: 4
RAM: 15.4951171875 GB

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/rhel-root 530G 132G 398G 25% /
devtmpfs 7.8G 0 7.8G 0% /dev
tmpfs 7.8G 12K 7.8G 1% /dev/shm
tmpfs 7.8G 335M 7.5G 5% /run
tmpfs 7.8G 0 7.8G 0% /sys/fs/cgroup
/dev/sda1 1014M 153M 862M 16% /boot
tmpfs 1.6G 0 1.6G 0% /run/user/988
tmpfs 1.6G 0 1.6G 0% /run/user/1018
tmpfs 1.6G 0 1.6G 0% /run/user/1045
==
Hostname: ping-ubuntu-1
Inventory Hostname: 172.16.40.81
PI components installed on this host:
- abs
- ase
- dashboard
- kibana
- webgui

Date & Time: 2020-03-31 20:07:16 MDT
Timezone: MDT
Distribution: Ubuntu
Release: xenial
Distribution Version: 16.04
Kernel: 4.4.0-148-generic
Architecture: x86_64
CPU Core: 4
RAM: 15.6533203125 GB

Filesystem Size Used Avail Use% Mounted
 on
udev 7.9G 0 7.9G 0% /dev

Copyright ©2022

 | PingIntelligence Production Deployment | 78

tmpfs 1.6G 860K 1.6G 1% /run
/dev/mapper/ubuntu--1604--template--vg-root 467G 106G 343G 24% /
tmpfs 7.9G 140K 7.9G 1% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 7.9G 0 7.9G 0% /sys/fs/
cgroup
/dev/sda1 720M 108M 576M 16% /boot
cgmfs 100K 0 100K 0% /run/
cgmanager/fs
tmpfs 1.6G 0 1.6G 0% /run/
user/1012
tmpfs 1.6G 0 1.6G 0% /run/
user/1005
==
Hostname: ping-rhel-2
Inventory Hostname: 172.16.40.228
PI components installed on this host:
- elasticsearch

Date & Time: 2020-03-31 20:06:05 MDT
Timezone: MDT
Distribution: RedHat
Release: Maipo
Distribution Version: 7.6
Kernel: 3.10.0-957.10.1.el7.x86_64
Architecture: x86_64
CPU Core: 4
RAM: 15.5126953125 GB

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/rhel-root 488G 7.5G 481G 2% /
devtmpfs 7.8G 0 7.8G 0% /dev
tmpfs 7.8G 80K 7.8G 1% /dev/shm
tmpfs 7.8G 801M 7.0G 11% /run
tmpfs 7.8G 0 7.8G 0% /sys/fs/cgroup
/dev/sda1 1014M 153M 862M 16% /boot
tmpfs 1.6G 0 1.6G 0% /run/user/1015
tmpfs 1.6G 0 1.6G 0% /run/user/1040
==
*** Wed Apr 01 02:07:26 UTC 2020

*** Wed Apr 01 02:08:13 UTC 2020

==
Hostname: ping-ubuntu-1
Inventory Hostname: 172.16.40.81
PI components installed on this host:
- abs
- ase
- dashboard
- elasticsearch
- kibana
- mongodb
- webgui

Date & Time: 2020-03-31 20:08:10 MDT
Timezone: MDT
Distribution: Ubuntu
Release: xenial
Distribution Version: 16.04
Kernel: 4.4.0-148-generic
Architecture: x86_64
CPU Core: 4
RAM: 15.6533203125 GB

Copyright ©2022

 | PingIntelligence Production Deployment | 79

Filesystem Size Used Avail Use% Mounted
 on
udev 7.9G 0 7.9G 0% /dev
tmpfs 1.6G 860K 1.6G 1% /run
/dev/mapper/ubuntu--1604--template--vg-root 467G 106G 343G 24% /
tmpfs 7.9G 140K 7.9G 1% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 7.9G 0 7.9G 0% /sys/fs/
cgroup
/dev/sda1 720M 108M 576M 16% /boot
cgmfs 100K 0 100K 0% /run/
cgmanager/fs
tmpfs 1.6G 0 1.6G 0% /run/
user/1012
tmpfs 1.6G 0 1.6G 0% /run/
user/1005
==
*** Wed Apr 01 02:08:13 UTC 2020

Manual deployment

PingIntelligence manual deployment
The topic gives a summary about PingIntelligence products, the different users that can install the product
and the time zone in which the products can be deployed.

PingIntelligence for APIs software combines real-time security and AI analytics to detect, report, and block
cyberattacks on data and applications exposed via APIs. The software consists of two platforms: API
Security Enforcer and API Behavioral Security Artificial Intelligence engine.

API Security Enforcer (ASE)

Applies real-time inline inspection of API traffic to detect and block attacks. ASE works with the ABS
engine to identify attacks.

API Behavioral Security (ABS)

Executes AI algorithms to detect in near real-time cyberattacks targeting data, applications, and systems
via APIs. Attack information can be automatically pushed to all ASEs to block ongoing breaches and
prevent reconnection.

PingIntelligence for APIs Dashboard

PingIntelligence for APIs Dashboard offers you the following:

▪ View the various APIs in your API environment along with the API creation date
▪ View the training status and other information of your APIs
▪ View your API dashboard
▪ Unblock a specific client identifier
▪ Tune threshold
▪ View ABS license information

The dashboard engine utilizes Elasticsearch and Kibana to provide a graphical view of an API environment
including user activity, attack information, and blocked connections. The dashboard engine makes periodic
REST API calls to an ABS AI engine which returns JSON reports that are used to generate graphs in the
PingIntelligence Dashboard.

Copyright ©2022

 | PingIntelligence Production Deployment | 80

Users

You can install all the PingIntelligence products either as a user with sudo access or a normal user
(without sudo access). Make sure that the entire deployment is a homogenous deployment. Either all the
products should be installed as a sudo user or as a normal user.

Time zone

All the PingIntelligence products namely ASE, ABS, Dashboard, and AAD should be in the same timezone.
Make sure that the third-party product, MongoDB, is also in the same timezone as PingIntelligence
products.

Part A – Install ABS and MongoDB

The ABS Engine installation process is summarized below:

▪ Provision systems based on the queries per second (QPS)
▪ Install MongoDB in a replica set
▪ Install ABS engine
▪ Connect ABS engine to MongoDB

Install ABS AI engine software

You can install ABS as a root user or as a non-root user. The example installation path assumes that you
are root user. The installation works in a similar way for a non-root user.

1. Go to the download site
2. Click on Select under PingIntelligence
3. Choose the build and click Download.

Copy the build file to the /opt directory if you are installing the product as a root user. Choose any other
location if you want to install ABS as a non-root user.

Install ABS

Before installing ABS, install OpenJDK 11.0.2 on a 64-bit architecture machine with Ubuntu 16.04 LTS or
RHEL 7.6. To verify the Java version, run the following command:

java -version

It is recommended to install only one instance of ABS on each machine. MongoDB should be installed on a
different machine from ABS.

To install ABS, complete the following steps.

1. Change working directory to /opt if you are installing the product as a root user. Choose any other
location if you want to install ABS as a non-root user.

2. At the command prompt, type: # tar –zxvf <file_name>

For example, # tar –zxvf pi-api-abs-4.3.tar.gz

i Note: If you are installing as a non-root user then, increase the ulimit -n to 65535.

ABS License

To start ABS, you need a valid license. There are two types of ABS licenses:

▪ Trial license – The trial license is valid for 30-days. At the end of the trial period, ABS stops
processing.

▪ Subscription license – The subscription license is based on the peak number of transactions
subscribed for per month and the duration of the license. It is a good practice to configure your email

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html

 | PingIntelligence Production Deployment | 81

before configuring the ABS license. ABS sends an email notification to the configured email ID when
the license has expired. Contact the PingIntelligence for APIs sales team for more information. The
following points should be noted:

▪ Maximum transaction set to 0: If your subscription ABS license has zero as maximum transaction,
it means that the license has unlimited monthly transaction. Such a license only expires at the end of
subscription period.

▪ License expiry: In case when the subscription license has expired, ABS continues to run until a
restart. ABS needs a valid license file to start.

Add an ABS license

If you have not received an ABS license, request a license file from Ping sales. The name of the license
file must be PingIntelligence.lic. Copy the license file to the/opt/pingidentity/abs/config
directory and then start ABS.

Update an existing license

If your existing license has expired, obtain a new license from Ping sales and replace the license file in the
/opt/pingidentity/abs/config directory. Stop and then start ABS after the license file is updated.

Checking the current transaction count

Use the Admin REST API on page 316 to view the current transaction count against your subscribed
transaction limit. Following snippet of the Admin REST API shows the license information:

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS
 clusters, and ASE logs",
 "license_info": {
 "tier": "Subscription",
 "expiry": "Wed Jan 15 00:00:00 UTC 2020",
 "max_transactions_per_month": 1000000000,
 "current_month_transactions": 98723545,
 "max_transactions_exceeded": false,
 "expired": false
 }

Obfuscate passwords

Using ABS command line interface, you can obfuscate the keys and passwords configured in
abs.properties. The following keys and passwords are obfuscated:

▪ mongo_password
▪ jks_password
▪ email_password

ABS ships with a default abs_master.key which is used to obfuscate the various keys and passwords.
It is recommended to generate your own abs_master.key. The default jks_password abs123 is
configured in the abs.properties file.

i Note: During the process of obfuscation of keys and password, ABS must be stopped.

The following diagram summarizes the obfuscation process:

Copyright ©2022

 | PingIntelligence Production Deployment | 82

Generate abs_master.key

You can generate the abs_master.key by running the generate_obfkey command in the ABS CLI:

/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin

Please take a backup of config/abs_master.key before proceeding.

Warning: Once you create a new obfuscation master key, you should obfuscate
 all config keys also using cli.sh -obfuscate_keys

Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exist. This command will
 delete it create a new key in the same file

Do you want to proceed [y/n]: y

creating new obfuscation master key
Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

The new abs_master.key is used to obfuscate the passwords in abs.properties file.

i Important: In an ABS cluster, the abs_master.key must be manually copied to each of the cluster
nodes.

Obfuscate key and passwords

Enter the keys and passwords in clear text in abs.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/abs/bin/cli.sh obfuscate_keys -u admin -p admin

Please take a backup of config/abs.password before proceeding

Enter clear text keys and password before obfuscation.

Following keys will be obfuscated

config/abs.properties: mongo_password, jks_password and email_password
Do you want to proceed [y/n]: y

obfuscating /pingidentity/abs/config/abs.properties

Success: secret keys in /pingidentity/abs/config/abs.properties obfuscated

Start ABS after passwords are obfuscated.

Copyright ©2022

 | PingIntelligence Production Deployment | 83

i Important: After the keys and passwords are obfuscated, the abs_master.key must be moved to a
secure location from ABS.

Configure SSL

ABS supports only TLS 1.1 and TLS 1.2 and requires Open JDK 11.0.2. You can configure SSL by setting
the value of enable_ssl parameter to true in pingidentity/abs/mongo/abs_init.js file. Setting the
value to true enables SSL communication between ASE and ABS as well as for ABS external REST APIs.
Following is a snippet of the abs.init file with enable_ssl parameter set to true:

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": false,
 "discovery_initial_period" : "24",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

ABS ships with a default self-signed certificate with Java Keystore at abs/config/ssl/abs.jks and
the default password set to abs123 in the abs.properties file. The default password is obfuscated in
the abs.properties file. It is recommended to change the default passwords and obfuscate the new
passwords. See Obfuscate passwords on page 81 for steps to obfuscate passwords.

If you want to use your own CA-signed certificates, you can import them in ABS.

Import existing CA-signed certificates

You can import your existing CA-signed certificate in ABS. To import the CA-signed certificate, stop ABS if
it is already running. Complete the following steps to import the CA-signed certificate:

1. Export your CA-signed certificate to PKCS12 store by entering the following command:

openssl pkcs12 -export -in <your_CA_cerficate.crt> -inkey
 <your_certificate_key.key> -out abs.p12 -name <alias_name>

For example:

openssl pkcs12 -export -in ping.crt -inkey ping.key -out abs.p12 -name
 exampleCAcertificate
Enter Export Password:
Verifying - Enter Export Password:

i Note: If you have intermediate certificate from CA, then append the content to the
<your_CA_certificate>.crt file.

Copyright ©2022

 | PingIntelligence Production Deployment | 84

2. Import the certificate and key from the PKCS12 store to Java Keystore by entering the following
command. The command requires the destination keystore password. The destination keystore
password entered in the command should be same that is configured in the abs.properties file.

The following is a snippet of the abs.properties file where the destination keystore password is
stored. The password is obfuscated.

Java Keystore password
jks_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=

Enter the following command:

keytool -importkeystore -destkeystore abs.jks -srckeystore abs.p12 -
srcstoretype PKCS12 -alias <alias_name> -storetype jks

For example:

keytool -importkeystore -destkeystore abs.jks -srckeystore abs.p12 -
srcstoretype PKCS12 -alias exampleCAcertificate -storetype jks

Importing keystore abs.p12 to abs.jks...
Enter destination keystore password:
Re-enter new password:
Enter source keystore password:

3. Copy the abs.jks file created in step 2 to /opt/pingidentity/abs/config/ssl directory.
4. Start ABS by entering the following command:

/opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 4.0...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

Install MongoDB software

ABS uses a MongoDB database (4.2) to store analyzed logs and ABS cluster node information. MongoDB
is installed using a replica set. In a replica set, MongoDB is installed on three nodes for high-availability
(HA).

i Note: If you are installing as a non-root user then, increase the ulimit -n to 65535.

Update MongoDB default username and password

You can change the default username and password of MongoDB by editing the /opt/pingidentity/
abs/mongo/abs_init.js file. Change the username and password and save the file. The following is a
snippet of the abs_init.js file:

{
 user: “absuser”,
 pwd: “abs123",
 roles: [{ role: “clusterMonitor”, db: “admin” },
 { role: “readWrite”, db: “abs_metadata” },
 { role: “readWrite”, db: “abs_data” },
 { role: “readWrite”, db: “abs_mldata” },
 { role: “readWrite”, db: “local” }]
});

Copyright ©2022

 | PingIntelligence Production Deployment | 85

Install MongoDB in replica set

Download either the RHEL 7 or Ubuntu 16 MongoDB 4.2 Linux tarball from the MongoDB website. For
more information, see https://www.mongodb.org/downloads.

i Important: This document describes a RHEL 7 download, but the equivalent Ubuntu version of
MongoDB is also supported. Use the Ubuntu MongoDB URL to download the Ubuntu version.

Prerequisite:

▪ Copy /opt/pingidentity/abs/mongo/abs_init.js file to the MongoDB node.
▪ Copy /opt/pingidentity/abs/mongo/abs_rs.js file to the MongoDB node.

i Important: It is advised to follow MongoDB recommended setting, to avoid issues in your production
MongoDB deployment. For more information, see https://docs.mongodb.com/manual/administration/
production-checklist-operations/ and https://docs.mongodb.com/manual/administration/analyzing-
mongodb-performance/

Download MongoDB on three nodes which would form the replica set for high-availability (HA).

Install MongoDB one each node:

1. Create the MongoDB directory structure: create mongo, data, logs, and key directory on each
MongoDB node.

mkdir -p /opt/pingidentity/mongo/data /opt/pingidentity/mongo/logs \
/opt/pingidentity/mongo/key

2. Download MongoDB 4.2 on each node and extract to /opt/pingidentity/mongo

cd /opt/pingidentity/
/opt/pingidentity# wget \
https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.0.tgz \
-O mongodb.tgz && tar xzf mongodb.tgz -C /opt/pingidentity/mongo/ --strip-
components=1

3. Update shell path variable and reload the shell.

/opt/pingidentity# echo PATH=$PATH:/opt/pingidentity/mongo/bin >>
 ~/.bashrc;
/opt/pingidentity# source ~/.bashrc

4. Start the MongoDB database on each node. absrs01 is the name of the replica set. You can choose
your own name for the replica set.

/opt/pingidentity# cd mongo
/opt/pingidentity/mongo# mongod --dbpath ./data/ --logpath ./logs/
mongo.log --port 27017 --replSet absrs01 --fork -bind_ip 0.0.0.0

i Note: bind_ip is required for MongoDB to accept connections coming from machines other than
the local host.

5. Check MongoDB connectivity among the three nodes. On MongoDB node 1, run the following
command to check connectivity with node 2:

/opt/pingidentity/mongo# mongo --host <mongo node 2 IP address> --port
 27017

Copyright ©2022

https://www.mongodb.org/downloads
https://docs.mongodb.com/manual/administration/production-checklist-operations/
https://docs.mongodb.com/manual/administration/production-checklist-operations/
https://docs.mongodb.com/manual/administration/analyzing-mongodb-performance/
https://docs.mongodb.com/manual/administration/analyzing-mongodb-performance/

 | PingIntelligence Production Deployment | 86

6. Navigate to abs_rs.js file and edit to configure the IP address of the primary and secondary
MongoDB nodes:

rsconf = {
 _id: "absrs01",
 members: [
 {
 _id: 0,
 host: "127.0.0.1:27017",
 priority: 10
 },
 {
 _id: 1,
 host: "<Mongo Node 2 IP>:27017",
 priority: 2
 },
 {
 _id: 2,
 host: "<Mongo Node 3 IP>:27017",
 priority: 2
 }
]
 };
rs.initiate(rsconf)
rs.conf();
exit

7. Initiate the configuration by entering the following command on MongoDB node 1’s shell:

/opt/pingidentity/mongo# mongo --port 27017 < abs_rs.js

8. Verify that all the MongoDB nodes are running. On each MongoDB node, enter the following:

 /opt/pingidentity/mongo# mongo --port 27017

The primary node will display the following prompt:

absrs01:PRIMARY>

The secondary nodes will display the following prompt:

absrs01:SECONDARY>

Copyright ©2022

 | PingIntelligence Production Deployment | 87

9. Create User and initialize the database using abs_init.js file after making necessary modifications.
You can set the following values in the file. However, ABS ships with default values

▪ Username and password
▪ Database names
▪ training_period
▪ system_threshold_update_interval
▪ discovery_interval
▪ url_limit
▪ discovery_subpath
▪ api_discovery
▪ response_size
▪ enable_ssl

On the primary node (node 1) Enter the following command:

mongo --host <mongo node 1 IP> --port 27017 < abs_init.js

i Note: user name and password should be changed from the default values.

The following is a snippet of the abs_init.js file:

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": false,
 "discovery_initial_period" : "24",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

10.Generate a MongoDB key file.

/opt/pingidentity/mongo# openssl rand -base64 741 >key/mongodb-keyfile

11.Change the key file permission.

 /opt/pingidentity/mongo# chmod 600 key/mongodb-keyfile

12.Copy the key file generated in step 11 on each node of the replica set
13.Shutdown MongoDB using the following command:

mongod --dbpath ./data --shutdown

14.Restart all the MongoDB nodes with a key file and enable MongoDB authentication.

/opt/pingidentity/mongo# mongod --auth --dbpath ./data/ --logpath \

Copyright ©2022

 | PingIntelligence Production Deployment | 88

./logs/mongo.log --port 27017 --replSet absrs01 --fork --keyFile ./key/
mongodb-keyfile -bind_ip 0.0.0.0

i Note:

▪ bind_ip is required for MongoDB to accept connections coming from machines other than the local
host.

▪ The MongoDB cache size should be restricted to 25% of system memory. You can configure this by
using MongoDB's wiredTigerCacheSizeGB option.

Starting MongoDB with SSL

You can start MongoDB with SSL by using either a CA-signed or a self-signed certificate.

▪ Using CA-signed certificate: To add a CA-signed certificate, create a new PEM file by concatenating
the certificate and its private key. Copy the resulting PEM file to the /opt/pingidentity/mongo/
key/ directory created in Step 1.

cat mongo-node-private-key mongo-node-certificate > /opt/pingidentity/
mongo/key/mongodb.pem

▪ Using self-signed certificate: To use a self-signed certificate then as a first-step generate a self-
signed certificate and keys. Complete the following steps:

1. Change directory to key directory:

cd /opt/pingidentity/mongo/key

2. Generate a self-signed certificate and key:

openssl req -newkey rsa:2048 -new -x509 -days 365 -nodes -out mongodb-
cert.crt -keyout mongodb-cert.key

3. Concatenate the certificate and the key:

cat mongodb-cert.key mongodb-cert.crt > mongodb.pem

After either a CA-signed certificate or self-signed certificate has been added to the key directory, shut
down MongoDB and restart with --tlsMode flag.

1. Shut down MongoDB:

mongod --dbpath ./data --shutdown

2. Restart MongoDB with -tlsMode flag:

mongod --auth --dbpath ./data/ --logpath ./logs/mongo.log --port 27017 --
replSet absrs01 --fork --keyFile ./key/mongodb-keyfile -bind_ip 0.0.0.0 --
tlsMode requireTLS --tlsCertificateKeyFile ./key/mongodb.pem

The --tlsMode flag can take the following three values:

▪ allowTLS
▪ preferTLS
▪ requireTLS

For more information on these options, see the MongoDB documentation.

Copyright ©2022

https://docs.mongodb.com/manual/reference/configuration-options/#net.ssl.mode

 | PingIntelligence Production Deployment | 89

Change default settings

It is recommended that you change the default key and password in ABS. Following is a list of commands
to change the default values:

Change default JKS password

You can change the default password for KeyStore and the key. Complete the following steps to change
the default passwords. Make sure that ABS is stopped before changing the JKS password.

i Important: The KeyStore and Key password should be the same.

1. Change the KeyStore password: Enter the following command to change the KeyStore password.
The default KeyStore password is abs123.

keytool -storepasswd -keystore config/ssl/abs.jks
Enter keystore password: abs123
New keystore password: newjkspassword
Re-enter new keystore password: newjkspassword

2. Change the key password: Enter the following command to change the key password. The default key
password is abs123

keytool -keypasswd -alias pingidentity -keypass abs123 -new
 newjkspassword -keystore config/ssl/abs.jks
Enter keystore password: newjkspassword

Start ABS after you have changed the default passwords.

Change abs_master.key

Run the following command to create your own ABS master key to obfuscate keys and password in ABS.

Command: generate_obfkey. ABS must be stopped before creating a new abs_master.key

Stop ABS: If ABS is running, then stop ABS before generating a new ABS master key. Enter the following
command to stop ABS:

/opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

Change abs_master.key: Enter the generate_obfkey command to change the default ABS master key:

/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin
Please take a backup of config/abs_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate
 all config keys also using cli.sh -obfuscate_keys
Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exists. This command will
 delete it and create a new key in the same file
Do you want to proceed [y/n]: y
Creating new obfuscation master key
Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

Copyright ©2022

 | PingIntelligence Production Deployment | 90

Change CLI admin password

You can change the default admin password by entering the following command:

/opt/pingidentity/abs/bin/cli.sh update_password -u admin -p admin
New Password>
Reenter New Password>
Success. Password updated for CLI

Change default access and secret key in MongoDB

To change the default access and secret key, complete the following steps:

i Note: ":" (colon) is a restricted character and not allowed in access key and secret key.

1. Connect to MongoDB by entering the following command:

mongo --host <mongo-host> --port <mongo-port> --authenticationDatabase
 admin -u absuser -p abs123

absuser and abs123 is the default user name and password for MongoDB.
2. On the MongoDB prompt, run the following command:

use abs_metadata
db.auth_info.updateOne({ access_key: "<new-access-key>", secret_key:
 "<new-secret-key>"})

Connect ABS to MongoDB

Check and open MongoDB default port

The MongoDB default port for connection with ABS is 27017. Run the check_ports_abs.sh script on
the ABS machine to determine whether the default port is available. Input the MongoDB host IP address
and default port as arguments. For example:

/opt/pingidentity/abs/util ./check_ports_abs.sh {MongoDB IPv4:[port]}

Run the script for MongoDB master and slave. If the default ports are not accessible, open the port from
the MongoDB machine.

Configure ABS to connect to MongoDB

ABS access key and secret key are used for MongoDB and REST API authentication. Edit abs_init.js
in /opt/pingidentity/mongo directory to set the key values. Here is a sample abs_init.js file:

i Note: ":" (colon) is a restricted character and not allowed in access key and secret key.

db.auth_info.insert({
"access_key" : "abs_ak",
"secret_key" : "abs_sk"
});

Copy the abs_init.js file from ABS

/opt/pingidentity/abs
 mongo

Copyright ©2022

 | PingIntelligence Production Deployment | 91

folder to the MongoDB system /opt/pingidentity/mongo folder.

At the MongoDB command prompt, update the MongoDB settings with the latest abs_init.js file.

mongo admin -u absuser -p abs123 < /opt/pingidentity/abs/mongo/abs_init.js
MongoDB Shell version 4.2.0
connecting to: admin
switched to db abs_metadata
WriteResult({ “nInserted” : 1})
bye

Start and Stop ABS

For ABS to start, the abs_master.key must be present in the /opt/pingidentity/abs/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the
config directory before starting ABS.

You can start ABS in one of the following two ways:

▪ Using service script available in the util directory, or
▪ Using the start.sh script available in the bin directory.

Start ABS as a service

Complete the following steps to start ABS as a service:

1. Navigate to the util directory and run the following command to install ABS as a service:

#sudo ./install-systemctl-service.sh pi-abs

2. Start the service by entering the following command:

systemctl start pi-abs.service

Start ABS using start.sh script

To start ABS, run the start.sh script located in the /opt/pingidentity/abs/bin directory. Change
working directory to /opt/pingidentity/abs/bin. Then start ABS by typing the following command:

$ /opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 4.2...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

To verify ABS has started, change working directory to data directory and look for two .pid files,
abs.pid and stream.pid. Check the newly added ABS node is connecting to MongoDB and has a
heartbeat.

> use abs_metadata
switched to db abs_metadata
> db.abs_cluster_info.find().pretty()
 {
 "_id" : ObjectId("58d0c633d78b0f6a26c056ed"),
 "cluster_id" : "c1",
 "nodes" : [
 {
 "os" : "Red Hat Enterprise Linux Server release 7.6 (Maipo)",
 "last_updated_at" : "1490088336493",
 "management_port" : "8080",
 "log_port" : "9090",
 "cpu" : "24",
 "start_time" : "1490077235426",
 "log_ip" : "2.2.2.2",

Copyright ©2022

 | PingIntelligence Production Deployment | 92

 "uuid" : "8a0e4d4b-3a8f-4df1-bd6d-3aec9b9c25c1",
 "dashboard_node" : false,
 "memory" : "62G",
 "filesystem" : "28%"
 }] }

Stop ABS using stop.sh script

To stop ABS, first stop API Security Enforcer (if it is running) or turn OFF the ABS flag in API Security
Enforcer. If no machine learning jobs are processing, run the stop.sh script available in the bin directory.

/opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

i Note: If you have started ABS as a service and try to stop using the stop.sh script, ABS would
restart after stopping.

Stop ABS using service script

Run the following command to stop the ABS service: c

systemctl stop pi-abs.service

Part B – Install ASE

The ASE installation process is summarized below:

▪ Provision the system based on number of APIs and the expected queries per second (QPS). For
information on sizing, contact PingIntelligence.

▪ Install ASE
▪ Configure ASE using the /opt/pingidentity/ase/config/ase.conf file
▪ Understand the ASE logical deployment options

ASE ports

ASE uses default ports as defined in the table below. If any ports configured in ase.conf file is
unavailable, ASE will not start.

Port Number Usage

80 Data port for HTTP and WebSocket connections. Accessible from any client
(not secure). If you are installing ASE as a non-root user, choose a port that is
greater than or equal to 1024.

443 Data port for HTTPS and Secure WebSocket (wss) connections. Accessible
from any client. If you are installing ASE as a non-root user, choose a port that
is greater than or equal to 1024.

8010 Management port used by CLI and REST API for managing ASE. Accessible
from management systems and administrators

8020 Cluster port used by ASE for cluster communication. Accessible from all
cluster nodes.

8080, 9090 ABS ports used by ASE for outbound connections to ABS for sending access
logs and receive client identifiers of suspected attacks.

Copyright ©2022

 | PingIntelligence Production Deployment | 93

i Important: The management ports 8010 and 8020 should not be exposed to the Internet. If you are
setting up the deployment in an AWS environment with security groups, use private IPs for ASE to ABS
connections to avoid security group issues.

API Security Enforcer deployment modes

API Security Enforcer supports REST and WebSocket APIs and can dynamically scale and secure system
infrastructure. ASE can be deployed in Inline or Sideband mode.

Inline mode

In the inline deployment mode, ASE sits at the edge of your network to receive the API traffic. It can also
be deployed behind an existing load balancers such as AWS ELB. In inline mode, API Security Enforcer
deployed at the edge of the datacenter, terminates SSL connections from API clients. It then forwards the
requests directly to the correct APIs – and app servers such as Node.js, WebLogic, Tomcat, PHP, etc.

To configure ASE to work in the Inline mode, set the mode=inline in the /opt/pingidentity/ase/
config/ase.conf file.

Some load balancers (for example, AWS ELB) require responses to keep alive messages from all devices
receiving traffic. In an inline mode configuration, ASE should be configured to respond to these keep alive
messages by updating the enable_ase_health variable in the /opt/pingidentity/ase/config/
ase.conf file. When enable_ase_health is true, load balancers can perform an ASE health check
using the following URL: http(s)://<ASE Name>/ase where <ASE Name> is the ASE domain name. ASE
will respond to these health checks.

Sideband mode

ASE when deployed in the sideband mode, works behind an existing API gateway. The API request and
response data between the client and the backend resource or API server is sent to ASE. In this case, ASE
does not directly terminate the client requests.

Copyright ©2022

 | PingIntelligence Production Deployment | 94

To configure ASE to work in the Inline mode, set the mode=sideband in the /opt/pingidentity/ase/
config/ase.conf file.

Following is a description of the traffic flow through the API gateway and Ping Identity ASE.

1. Incoming request to API gateway
2. API gateway makes an API call to send the request detail in JSON format to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP against the AI

generated Blacklist. If all checks pass, ASE returns a 200-OK response to the API gateway. Else, a

Copyright ©2022

 | PingIntelligence Production Deployment | 95

different response code is sent to the Gateway. The request is also logged by ASE and sent to the AI
Engine for processing.

4. If the API gateway receives a 200-OK response from ASE, then it forwards the request to the backend
server, else the Gateway returns a different response code to the client.

5. The response from the backend server is received by the API gateway.
6. The API gateway makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to the API gateway.
8. API gateway sends the response received from the backend server to the client.

i Note: Complete the ASE sideband mode deployment by referring to API gateway specific deployment
section on the PingIdentity documentation site.

Install ASE software

ASE supports RHEL 7.6 or Ubuntu 16.04 LTS on an EC2 instance, bare metal x86 server, and VMware
ESXi.

Complete the following steps to install ASE. You can install ASE as a root user or as a non-root user. The
example installation path assumes that you are root user. The installation works in a similar way for a non-
root user.

1. Go to the download site
2. Click on Select under PingIntelligence
3. Choose the correct build and click Download.
4. After downloading the file, copy the ASE file to the /opt directory or any other directory where you

want to install ASE.
5. Change working directory to /opt if you are installing the product as a root user. Choose any other

location if you want to install ASE as a non-root user.
6. At the command prompt, type the following command to untar the ASE file:

tar –zxvf <filename>

For example:

tar –zxvf pi-api-ase-rhel-4.3.tar.gz

7. To verify that ASE successfully installed, type the ls command at the command prompt. This should list
the pingidentity directory and the build’s .tar file. For example:

/opt/pingidentity/ase/bin/$ ls
pingidentity pi-api-ase-rhel-4.3.tar.gz

ASE license

To start ASE, you need a valid license. There are two types of ASE licenses:

▪ Trial license – The trial license is valid for 30-days. At the end of the trial period, ASE stops accepting
traffic.

▪ Subscription license – The subscription license is based on the subscription period. It is a good
practice to configure your email before configuring the ASE license. ASE sends an email notification
to the configured email ID in case the license has expired. Contact the PingIntelligence for APIs sales
team for more information.

i Note: In case the subscription license has expired, ASE continues to run until a restart.

Copyright ©2022

https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/api_security_enforcer___sideband.html
https://www.pingidentity.com/en/resources/downloads.html

 | PingIntelligence Production Deployment | 96

Configure ASE license

To configure the license in ASE, request for a license file from the PingIntelligence for APIs sales team.
The name of the license file must be PingIntelligence.lic. Copy the license file to the /opt/
pingidentity/ase/config directory and start ASE.

Update an existing license

If your existing license has expired, obtain a fresh license from PingIntelligence for APIs sales team and
replace the license file in the /opt/pingidentity/ase/config directory. Make sure to stop and start
ASE after the license file is updated.

Change default settings

It is recommended that you change the default key and password in ASE. Following is a list of commands
to change the default values:

Change ase_master.key

Run the following command to create your own ASE master key to obfuscate keys and password in ASE.

Command: generate_obfkey. ASE must be stopped before creating a new ase_master.key

/opt/pingidentity/ase/bin/cli.sh generate_obfkey -u admin -p admin
API Security Enforcer is running. Please stop ASE before generating new
 obfuscation master key

Stop ASE: Stop ASE by running the following command:

/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please
 wait…
API Security Enforcer stopped

Change ase_master.key: Enter the generate_obfkey command to change the default ASE master key:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin generate_obfkey
Please take a backup of config/ase_master.key, config/ase.conf,
config/abs.conf, config/cluster.conf before proceeding
Warning: Once you create a new obfuscation master key, you should
obfuscate all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key already exist.
This command will delete it create a new key in the same file
Do you want to proceed [y/n]:

Start ASE: After a new ASE master key is generated, start ASE by entering the following command:

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 4.0...
please see /opt/pingidentity/ase/logs/controller.log for more details

Change keystore password

You can change the keystore password by entering the following command. The default password is
asekeystore. ASE must be running for updating the keystore password.

Command: update_keystore_password

/opt/pingidentity/ase/bin/cli.sh update_keystore_password -u admin -p admin
New password >

Copyright ©2022

 | PingIntelligence Production Deployment | 97

New password again >
keystore password updated

Change admin password

You can change the default admin password by entering the following command:

/opt/pingidentity/ase/bin/cli.sh update_password -u admin -p
Old password >
New password >
New password again >
Password updated successfully

Obfuscate keys and passwords

You must obfuscate the keys and passwords configured in ase.conf, cluster.conf, and abs.conf
in the config directory. ASE ships with a default ase_master.key which is used to obfuscate the various
keys and passwords. It is recommended to generate your own ase_master.key.

The following keys and passwords are obfuscated in the three configuration files:

▪ ase.conf – Email and Keystore (PKCS#12) password
▪ cluster.conf – ABS access and secret key
▪ abs.conf – Cluster authentication key

i Note: During the process of obfuscation of keys and password, ASE must be stopped.

The following diagram summarizes the obfuscation process:

Generate your ase_master.key

You can generate the ase_master.key by running the generate_obfkey command in the ASE CLI:

/opt/pingidentity/ase/bin/cli.sh generate_obfkey -u admin -p
Please take a backup of config/ase_master.key, config/ase.conf,
config/abs.conf, config/cluster.conf before proceeding

Warning: Once you create a new obfuscation master key, you should obfuscate
all config keys also using cli.sh obfuscate_keys

Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key
already exist.

This command will delete it create a new key in the same file
Do you want to proceed [y/n]:y
creating new obfuscation master key
Success: created new obfuscation master key at
/opt/pingidentity/ase/config/ase_master.key

Copyright ©2022

 | PingIntelligence Production Deployment | 98

The new ase_master.key is used to obfuscate the keys and passwords in the various configuration files.

i Important: In an ASE cluster, the new ase_master.key must be manually copied to each of the
cluster nodes.

Obfuscate key and passwords

Enter the keys and passwords in clear text in ase.conf, cluster.conf, and abs.conf. Run the
obfuscate_keys command to obfuscate keys and passwords:

/opt/pingidentity/ase/bin/cli.sh obfuscate_keys -u admin -p
Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, and config/cluster.conf before proceeding
If config keys and password are already obfuscated using the current master
 key, it is not obfuscated again
Following keys will be obfuscated:
config/ase.conf: sender_password, keystore_password
config/abs.conf: access_key, secret_key
config/cluster.conf: cluster_secret_key
Do you want to proceed [y/n]:y
obfuscating config/ase.conf, success
obfuscating config/abs.conf, success
obfuscating config/cluster.conf, success

Start ASE after keys and passwords are obfuscated.

i Important: After the keys and passwords are obfuscated, the ase_master.key must be moved to a
secure location from ASE.

Tune host system for high performance

ASE ships with a script to tune the host Linux operating system for handling high TCP concurrency and
optimizing performance. To understand the tuning parameters, refer to the tuning script comments.
When running the tuning script, changes are displayed on the console to provide insight into system
modifications. To undo system changes, run the untune script

i Important: If you are installing ASE as a non-root user, run the tune script for your platform before
starting ASE.

The following commands are for tuning RHEL 7.6. For tuning Ubuntu 16.04 LTS, use the Ubuntu tuning
scripts.

Tune the host system:

Enter the following command in the command line:

/opt/pingidentity/ase/bin/tune_rhel7.sh

Make sure to close the current shell after running the tune script and proceeding to start ASE.

i Note: If ASE is deployed in a Docker Container, run the tune script on the host system, not in the
container.

Untune the host system:

Copyright ©2022

 | PingIntelligence Production Deployment | 99

The “untune” script brings the system back to its original state. Enter the following command in the
command line:

/opt/pingidentity/ase/bin/untune_rhel7.sh

i Note: You should be a root user to run the tune and untune scripts.

Start and Stop ASE

For ASE to start, the ase_master.key must be present in the /opt/pingidentity/ase/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the
config directory before executing the start script.

Before starting ASE, make sure that nofile limit in /etc/security/limits.conf is set to at least
65535 or higher on the host machine. Run the following command on the ASE host machine to check the
nofile limit:

ulimit -n

You can start ASE in one of the following two ways:

▪ Using service script available in the util directory, or
▪ Using the start.sh script available in the bin directory.

Start ASE as a service

Complete the following steps to start ASE as a service:

1. Navigate to the util directory and run the following command to install ASE as a service:

#sudo ./install-systemctl-service.sh pi-ase

2. Start the service by entering the following command:

systemctl start pi-ase.service

Start ASE using start.sh script

Change working directory to bin and run the start.sh script.

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 4.2...
please see /opt/pingidentity/ase/logs/controller.log for more details

Stop ASE using stop.sh

Change working directory to bin and run the stop.sh script.

/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…
sending stop request to ASE. please wait…
API Security Enforcer stopped

Stop ASE using service script

Run the following command to stop the ASE service:

systemctl stop pi-ase.service

Copyright ©2022

 | PingIntelligence Production Deployment | 100

Configure SSL for external APIs

ASE supports both TLS 1.2 and SSLv3 for external APIs. OpenSSL is bundled with ASE. The following are
the version details:

▪ RHEL 7 : OpenSSL 1.0.2k-fips 26 Jan 2017
▪ Ubuntu 16LTS : OpenSSL 1.0.2g 1 Mar 2016

You can configure SSL in ASE for client side connection using one of the following methods:

▪ Method 1: Using CA-signed certificate
▪ Method 2: Using self-signed certificate
▪ Method 3: Importing an existing certificate

The steps provided in this section are for certificate and key generated for connections between the client
and ASE as depicted in the illustration below:

In a cluster setup:

1. Stop all the ASE cluster nodes
2. Configure the certificate on the management node. For more information on management node, see

API Security Enforcer Admin Guide.
3. Start the cluster nodes one by one for the certificates to synchronize across the nodes

Enable SSLv3

By default, SSLv3 is disabled due to security vulnerabilities. To change the default and enable SSLv3, stop
ASE and then change enable_sslv3 to true in ase.conf file. Restart ASE to activate SSLv3 protocol
support. SSLV3 is only supported for client to ASE connections, not ASE to backend server connections.

; SSLv3
enable_sslv3=true

Method 1: Using CA-signed certificate

To use Certificate Authority (CA) signed SSL certificates, follow the process to create a private key,
generate a Certificate Signing Request (CSR), and request a certificate as shown below:

Copyright ©2022

 | PingIntelligence Production Deployment | 101

i Note: ASE internally validates the authenticity of the imported certificate.

To use a CA-signed certificate:

1. Create a private key. ASE CLI is used to create a 2048-bit private key and to store it in the keystore.

/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p
Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
OK, creating new key pair. Creating DH parameter may take around 20
 minutes. Please wait
Key created in keystore
dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

2. Create a CSR. ASE takes you through a CLI-based interactive session to create a CSR.

/opt/pingidentity/ase/bin/cli.sh create_csr -u admin -p
Warning: create_csr will delete any existing CSR and self-signed
 certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State > Colorado
Location >Denver
Organization >Pingidentity
Organization Unit >Pingintelligence
Common Name >ase
Generating CSR. Please wait...
OK, csr created at /opt/pingidentity/ase/config/certs/dataplane/ase.csr

3. Upload the CSR created in step 2 to the CA signing authority’s website to get a CA signed certificate.
4. Download the CA-signed certificate from the CA signing authority’s website.
5. Use the CLI to import the signed CA certificate into ASE. The certificate is imported into the keystore.

/opt/pingidentity/ase/bin/cli.sh import_cert <CA signed certificate path>
 -u admin -p
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

6. Restart ASE by first stopping and then starting ASE.

Method 2: Use self-signed certificate

A self-signed certificate is also supported for customer testing.

To create a self-signed certificate

1. Create a private key. ASE CLI is used to generate a 2048-bit private key which is in the /opt/
pingidentity/ase/config/certs/dataplane/dh1024.pem directory.

/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p

Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
OK, creating new key pair. Creating DH parameter may take around 20
 minutes. Please wait
Key created in keystore

Copyright ©2022

 | PingIntelligence Production Deployment | 102

dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

2. Create a self-signed certificate. Use the CLI to produce a self-signed certificate located in /
pingidentity/ase/config/certs/dataplane/ase.csr

/opt/pingidentity/ase/bin/cli.sh create_self_sign_cert -u admin -p
Warning: create_self_sign_cert will delete any existing self-signed
 certificate
Do you want to proceed [y/n]:y
Creating new self-signed certificate
OK, self-sign certificate created in keystore

3. Restart ASE by stopping and starting.

Method 3: import an existing certificate and key-pair

To install an existing certificate, complete the following steps and import it into ASE. If you have
intermediate certificate from CA, then append the content to your server .crt file.

1. Create the key from the existing .pem file:

openssl rsa -in private.pem -out private.key

2. Convert the existing .pem file to a .crt file:

openssl x509 -in server-cert.pem -out server-cert.crt

3. Import key pair from step 2:

/opt/pingidentity/ase/bin/cli.sh import_key_pair private.key -u admin -p
Warning: import_key_pair will overwrite any existing certificates
Do you want to proceed [y/n]:y
Exporting key to API Security Enforcer...
OK, key pair added to keystore

4. Import the .crt file in ASE using the import_cert CLI command:

/opt/pingidentity/ase/bin/cli.sh import_cert server-crt.crt -u admin -p
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

5. Restart ASE by stopping and starting.

i Important: You can also configure for Management APIs. For more information on configuring SSL
for management APIs, see Configure SSL for Management APIs.

ASE cluster setup (optional)

For production environments, Ping Identity recommends setting up a cluster of ASE nodes for improved
performance and availability.

i Note: Enable NTP on each ASE node system. All cluster nodes must be in the same time zone.

To setup an ASE cluster node:

1. Navigate to the config directory

Copyright ©2022

 | PingIntelligence Production Deployment | 103

2. Edit ase.conf file:

a. Set enable_cluster=true for all cluster nodes.
b. Confirm that the parameter mode is the same on each ASE cluster node, either inline or sideband. If

parameter mode values do not match, the nodes will not form a cluster.
3. Edit the cluster.conf file:

a. Configure cluster_id with an identical value for all nodes in a single cluster (for example,
cluster_id=shopping)

b. Enter port number in the cluster_manager_port parameter. ASE node uses this port number to
communicate with other nodes in the cluster.

c. Enter an IPv4 address or hostname with the port number for peer_node which is the first (or any
existing) node in the cluster. Keep peer_node empty for the first cluster node.

d. Provide the cluster_secret_key which must be the same in each cluster node. It must be entered on
each cluster node before the nodes to connect to each other.

Here is a sample cluster.conf file:

; API Security Enforcer's cluster configuration.
; This file is in the standard .ini format. The comments start with a
; semicolon (;).
; Section is enclosed in []
; Following configurations are applicable only if cluster is enabled
; with true in ase.conf
; unique cluster id.
; valid character class is [A-Z a-z 0-9 _ - . /]
; nodes in same cluster should share same cluster id
cluster_id=ase_cluster

; cluster management port.
cluster_manager_port=8020

; cluster peer nodes.
; a comma-separated list of hostname:cluster_manager_port or
; IPv4_address:cluster_manager_port
; this node will try to connect all the nodes in this list
; they should share same cluster id
peer_node=

; cluster secret key.
; maximum length of secret key is 128 characters (deobfuscated length).
; every node should have same secret key to join same cluster.
; this field can not be empty.
; change default key for production.
cluster_secret_key=OBF:AES:nPJOh3wXQWK/BOHrtKu3G2SGiAEElOSvOFYEiWfIVSdu

4. After configuring an ASE node, start the node by running the following command:

/opt/pingidentity/ase/bin/start.sh

Scale up the ASE cluster

Scale up the ASE cluster by adding nodes to an active cluster without disrupting traffic. To add a new
cluster node, enter the peer_node IP address or hostname in the cluster.conf file of the ASE node
and then start the ASE node. The new node will synchronize configuration and cookie data from the
peer nodes. After loading, it will become part of the cluster. For example, if the IP of the first node is
192.168.20.121 with port 8020, then the peer_node parameter would be 192.168.20.121:8020.

; ASE cluster configuration. These configurations apply only when
; you have enabled cluster in the api_config file.
; Unique cluster ID for each cluster. All the nodes in the same cluster
; should have the same cluster ID.

Copyright ©2022

 | PingIntelligence Production Deployment | 104

cluster_id=ase_cluster
; Cluster management port.
cluster_manager_port=8020
; Cluster's active nodes. This can be a comma separated list of nodes in
; ipv4_address:cluster_manager_port format.
peer_node=192.168.20.121:8020

Scale down the ASE cluster

A node can be removed from an active cluster without disrupting traffic by performing the following:

1. Stop the ASE node to be removed.
2. Set the enable_cluster option as false in its ase.conf file.

i Note: The removed node retains the cookie and certificate data from when it was part of the cluster.

Delete a cluster node

An inactive cluster node has either become unreachable or has been stopped. When you delete a stopped
cluster node, the operation does not remove cookie and other synchronized data. To find which cluster
nodes are inactive, use the cluster_info command:

/opt/pingidentity/ase/bin/cli.sh cluster_info -u admin -p
cluster id : ase_cluster
cluster nodes
127.0.0.1:8020 active
1.1.1.1:8020 active
2.2.2.2:8020 inactive
172.17.0.4:8020(tasks.aseservice) active
172.17.0.5:8020(tasks.aseservice) inactive
tasks.aseservice2:8020 not resolved

Using the cluster_info command output, you can remove the inactive cluster nodes 2.2.2.2:8020 and
172.17.0.5:8020.

To delete the inactive node, use the delete_cluster_node command:

/opt/pingidentity/ase/bin/cli.sh delete_cluster_node <IP:Port>

Stop ASE cluster

Stop the entire cluster by running the following command on any node in the cluster.

/opt/pingidentity/ase/bin/stop.sh cluster –u admin –p

When the cluster stops, each cluster node retains all the cookie and certificate data.

Part C – Integrate ASE and ABS

The ABS Engine installation process is summarized below:

▪ Connect ASE to ABS AI engine for ASE to send access log files to ABS.
▪ Enable ASE to ABS engine communication: Just connecting ASE and ABS engine does not mean that

access logs would be sent by ASE to ABS. ASE to ABS communication has to be enabled separately.
▪ Add API JSON files to ASE. The API JSON files define your API and its various parameters. For more

information, see Defining an API JSON file.
▪ ABS AI engine models need to be trained for it to analyze and report on your API traffic.

Copyright ©2022

 | PingIntelligence Production Deployment | 105

Connect ASE to ABS AI engine

Check ABS port availability

The default ports for connection with ABS are 8080 and 9090. Run the check_ports.sh script on the
ASE machine to determine accessibility of ABS. Input ABS host IP address and ports as arguments.

/opt/pingidentity/ase/util ./check_ports.sh {ABS IPv4:[port]}

Configure ASE

Update abs.conf located in the ASE /opt/pingidentity/ase/config directory with ABS Engine
address and authentication keys:

▪ Configure abs_endpoint with the ABS Engine management IP address / host name and port number
(Default: 8080) which was configured in the /opt/pingidentity/abs/config/abs.properties
file.

i Note: Note: If ABS is in a different AWS security group, use a private IP address

▪ Configure ABS access_key and secret_key using the key values from the abs_init.js file located in
/opt/pingidentity/abs/mongo.

Here is a sample abs.conf file:

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a
 semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.

; a comma-separated list of abs nodes having hostname:port or ipv4:port as
 an address.
abs_endpoint=127.0.0.1:8080

; access key for abs node
access_key=OBF:AES://ENOzsqOEhDBWLDY
+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0

; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU
+RY5CxUhp3NLcNBel+3Q

; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true

; Configure the location of ABS's trusted CA certificates. If empty, ABS's
 certificate
; will not be verified
abs_ca_cert_path=

i Important: Make sure that ASE and ABS are in the same time zone.

Enable ASE to ABS engine communication

To start communication between ASE and the AI engine, run the following command:

./cli.sh enable_abs –u admin -p admin

Copyright ©2022

 | PingIntelligence Production Deployment | 106

To confirm an ASE Node is communicating with ABS, issue the ASE status command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : inline
http/ws : port 8080
https/wss : port 8443
firewall : enabled
abs : enabled, ssl: enabled (If ABS is enabled, then ASE is
 communicating with ABS)
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

Add APIs to ASE

After the policy has been deployed to Apigee using the PingIntelligence automated policy tool, add APIs to
ASE. Read the following topics to define and add APIs to ASE:

▪ API naming guidelines
▪ Define and add an API JSON

For more information on ASE sideband deployment, see Sideband API Security Enforcer.

Train ABS AI engine

For ABS to start predicting various attacks types, the model needs to be trained. The number of hours
(default - 24 hours) is configurable for model training. Set the value of training_period parameter in the
abs_init.js file in the /opt/pingidentity/mongo directory. For more detailed information about
training AI model, see AI Engine training on page 319.

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": true,
 "discovery_initial_period" : "1",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

Start the training

The training starts as soon as ABS receives the first API traffic from API Security Enforcer and continues
for the number of hours set in the attack_initial_training parameter. Training occurs automatically when a
new API is added.

Copyright ©2022

https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/api_naming_guidelines_1.html
https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/defining_an_api___api_json_configuration_file_0.html
https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/api_security_enforcer___sideband.html

 | PingIntelligence Production Deployment | 107

Verify training completion

ABS training status is checked using the ABS Admin API which returns the training duration and prediction
mode. If the prediction variable is true, ABS has completed training and is discovering attacks. A false
value means that ABS is still in training mode. The API URL for Admin API is: https://<ip>:<port>/v4/abs/
admin. Following is a snippet of the output of the Admin API:

"message": "training started at Thu Dec 26 12:32:59 IST 2019",
"training_duration": "2 hours",
"prediction": true

IP and port number is of the ABS machine.

i Note: ABS only detects attacks after the training period is over. During training, no attacks are
generated.

Part D – Install PingIntelligence Dashboard

Installing PingIntelligence for APIs Dashboard automatically installs Elasticsearch, Kibana To install
PingIntelligence Dashboard, ensure that the following prerequisites are met:

▪ Server: 8 core CPU, 16 GB, 1 TB HDD
▪ Operating system: RHEL 7.6 or Ubuntu 16.0.4 LTS
▪ OpenJDK: 11.0.2
▪ SSL certificate: One private key and certificate. By default, PingIntelligence Dashboard uses the

private key and certificate shipped with the binary.
▪ Password: If you want to change the default password, set a minimum 8 character password
▪ ABS: ABS URL, access, and secret key. Make sure that ABS is reachable from the PingIntelligence

Dashboard machine.
▪ ASE: ASE management URL, access, and secret key. Make sure that ASE is reachable from the

PingIntelligence Dashboard machine.

Port numbers

The following is a list of default port numbers. Make sure that these are available for installing
PingIntelligence Dashboard.

▪ PingIntelligence Dashboard: 8030
▪ Elasticsearch: 9200
▪ Kibana: 5601
▪ H2 database: 9092. H2 database is installed and runs as a part of PingIntelligence Dashboard.

Supported browsers: The following Web browsers are supported:

▪ Google Chrome: Version 49 or later
▪ Mozilla Firefox: Version 69 or later
▪ Microsoft Edge: Version 42 or later
▪ Apple Safari: Version 11.1 or later

Operating system configurations: Complete the following configuration for the operating system:

▪ Increase the ulimit to 65536

sudo sysctl -w fs.file-max=65536
sudo sysctl -p

▪ Increase the vm.max_map_count limit to 262144

sudo echo "vm.max_map_count=262144" >> /etc/sysctl.conf

Copyright ©2022

 | PingIntelligence Production Deployment | 108

sudo sysctl -p

▪ JDK installation: Set JAVA_HOME to <jdk_install> directory and add <jdk_install>/bin to
system PATH variable

▪ Choose the <pi_install_dir> directory. <pi_install_dir> should be readable and writable by
the logged in user.

PingIntelligence Dashboard users

There are two pre-configured login users in PingIntelligence Dashboard. The two users are:

▪ admin
▪ ping_user

Multiple admin and ping_user can simultaneously log into PingIntelligence Dashboard. The admin user
has full access to PingIntelligence Dashboard. An admin can view the dashboard of various APIs as well
as tune threshold and unblock a client identifier. ping_user can only view the API dashboard. A total of
25 admin and ping_user can log in simultaneously.

Install PingIntelligence Dashboard

Complete the following steps to install PingIntelligence Dashboard:

1. Create a <ping_install_dir> directory on your host machine. Make sure that the user has read
and write permissions for the <ping_install_dir> directory.

2. Download the PingIntelligence Dashboard binary
3. Download Elasticsearch 6.8.1 (macOS/RHEL)
4. Download Kibana 6.8.1 (RHEL 64-bit)
5. Change directory to ping_install_dir:

cd pi_install_dir

6. Untar the PingIntelligence Dashboard:

tar -zxf pi-api-dashboard-4.3.tar.gz

7. Change directory to pingidentity/webgui/

cd pingidentity/webgui/

8. Install PingIntelligence Dashboard by entering the following command and follow the instructions
displayed on the prompt:

./bin/pi-install-ui.sh

elasticsearch-6.8.1.tar.gz file path >
kibana-6.8.1-linux-x86_64.tar.gz file path >

Use bundled ssl key and self signed certificate for ui server [y/n]? >[n]
ssl private key path >
ssl certificate path >

Use default password [changeme] for all components and users [y/n]? > [n]
UI login admin user 'admin' password >
Renter UI login admin user 'admin' password >
UI login regular user 'ping_user' password >
Renter UI login regular user 'ping_user' password >

ABS url >
Use default access/secret key for ABS [y/n] ? > [n]
ABS access key >

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.1.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.8.1-linux-x86_64.tar.gz

 | PingIntelligence Production Deployment | 109

ABS secret key >

ASE management url >
Use default access/secret key for ASE [y/n] ? > [n]
ASE access key >
ASE secret key >

configuring elasticsearch… please wait for 15 seconds
elasticsearch config is completed.

configuring kibana…please wait 60 seconds
kibana config is completed.

configuring dashboard…
generating new obfuscation master key
dashboard config is completed.

configuring webgui…
generating new obfuscation master key
webgui config is completed.

saving auto generated credentials for all components to
 webgui_internal.creds file

WebGUI installation completed.

Start WebGUI [y/n] > [y]

start elasticsearch...
 elasticsearch started. Log is available at elasticsearch/logs/
elasticsearch.log

start dashboard……
 dashboard started. Log available at dashboard/logs/dashboard.log

start kibana……
 kibana started. Log available at kibana/logs/kibana.log

start ui server……
 UI server started. Log available at webgui/logs/admin/admin.log

WebGUI started. Log available at webgui/logs/admin/admin.log

Please access WebGUI at https://<pi_install_host>:8030

<pi_install_host> can be ip address, hostname or fully qualified domain
 name of this server.
<pi_install_host> should be reachable from your computer.

Important Action:
1) Credentials for all internal components are available in
 webgui_internal.creds file. Move this file from
 this server and securely keep it elsewhere. For any debugging purposes
 you will be asked to get
 credentials for a component from this file.
2) Two obfuscation master keys are auto-generated
 pingidentity/webgui/config/webgui_master.key
 pingidentity/dashboard/config/dashboard_master.key
3) For security purposes you should move obfuscation master keys from this
 server. But when components
 are restarted, master keys should be present at the original locations.

Copyright ©2022

 | PingIntelligence Production Deployment | 110

Verify the installation

You can verify the installation by checking the process IDs (PID) of each component. You can check the
pid of components at the following location:

▪ Elasticsearch: <pi_install_dir>/elasticsearch/logs/elasticsearch.pid
▪ Kibana: <pi_install_dir>/kibana/logs/kibana.pid
▪ Dashboard: <pi_install_dir>/dashboard/logs/dashboard.pid
▪ Webgui: <pi_install_dir>/webgui/logs/webgui.pid

Tune Dashboard performance parameters

Configure the following three parameters for Dashboard's better performance. Note that the following
tuning parameters if you have your setup of Elasticsearch and Kibana.

If you have used PingIntelligence automated deployment or pi-install-ui.sh script to deploy
Dashboard, these tuning are done as part of installation.

Parameter Description Location

Elasticsearch

-Xms and -Xmx ▪ Xms - Defines the minimum
heap size of Elasticsearch.
Set it to 4GB as Xms4g.

▪ Xmx - Defines the maximum
heap size of Elasticsearch.
Set it to 4GB as Xmx4g.

$ES_HOME/config/
jvm.options

thread_pool.search.size Defines thread pool size for
count/search/suggest operations
in Elasticsearch. Configure it to
50% of total CPUs allocated.

$ES_HOME/config/
elasticsearch.yml

Kibana

elasticsearch.requestTimeout Time (in milliseconds) to wait for
Elasticsearch to complete the
request and return the response
back to Kibana. Set the value to
60000 milliseconds.

$KIBANA_HOME/config/
kibana.yml

Mitigating Cross-Site-Scripting (XSS)

To detect and mitigate attacks like Cross Site Scripting(XSS), PingIntelligence Dashboard implements
Content Security Policy (CSP). The following are the configuration details.

Response header - Content-Security-Policy

Response header value - default-src ‘self’; font-src ‘self’ use.typekit.net;
script-src ‘self’ use.typekit.net; style-src ‘self’ ‘unsafe-inline’
use.typekit.net p.typekit.net; img-src ‘self’ data: p.typekit.net;

Start and stop Dashboard

You can choose to start and stop all the components together or individually. It is recommended to start
and stop components together using the following command:

cd <pi_install_dir>/pingidentity/webgui
./bin/start-all.sh

Starting elasticsearch.. [started]

Copyright ©2022

 | PingIntelligence Production Deployment | 111

Verifying elasticsearch connectivity.. [OK]
Verifying ABS connectivity.. [OK]

Starting dashboard.. [started]
Starting kibana.. [started]

Verifying Kibana connectivity.. [OK]
Verifying ASE connectivity.. [OK]

Starting webgui.. [started]

WebGUI started.

To stop all the components of PingIntelligence Dashboard together, enter the following command:

cd <pi_install_dir>/pingidentity/webgui
./bin/stop-all.sh

Stopping webgui..[stopped]
Stopping dashboard.. [stopped]
Stopping kibana.. [stopped]
Stopping elasticsearch.. [stopped]

WebGUI stopped.

Start and stop PingIntelligence Dashboard components individually

Start the components in the following order:

1. Start Elasticsearch: Enter the following command to start Elasticsearch:

cd <pi_install_dir>/pingidentity/elasticsearch
./bin/elasticsearch -d -p logs/elasticsearch.pid

2. Start Dashboard: Enter the following command to start Dashboard:

cd <pi_install_dir>/pingidentity/dashboard
./bin/start.sh

3. Start Kibana: Enter the following command to start Kibana:

cd <pi_install_dir>/pingidentity/kibana
./bin/kibana >> ./logs/kibana.log 2>&1 & echo $! > logs/kibana.pid

4. Start Web GUI: Enter the following command to start Web GUI:

cd <pi_install_dir>/pingidentity/webgui
./bin/start.sh

Stop the components individually by entering the following commands:

Stop Elasticsearch: Stop Elasticsearch by entering the following command:

cd <pi_install_dir>/pingidentity/elasticsearch
kill -15 "$(<logs/elasticsearch.pid)"

Stop dashboard engine: Stop the dashboard engine by entering the following command:

cd <pi_install_dir>/pingidentity/dashboard
./bin/stop.sh

Copyright ©2022

 | PingIntelligence Production Deployment | 112

Stop Kibana: Stop Kibana by entering the following command:

cd <pi_install_dir>/pingidentity/kibana
kill -9 "$(<logs/kibana.pid)"

Stop Web GUI: Enter the following command to stop Web GUI:

cd <pi_install_dir>/pingidentity/webgui
./bin/stop.sh

Start and stop PingIntelligence Dashboard as a service

You can also start and stop PingIntelligence Dashboard as a service.

Start Dashboard as a service

Complete the following steps to start PingIntelligence Dashboard as a service:

1. Navigate to the <pi_install>/pingidentity/webgui/util directory and run the following
command to install PingIntelligence Dashboard as a service:

sudo ./install-systemctl-service.sh pi-webgui

2. Start the service by entering the following command:

sudo systemctl start pi-webgui.service

Stop Dashboard service

To stop PingIntelligence Dashboard service, run the following command:

sudo systemctl stop pi-webgui.service

Part E – Access ABS reporting

The ABS AI Engine generates attack, metric, and forensics reports which are accessed using the ABS
REST API to access JSON formatted reports. Ping Identity provides Postman collections to generate
various API reports. You can use any other tool to access the reports using the URLs documented in the
ABS Admin Guide.

Install Postman with PingIntelligence for APIs Reports

Ping Identity provides configuration files which are used by Postman to access the ABS REST API JSON
information reports. Make sure to install Postman 6.2.5 or higher.

Using ABS self-signed certificate with Postman

ABS ships with a self-signed certificate. If you want to use Postman with the self-signed certificate of ABS,
then from Postman’s settings, disable the certificate verification option. Complete the following steps to
disable Postman from certificate verification:

1.
Click on the spanner on the top-right corner of Postman client. A drop-down window is displayed.

Copyright ©2022

https://www.getpostman.com/

 | PingIntelligence Production Deployment | 113

2. Select Settings from the drop-down window:

3. In the Settings window, switch-off certificate verification by clicking on the SSL certificate verification
button:

View ABS Reports in Postman

To view the reports, complete the following steps:

1. Download ABS_Environment andABS_Reports JSON files from API Reports Using Postman folder on
Ping Identity download site. These configuration files will be used by Postman.

2. Download and install the Postman application 6.2.5 or higher.

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html/
https://www.getpostman.com

 | PingIntelligence Production Deployment | 114

3. In Postman, import the two Ping Identity files downloaded in step 1 by clicking the Import button.

4.
After importing the files, click the gear button in the upper right corner.

5. In the MANAGE ENVIRONMENTS pop-up window, click ABS_4.3_Environment

6. In the pop-up window, configure the following values and then click Update

▪ Server: IP address of the ABS node for which the dashboard_node was set to true in the
abs.properties file.

▪ Port: Port number of the ABS node.
▪ Access_Key_Header and Secret_Key_Header: Use the Admin user or Restricted user header. A

Restricted user sees obfuscated value of OAuth token, cookie and API keys. For more information of
different types of user, see ABS users for API reports

▪ Access_Key and Secret_Key: The Access Key and Secret Key configured in the opt/
pingidentity/mongo/abs_init.js for either admin or restricted user. Make sure that access
key and secret key corresponds to the admin or restricted user header configured.

▪ API_Name: The name of the API for which you want to generate the reports.
▪ Later_Date: A date which is more recent in time. For example, if the query range is between March

12 and March 14, then the later date would be March 14.
▪ Earlier_Date: A date which is past in time. For example, if the query range is between March 12 and

March 14, then the earlier date would be March 12.

i Note: Do not edit any fields that start with the word System.

7. In the main Postman window, select the report to display on the left column and then click Send.
ABS external REST APIs section provides detailed information on each API call and the JSON report
response.

Part F - Integrate API gateways for sideband deployment

If you have deployed ASE in the sideband mode, the next step is to integrate your API gateway with
PingIntelligence products. To deploy ASE in the sideband mode, set mode=sideband in the /opt/
pingidentity/ase/config/ase.conf file. This is the only configuration required on ASE for
sideband deployment. For more information on ASE in sideband, see Sideband API Security Enforcer

After you have completed the parts A to E of deployment, integrate one of the following API gateways with
PingIntelligence components and start sending the API traffic to your API gateway:

▪ Akana API gateway sideband integration on page 514
▪ PingIntelligence Apigee Integration on page 538
▪ PingIntelligence AWS API Gateway Integration on page 558
▪ Azure APIM sideband integration on page 600
▪ Axway sideband integration on page 576
▪ PingIntelligence - CA API gateway sideband integration on page 609
▪ F5 BIG-IP PingIntelligence integration on page 618
▪ IBM DataPower Gateway sideband integration on page 630

Copyright ©2022

https://docs.pingidentity.com/bundle/PingIntelligence_API_Security_Enforcer_3.2_pingintel_32/page/api_security_enforcer___sideband.html

 | API Security Enforcer | 115

▪ PingIntelligence - Kong API gateway integration on page 637
▪ Mulesoft sideband integration on page 643
▪ NGINX sideband integration on page 657
▪ NGINX Plus sideband integration on page 672
▪ PingAccess sideband integration on page 700
▪ PingIntelligence WSO2 integration on page 717

API Security Enforcer

Introduction
ASE supports multiple deployments modes to provide customers flexibility in deploying PingIntelligence for
APIs API cybersecurity. This ASE admin guide covers the following deployment modes:

Inline ASE - ASE receives API client traffic and then routes the traffic to a backend API gateway or
directly to App Servers. ASE applies real time security and passes API metadata to the ABS Engine for AI
powered advanced attack detection. ABS engine notifies ASE of attacks, and ASE then blocks the rogue
clients.

Sideband ASE – An API gateway receives API client traffic and then makes API calls to pass API
metadata to ASE for processing. ASE passes the API metadata to the ABS Engine for AI powered
advanced attack detection. ABS engine notifies ASE of attacks, and ASE then works with API gateway to
block inbound rogue client requests. See ASE sideband chapter for more information.

Copyright ©2022

 | API Security Enforcer | 116

The following table shows a summary of features available in each deployment options.

Security Features Inline Sideband

Interface to ABS AI Engine for AI
powered attack detection

Yes Yes

API deception – decoy APIs look
like legitimate APIs to hackers. After
accessing a decoy API, a hacker is
quarantined, plus activity information
is collected.

Yes Yes

Real-time client blocking based
on lists with ASE detected attacks,
ABS AI Engine detected attacks, or
customer-built lists. Blocking can
be based on OAuth tokens, API
keys, usernames, cookies, and IP
addresses.

Yes Yes

Copyright ©2022

 | API Security Enforcer | 117

Black and whitelist management
of tokens, API keys, cookies, IP
addresses

Yes Yes

Real-time blocking of API clients
with traffic that deviates from API
attributes.

Yes No

Dynamic mapping of public API
identity to private internal API identity

Yes No

Custom API error messages
prevent disclosure of sensitive error
information.

Yes No

Admin Features

Simple deployment with modular
JSON configuration files

Yes Yes

Live updates – Add/remove without
loss of traffic or stopping services.

Yes Yes

Obfuscation – Keys and passwords
are obfuscated

Yes Yes

Active-active clustering – Supports
scaling and resiliency: all nodes
are peers and self-learn the
configuration, traffic information, and
security updates.

Yes Yes

Syslog information messages
sent to Syslog servers in RFC 5424
format.

Yes Yes

Automatic API discovery discovers
API JSON configuration data

Yes Yes

CLI and REST API for management
and automation tool integration.

Yes Yes

Linux PAM-based administrator
authentication with existing Linux
tools.

Yes Yes

Audit log captures administrative
actions for compliance reporting.

Yes Yes

Distributed inbound flow control
limits client traffic and server traffic

Yes No

Multiprotocol Layer 7 routing and
load balancing of WebSocket, REST
API

Yes No

Secure connection between ASE
and ABS. Secure connection also
between ASE and ASE REST APIs

Yes Yes

Copyright ©2022

 | API Security Enforcer | 118

Administration
API Security Enforcer (ASE) is deployed by modifying configuration files to support your environment. The
configuration files consist of the following:

▪ ase.conf – the master configuration file with parameters to govern ASE functionality.
▪ cluster.conf – configures ASE cluster setup.
▪ abs.conf – configures ASE to ABS (AI Engine) connectivity. ASE sends log files to ABS for

processing and receives back client identifiers (for example, token, IP address, cookie) to block.

ASE license

To start ASE, you need a valid license. There are two types of ASE licenses:

▪ Trial license – The trial license is valid for 30 days. At the end of the trial period, ASE stops accepting
traffic and shuts down.

▪ Subscription license – The subscription license is based on the subscription period. It is a good
practice to configure your email before configuring the ASE license. ASE sends an email notification
to the configured email ID in case the license has expired. Contact the PingIntelligence for APIs sales
team for more information.

i Note: In case the subscription license has expired, ASE continues to run until a restart.

Configure ASE license

To configure the license in ASE, request for a license file for the PingIntelligence from APIs sales team.
The name of the license file must be PingIntelligence.lic. Copy the license file to the /opt/
pingidentity/ase/config directory and start ASE.

Update an existing license

If your existing license has expired, obtain a fresh license from PingIntelligence for APIs sales team and
replace the license file in the /opt/pingidentity/ase/config directory. Make sure to stop and start
ASE after the license file is updated.

ASE interfaces

The interfaces to configure and operate ASE consist of:

▪ Command line interface (CLI)
▪ ASE REST API

Copyright ©2022

 | API Security Enforcer | 119

ASE CLI

Located in the bin directory, cli.sh is the script that administers ASE and performs all ASE functions
except starting and stopping ASE. To execute commands, type cli.sh followed by the command name.
To see a list of all commands, type the following command at the CLI:

/opt/pingidentity/ase/bin/cli.sh

The following table lists some basic CLI commands. For a complete list, see CLI for inline ASE on page
241 and CLI for sideband ASE on page 183

Option Description

help Displays cli.sh help

version Displays ASE’s version number

status Displays ASE’s status.

update_password Updates the password for ASE admin account.

i Note: After initial start-up, all configuration changes must be made using cli.sh or ASE REST APIs.
This includes adding a server, deleting a server, adding a new API, and so on. After manually editing an
operational JSON file, follow Updating a Configured API

CLI commands include the following:

help command

To get a list of CLI commands, enter the help command:

/opt/pingidentity/ase/bin/cli.sh help

version command

To query system information, enter the version command:
/opt/pingidentity/ase/bin/cli.sh version
Ping Identity Inc., ASE 3.1.1
Kernel Version : 3.10
Operating System : Red Hat Enterprise Linux Server release 7.0 (Maipo)
Build Date : Fri Aug 24 13:43:22 UTC 2018

status command

To get ASE status, enter the status command:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

Copyright ©2022

 | API Security Enforcer | 120

ASE REST API

The ASE REST API is used to administer ASE or integrate ASE with third-party products. Using the ASE
REST API, you can configure ASE and display ASE statistics, including the number of backend servers,
the number of APIs, and so on.

ASE REST API commands consist of the following:

▪ API: Create API (POST), Read API (GET), List API (GET), Update API (PUT), Delete API (DELETE)
▪ Server: Create Server (POST), Read Server (GET), Delete Server (DELETE)
▪ Session: Read Persistent Connections (GET)
▪ Cluster: Read Cluster (GET)
▪ Firewall: Read Firewall Status (GET), Update Firewall Status (POST)
▪ Flow Control: Read flow control (GET), Update flow control for API (POST), Update flow control of a

Server for an API (POST)

Customizing ASE ports

ASE uses default ports as defined in the table below. If any port configured in ase.conf file is
unavailable, ASE will not start.

Port Number Usage

80 Data port. HTTP and WebSocket (ws) connections. If you are installing
ASE as a non-root user, then use port greater than 1024.

443 Data port. HTTPS and Secure WebSocket (wss) connections. If you are
installing ASE as a non-root user, then use port greater than 1024.

8010 Management port. Used by CLI and REST API for managing ASE.

8020 Cluster port. Used by ASE internally to set up the cluster.

8080, 9090 ABS ports. Used by ASE for outbound connections to ABS for sending
access logs and receive attack information.

i Warning: The management ports 8010 and 8020 should not be exposed to the internet and are
strictly for internal use. Make sure that these ports are behind your firewall.

In an AWS environment, both management ports should be private in the Security Group for ASE.

Security Group “ase”:

port 80: Accessible from any client (note: not secure)

port 443: Accessible from any client

port 8010: Accessible from management systems and administrators

port 8020: Accessible from peer ASE nodes

i Note: If you are setting up the deployment in an AWS environment with security groups, use private
IPs for ABS connections to avoid security group issues.

Configure time zone

You can set up ASE in either local or UTC time zone by configuring the timezone parameter in /
pingidentity/ase/config/ase.conf file. All the management, access, and audit logs capture the

Copyright ©2022

 | API Security Enforcer | 121

time based on the time zone configured in ase.conf file. If the timezone parameter is left empty, ASE by
default runs in the local time zone. Following is a snippet of ase.conf for timezone parameter.

; Set the timezone to utc or local. The default timezone is local.
timezone=local

<truncated ase.conf...>

If ASE is deployed in a cluster, make sure to configure the same time zone on each cluster node. If you
have used automated deployment to deploy PingIntelligence, the automated deployment configures the
same time zone on each ASE node. However, if you have used manual installation, then you need to
manually configure the time zone on each ASE node.

You can use ASE status command to check the current time zone of ASE.

#./bin/cli.sh -u admin -p status
API Security Enforcer
status : started
mode : inline
http/ws : port 8080
https/wss : port 8443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB
log level : warn
timezone : local (MST)

Change ASE time zone

If you want to change the time zone in ASE, complete the following steps:

1. Stop ASE
2. Update the timezone parameter in ase.conf file
3. Start ASE

Tune host system for high performance

ASE ships with a script to tune the host Linux operating system for handling high TCP concurrency and
optimizing performance. To understand the tuning parameters, refer to the tuning script comments.
When running the tuning script, changes are displayed on the console to provide insight into system
modifications. To undo system changes, run the untune script

i Important: If you are installing ASE as a non-root user, run the tune script for your platform before
starting ASE.

The following commands are for tuning RHEL 7.6. For tuning Ubuntu 16.04 LTS, use the Ubuntu tuning
scripts.

Tune the host system:

Enter the following command in the command line:

/opt/pingidentity/ase/bin/tune_rhel7.sh

Make sure to close the current shell after running the tune script and proceeding to start ASE.

Copyright ©2022

 | API Security Enforcer | 122

i Note: If ASE is deployed in a Docker Container, run the tune script on the host system, not in the
container.

Untune the host system:

The “untune” script brings the system back to its original state. Enter the following command in the
command line:

/opt/pingidentity/ase/bin/untune_rhel7.sh

i Note: You should be a root user to run the tune and untune scripts.

Start and stop ASE

Prerequisite:

For ASE to start, the ase_master.key must be present in the /opt/pingidentity/ase/config
directory. If you have moved the master key to a secured location for security reasons, copy it to the config
directory before executing the start script. You can run ASE as a non-root user also.

Start ASE

Before starting ASE, make sure that nofile limit in /etc/security/limits.conf is set to at least
65535 or higher on the host machine. Run the following command on the ASE host machine to check the
nofile limit:

ulimit -n

Change working directory to bin and run the start.sh script.

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 4.0.2...
please see /opt/pingidentity/ase/logs/controller.log for more details

Stop ASE

Change working directory to bin and run the stop.sh script.

/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please
 wait…
API Security Enforcer stopped

Change default settings

It is recommended that you change the default key and password in ASE. Following is a list of commands
to change the default values:

Change ase_master.key

Run the following command to create your own ASE master key to obfuscate keys and password in ASE.

Command: generate_obfkey. ASE must be stopped before creating a new ase_master.key

/opt/pingidentity/ase/bin/cli.sh admin generate_obfkey -u admin -p admin
API Security Enforcer is running. Please stop ASE before generating new
 obfuscation master key

Copyright ©2022

 | API Security Enforcer | 123

Stop ASE: Stop ASE by running the following command:

/opt/pingidentity/ase/bin/stop.sh -u admin –p admin
checking API Security Enforcer status…sending stop request to ASE. please
 wait…
API Security Enforcer stopped

Change ase_master.key: Enter the generate_obfkey command to change the default ASE master key:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin generate_obfkey
Please take a backup of config/ase_master.key, config/ase.conf,
config/abs.conf, config/cluster.conf before proceeding
Warning: Once you create a new obfuscation master key, you should
obfuscate all config keys also using cli.sh obfuscate_keys
Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key already exist.
This command will delete it create a new key in the same file
Do you want to proceed [y/n]:

After you change the ase_master.key, you need to obfuscate all keys and passwords with the new
ase_master.key. Enter the keys and passwords in ase.conf, abs.conf, and cluster.conf in plain
text and run the obfuscation commands. For more information on obfuscation, see Obfuscate keys and
passwords on page 124.

Start ASE: After a new ASE master key is generated, start ASE by entering the following command:

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 4.1...
please see /opt/pingidentity/ase/logs/controller.log for more details

Change keystore password

You can change the keystore password by entering the following command. The default password is
asekeystore. ASE must be running for updating the keystore password.

Command: update_keystore_password

/opt/pingidentity/ase/bin/cli.sh update_keystore_password -u admin -p admin
New password >
New password again >
keystore password updated

Change admin password

You can change the default admin password by entering the following command.

/opt/pingidentity/ase/bin/cli.sh update_password -u admin
Old password >
New password >
New password again >
Password updated successfully

You can change the password on a single ASE node and propagate the change to other nodes in the ASE
cluster. For more information, see Propagate changed password.

Any change in the ASE admin password must be updated in the PingIntelliegence for APIs Dashboard.
Add the new password to <pi_install_dir>/webgui/config/webgui.properties and obfuscate
it.

Copyright ©2022

 | API Security Enforcer | 124

Obfuscate keys and passwords

Using the ASE command line interface, you can obfuscate keys and passwords configured in ase.conf,
cluster.conf, and abs.conf. Here is the obfuscated data in each file:

▪ ase.conf – Email and keystore (PKCS#12) password
▪ cluster.conf – Cluster authentication key
▪ abs.conf – ABS access and secret key

ASE ships with a default master key (ase_master.key) which is used to obfuscate other keys and
passwords. It is recommended to generate your own ase_master.key.

i Note: During the process of obfuscation password, ASE must be stopped.

The following diagram summarizes the obfuscation process:

Generating your ase_master.key

You can generate the ase_master.key by running the generate_obfkey ASE CLI command.

/opt/pingidentity/ase/bin/cli.sh generate_obfkey -u admin -p

Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, config/cluster.conf before proceeding

Warning: Once you create a new obfuscation master key, you should obfuscate
 all config keys also using cli.sh obfuscate_keys

Warning: Obfuscation master key file /opt/pingidentity/ase/config/
ase_master.key already exists. This command will delete it and create a new
 key in the same file.

Do you want to proceed [y/n]:y
creating new obfuscation master key
Success: created new obfuscation master key at /opt/pingidentity/ase/config/
ase_master.key

The new ase_master.key is used to obfuscate the keys and passwords in the configuration files.

i Important: In an ASE cluster, the ase_master.key must be manually copied to each cluster node.

Obfuscate keys and passwords

Enter the keys and passwords in clear text in ase.conf, cluster.conf, and abs.conf. Run the
obfuscate_keys command to obfuscate keys and passwords:

/opt/pingidentity/ase/bin/cli.sh obfuscate_keys -u admin -p

Copyright ©2022

 | API Security Enforcer | 125

Please take a backup of config/ase_master.key, config/ase.conf, config/
abs.conf, and config/cluster.conf before proceeding

If config keys and passwords are already obfuscated using the current master
 key, they are not obfuscated again

Following keys will be obfuscated:
config/ase.conf: sender_password, keystore_password
config/abs.conf: access_key, secret_key
config/cluster.conf: cluster_secret_key

Do you want to proceed [y/n]:y
obfuscating config/ase.conf, success
obfuscating config/abs.conf, success
obfuscating config/cluster.conf, success

Start ASE after keys and passwords are obfuscated.

i Important: After the keys and passwords are obfuscated, the ase_master.key must be moved to a
secure location from ASE for security reasons. If you want to restart ASE, the ase_master.key must be
present in the /opt/pingidentity/ase/config/ directory.

Delete UUID to propagate changed password

You can change the password on a single ASE node and propagate the change to other nodes in the ASE
cluster. To do this, you need to copy the /data directory of the ASE node on which the password has
been modified to the other nodes in the cluster.

i Important: The ase.store file in the ASE /data directory stores the password information, and
also the universally unique identifier (UUID) of the ASE node. It is important to delete the UUID of the
ASE node with modified password before copying its /data directory to the other nodes in the cluster.
This avoids cluster synchronization issues due to duplicate UUIDs.

Follow these steps to propogate the changed password to all the nodes in an ASE cluster:

1. Change the password for the ASE node. For more information, see Change Admin password.
2. Stop the ASE node by following the instructions explained in Stop ASE.
3. Run the delete-uuid script.

/opt/pingidentity/ase# ./util/delete-uuid
Deleting uuid 02cdf7b3-dfb7-4d5b-b9a1-171e89664d11
Success

4. Verify the successful deletion of UUID by re-executing the delete-uuid script.

/opt/pingidentity/ase# ./util/delete-uuid
uuid does not exist in database

5. Copy the /data directory to other nodes in the cluster.

PKCS#12 keystore

ASE ships with a default PKCS#12 keystore. The default password is “asekeystore”. The default
password is obfuscated and configured in the ase.conf file. You must update the default PKCS#12
keystore password by using the update_keystore_password command for security reasons. The
password is updated and obfuscated at the same time. ASE must be running for updating the keystore
password.

/opt/pingidentity/ase/bin/cli.sh update_keystore_password -u admin -p admin

Copyright ©2022

 | API Security Enforcer | 126

New password >
New password again >
keystore password updated

Directory structure

During the installation process, ASE creates the following directories:

Directory Name Purpose

config Contains files and directories to configure ASE and its APIs.

The certs subdirectory contains the keys and certificates for SSL/TLS
1.2.

data For internal use. Do not change anything in this directory.

logs Stores ASE log files including access log files sent to ABS for analysis.
The access log files are compressed and moved to abs_uploaded
directory after they have been uploaded to ABS.

lib For internal use. Do not change anything in this directory.

bin Contains scripts including the start and stop ASE, tuning script for ASE
performance.

i Note: The scripts in the bin directory are not editable.

util The util directory contains scripts to check and open ABS ports as
well as script to purge logs.

▪ check_ports.sh Check ABS ports
▪ open_ports_ase.sh:Run this script on the ASE machine to open

the default ASE ports: 80, 443, 8010, and 8020.
▪ Purge logs

ASE cluster setup

ASE Cluster runs either in a single cloud or across multiple clouds. All ASE cluster nodes communicate
over a TCP connection to continuously synchronize the configuration in real time. Cluster nodes are
symmetrical which eliminates a single point of failure. Key features of ASE clustering are:

▪ ASE node addition to a live cluster without configuring the node – true auto-scaling
▪ Configuration (ase.conf, API JSON files) synchronization across all cluster nodes
▪ Update and delete operations using CLI and REST APIs
▪ Run time addition or deletion of cluster nodes
▪ Real-time blacklist synchronization across cluster
▪ A single cluster with nodes spanning across multiple data centers

Several cluster features are unique to the deployed environment including:

▪ Authentication token for API gateway (ASE sideband only)
▪ Cookie replication across all cluster nodes (ASE inline only)

CLI configuration commands executed at any cluster node are automatically replicated across all cluster
nodes. All nodes remain current with respect to configuration modifications. Cluster nodes synchronize
SSL certificates across various ASE nodes.

Copyright ©2022

 | API Security Enforcer | 127

Add or remove a node from the cluster without disrupting any live traffic. The amount of time required
to activate a new cluster node is dependent on the time to synchronize the configuration and cookie
information from other nodes.

ASE cluster performs real-time synchronization of cookies for ASE inline configurations. This is critical for
session mirroring or handling a DNS flip between requests from the same client. Since no master or slave
nodes exist, all cluster nodes synchronize cookie information – which means that each node has the same
cookies as other nodes.

ASE also synchronizes ase.conf files across cluster nodes with the exception of a few parameters: data
ports, management ports, and number of processes.

ASE cluster deployment

ASE cluster is a distributed node architecture. Ping Identity recommends that one cluster node be
designated the management node through which all configuration changes are performed. This helps
maintain consistency of operations across nodes. However, no restrictions exist on using other nodes in
the cluster to make changes. If two different nodes are used to modify the ASE cluster, then the latest
configuration change based on time-stamps is synchronized across the nodes.

ASE cluster uses a circular deployment. During setup, the first node of the cluster acts as the central node
of the cluster from which all cluster nodes synchronize configuration and cookie data. When the setup of all
nodes is complete, the nodes communicate with each other to synchronize the latest session information.

i Note: If the first node or management node goes down, the functioning of the other cluster nodes is
not affected. Make sure the peer node provided in the cluster.conf is running before adding a new
node.

When an ASE cluster is setup, the peer_node parameter must be configured with an IPv4 address and port
number. ASE uses this value to connect to other nodes of the cluster. To add new cluster nodes, activate
one node at a time. In the following example, the peer_node IP address for all nodes is the IP address of
the first node. Each node must wait until the process of adding the previous node is completed.

Copyright ©2022

 | API Security Enforcer | 128

Use the status command to verify status before adding the next node in the cluster.

/opt/pingidentity/ase/bin/cli.sh status -u admin -p
Status: starting

After all cluster nodes are added, use the management or first node to carry out all cluster operations.

i Note: Add one node at a time to the cluster. After the node completes loading data, add the next node

Cluster nodes must be added sequentially, one node at a time, to ensure consistent cluster behavior. The
following table lists the items that are synchronized across the cluster:

Item Synchronized (Yes or No) Synchronization (restart or live)

Certificates (keystore) Yes Restart

Master key No -

API JSON Yes Live and restart

Cookies Yes Live and restart

CLI admin password No No

Authorization token for sideband
ASE

Yes Live and restart

Blacklist and whitelist (create,
delete, and delete all)

Yes Live and restart

Copyright ©2022

 | API Security Enforcer | 129

Real-time attacks (IP, cookie, and
token is blocked)

Yes Live

ase.conf Yes restart

abs.conf Yes restart

CLI commands that are not
synchronized

The following commands are not
synchronized:

▪ create_key_pair
▪ create_csr
▪ create_self_sign_cert
▪ import_key_pair
▪ import_cert
▪ create_management_key_pair
▪ create_management_csr
▪ create_management_self_sign_cert
▪ import_management_key_pair
▪ import_management_cert
▪ update_password
▪ update_auth_method
▪ generate_obfkey
▪ obfuscate_keys
▪ update_keystore_password

i Note: The commands listed
above require the entire ASE
to restart for the commands to
synchronize.

-

Start ASE cluster

To setup an ASE cluster, the following three steps must be completed:

Pre-requisites

1. Obtain list of IP addresses and ports required for ASE cluster nodes
2. Enable NTP on your system.
3. If adding an existing ASE instance to a cluster, backup the ASE data first. When a node is added to a

cluster, it synchronizes the data from the other nodes and overwrites existing data.

To setup an ASE cluster node:

1. Navigate to the config directory
2. Edit ase.conf file:

a. Set enable_cluster=true for all cluster nodes.
b. Make sure that the value in the parameter mode is same on each ASE cluster node, either inline

or sideband. If the value of mode parameter does not match, the nodes will not form a cluster.

Copyright ©2022

 | API Security Enforcer | 130

3. Edit the cluster.conf file

a. Configure cluster_id with an identical value for all nodes in a single cluster (for example,
cluster_id=shopping)

b. Enter port number in the cluster_management_port (default port is 8020) parameter. ASE node uses
this port number to communicate with other nodes in the cluster.

c. Enter an IPv4 address or hostname with the port number for the peer_node which is the first (or any
existing) node in the cluster. Keep this parameter empty for the first node of the cluster.

d. Provide the obfuscated cluster_secret_key. All the nodes of the cluster must have the same
obfuscated cluster_secret_key. This key must be entered manually on each node of the cluster
for the nodes to connect to each other.

e. For the first node of the ASE cluster, peer_node should be left empty. On other nodes of the ASE
cluster, enter the IP address or the hostname of the first cluster in the node in the peer_node
variable.

Here is a sample cluster.conf file:

; API Security Enforcer's cluster configuration.
; This file is in the standard .ini format. The comments start with a
 semicolon (;).
; Section is enclosed in []
; Following configurations are applicable only if cluster is enabled with
 true in ase.conf
; unique cluster id.
; valid character class is [A-Z a-z 0-9 _ - . /]
; nodes in same cluster should share same cluster id
cluster_id=ase_cluster
; cluster management port.
cluster_manager_port=8020
; cluster peer nodes.
; a comma-separated list of hostname:cluster_manager_port or
 IPv4_address:cluster_manager_port
; this node will try to connect all the nodes in this list
; they should share same cluster id
peer_node=
; cluster secret key.
; maximum length of secret key is 128 characters (deobfuscated length).
; every node should have same secret key to join same cluster.
; this field cannot be empty.
; change default key for production.
cluster_secret_key=OBF:AES:nPJOh3wXQWK/
BOHrtKu3G2SGiAEElOSvOFYEiWfIVSdummoFwSR8rDh2bBnhTDdJ:7LFcqXQlqkW9kldQoFg0nJoLSojnzHDbD3iAy84pT84

After configuring an ASE node, start the node by running the following command:

/opt/pingidentity/ase/bin/start.sh

Scale up the ASE cluster

Scale up the ASE cluster by adding one node at a time to an active cluster without disrupting traffic. To
add a new cluster node, enter the peer_node IP address or hostname in the cluster.conf file of the
ASE node and then start the ASE node. The new node will synchronize configuration and cookie data from
the peer nodes. After loading, it will become part of the cluster. For example, if the IP of the first node is
192.168.20.121 with port 8020, then the peer_node parameter would be 192.168.20.121:8020.

; ASE cluster configuration. These configurations apply only when you have
 enabled cluster in the api_config file.
; Unique cluster ID for each cluster. All the nodes in the same cluster
 should have the same cluster ID.
cluster_id=ase_cluster

Copyright ©2022

 | API Security Enforcer | 131

; Cluster management port.
cluster_manager_port=8020
; Cluster's active nodes. This can be a comma separated list of nodes in
 ipv4_address:cluster_manager_port format.
peer_node=192.168.20.121:8020

Scale down ASE cluster

A node can be removed from an active cluster without disrupting traffic by completing the following stops:

1. Stop the ASE node to be removed using the stop command
2. Set the enable_cluster option as falsein its ase.conffile.

i Note: The removed node retains the cookie and certificate data from when it was part of the cluster

Delete ASE cluster node

An inactive cluster node has either become unreachable or has been stopped. When you delete a stopped
cluster node, the operation does not remove cookie and other synchronized data. To find which cluster
nodes are inactive, use the cluster_info command:

/opt/pingidentity/ase/bin/cli.sh cluster_info -u admin -p
cluster id : ase_cluster
cluster nodes
127.0.0.1:8020 active
1.1.1.1:8020 active
2.2.2.2:8020 inactive
172.17.0.4:8020(tasks.aseservice) active
172.17.0.5:8020(tasks.aseservice) inactive
tasks.aseservice2:8020 not resolved

Using the cluster_info command output, you can remove the inactive cluster nodes 2.2.2.2:8020 and
172.17.0.5:8020.

To delete the inactive node, use the delete_cluster_node command:

/opt/pingidentity/ase/bin/cli.sh delete_cluster_node <IP:Port>

Stop ASE cluster

You can stop the entire cluster by running the following command on any ASE node in the cluster.

/opt/pingidentity/ase/bin/stop.sh cluster –u admin –p

When the cluster stops, each cluster node retains all the cookie and certificate data.

Restart ASE cluster

It is recommended to restart ASE cluster nodes, one node at a time, to ensure consistent cluster behavior..
To restart the ASE Cluster, complete the following steps:

1. Stop all the nodes in the cluster by running the following command on any ASE node in the cluster.

/opt/pingidentity/ase/bin/stop.sh cluster –u admin –p

Copyright ©2022

 | API Security Enforcer | 132

2. Start the first node or management node in the cluster by executing the following command.

/opt/pingidentity/ase/bin/start.sh

i Note: The first node or management node of the ASE cluster has the peer_node parameter empty
in the cluster.conf file.

3. Verify the status of the node by running the status command. Start the next node in the cluster after
the status of the node changes to started.

/opt/pingidentity/ase/bin/cli.sh status -u admin -p
Status: started

4. Repeat step-2 and step-3 for all the other nodes in the cluster, to complete the cluster restart.

Configure SSL for external APIs

ASE supports both TLS 1.2 and SSLv3 for external APIs. OpenSSL is bundled with ASE, following are the
version details:

▪ RHEL 7 : OpenSSL 1.0.2k-fips 26 Jan 2017
▪ Ubuntu 16LTS : OpenSSL 1.0.2g 1 Mar 2016

You can configure SSL in ASE for client side connection using one of the following methods:

▪ Method 1: Using CA-signed certificate
▪ Method 2: Using self-signed certificate
▪ Method 3: Importing an existing certificate

The steps provided in this section are for certificate and key generated for connections between the client
and ASE as depicted in the illustration below:

In a cluster setup:

1. Stop all the ASE cluster nodes
2. Configure the certificate on the management node
3. Start the cluster nodes one by one for the certificates to synchronize across the nodes

Copyright ©2022

 | API Security Enforcer | 133

Method 1: Use CA-signed certificate

To use Certificate Authority (CA) signed SSL certificates, follow the process to create a private key,
generate a Certificate Signing Request (CSR), and request a certificate as shown below:

i Note: ASE internally validates the authenticity of the imported certificate.

To use a CA-signed certificate:

1. Create a private key. ASE CLI is used to create a 2048-bit private key and to store it in the keystore.

/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p
Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
Ok, creating new key pair. Creating DH parameter may take around 20
 minutes. Please wait
Key created in keystore
dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

2. Create a CSR. ASE takes you through a CLI-based interactive session to create a CSR.

/opt/pingidentity/ase/bin/cli.sh create_csr -u admin -p
Warning: create_csr will delete any existing CSR and self-signed
 certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State > Colorado
Location >Denver
Organization >Pingidentity
Organization Unit >Pingintelligence
Common Name >ase
Generating CSR. Please wait...
OK, csr created at /opt/pingidentity/ase/config/certs/dataplane/ase.csr

3. Upload the CSR created in step 2 to the CA signing authority’s website to get a CA signed certificate.
4. Download the CA-signed certificate from the CA signing authority’s website.
5. Use the CLI to import the signed CA certificate into ASE. The certificate is imported into the keystore.

/opt/pingidentity/ase/bin/cli.sh import_cert <CA signed certificate path>
 -u admin -p
Warning: import_cert will overwrite any existing signed certificate
Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

6. Restart ASE by first stopping and then starting ASE.

Copyright ©2022

 | API Security Enforcer | 134

Method 2: Use self-signed certificate

A self-signed certificate is also supported for customer testing.

To create a self-signed certificate

1. Create a private key. ASE CLI is used to generate a 2048-bit private key which is in the /opt/
pingidentity/ase/config/certs/dataplane/dh1024.pem directory.

/opt/pingidentity/ase/bin/cli.sh create_key_pair -u admin -p
Warning: create_key_pair will delete any existing key_pair, CSR and self-
signed certificate
Do you want to proceed [y/n]:y
Ok, creating new key pair. Creating DH parameter may take around 20
 minutes. Please wait
Key created in keystore
dh param file created at /opt/pingidentity/ase/config/certs/dataplane/
dh1024.pem

2. Create a CSR file:

/opt/pingidentity/ase/bin/cli.sh create_csr -u admin -p
Warning: create_csr will delete any existing CSR and self-signed
 certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State >colorado
Location >Denver
Organization >PI
Organization Unit >TEST
Common Name >yoursiteabc.com
Generating CSR. Please wait...
OK, csr created at /opt/pingidentity/ase/config/certs/dataplane/ase.csr

3. Create a self-signed certificate. Use the CLI to produce a self-signed certificate using the certificate
request located in/pingidentity/ase/config/certs/dataplane/ase.csr

/opt/pingidentity/ase/bin/cli.sh create_self_sign_cert -u admin -p
Warning: create_self_sign_cert will delete any existing self-signed
 certificate
Do you want to proceed [y/n]:y
Creating new self-signed certificate
OK, self-sign certificate created in keystore

4. Restart ASE by stopping and starting.

Method 3: Import an existing certificate and key pair

To install an existing certificate, complete the following steps and import it into ASE. If you have
intermediate certificate from CA, then append the content to your server crt file.

1. Import key pair:

/opt/pingidentity/ase/bin/cli.sh import_key_pair private.key -u admin -p
Warning: import_key_pair will overwrite any existing certificates
Do you want to proceed [y/n]:y
Exporting key to API Security Enforcer...
OK, key pair added to keystore

2. Import the .crt file in ASE using the import_cert CLI command

/opt/pingidentity/ase/bin/cli.sh import_cert server-crt.crt -u admin -p
Warning: import_cert will overwrite any existing signed certificate

Copyright ©2022

 | API Security Enforcer | 135

Do you want to proceed [y/n]:y
Exporting certificate to API Security Enforcer...
OK, signed certificate added to keystore

3. Restart ASE by stopping and starting.

Configure SSL for management APIs

ASE supports both TLS 1.2 and SSLv3 for management APIs. OpenSSL is bundled with ASE, following
are the version details:

▪ RHEL 7 : OpenSSL 1.0.2k-fips 26 Jan 2017
▪ Ubuntu 16LTS: OpenSSL 1.0.2g 1 Mar 2016

You can configure SSL in ASE for management APIs using one of the following methods:

▪ Method 1: Using CA-signed certificate
▪ Method 2: Using self-signed certificate
▪ Method 3: Importing an existing certificate

The steps provided in this section are for certificate and key generated are for connections between a
management API client and ASE:

In a cluster setup:

1. Stop all the ASE cluster nodes
2. Configure the certificate on the management node
3. Start the cluster nodes one by one for the certificates to synchronize across the nodes

Method 1: Use CA-signed certificate

To use Certificate Authority (CA) signed SSL certificates, follow the process to create a private key,
generate a Certificate Signing Request (CSR), and request a certificate as shown below:

i Note: ASE internally validates the authenticity of the imported certificate.

To use a CA-signed certificate:

Copyright ©2022

 | API Security Enforcer | 136

1. Create a private key. ASE CLI is used to create a 2048-bit private key and to store it in the /opt/
pingidentity/ase/config/certs/management directory.

/opt/pingidentity/ase/bin/cli.sh create_management_key_pair -u admin -p
Warning: create_management_key_pair will delete any existing management
 key_pair, CSR and self-signed certificate
Do you want to proceed [y/n]:y
Ok, creating new management key pair. Creating DH parameter may take
 around 20 minutes. Please wait
Management key created at keystore
Management dh param file created at /opt/pingidentity/ase/config/certs/
management/dh1024.pem

2. Create a CSR. ASE takes you through a CLI-based interactive session to create a CSR.

/opt/pingidentity/ase/bin/cli.sh create_management_csr -u admin -p
Warning: create_management_csr will delete any existing management CSR and
 self-signed certificate
Do you want to proceed [y/n]:y
please provide following info
Country Code >US
State >Colorado
Location >Denver
Organization >Pingidentity
Organization Unit >Pingintelligence
Common Name >management.ase
Generating CSR. Please wait...
OK, management csr created at /opt/pingidentity/ase/config/certs/
management/management.csr

3. Upload the CSR created in step 2 to the CA signing authority’s website to get a CA signed certificate.
4. Download the CA-signed certificate from the CA signing authority’s website.
5. Use the CLI to import the signed CA certificate into ASE. The certificate is imported into the /

pingidentity/config/certs/management/management.csr file

/opt/pingidentity/ase/bin/cli.sh import_management_cert <CA signed
 certificate path> -u admin -p
Warning: import_management_cert will overwrite any existing management
 signed certificate
Do you want to proceed [y/n]:y
Exporting management certificate to API Security Enforcer...
OK, signed certificate added to keystore

6. Restart ASE by first stopping and then starting ASE.

Method 2: Use self-signed certificate

A self-signed certificate is also supported for customer testing.

To create a self-signed certificate

1. Create a private key. ASE CLI is used to generate a 2048-bit private key which is in the /ase/
config/certs/ directory.

/opt/pingidentity/ase/bin/cli.sh create_management_key_pair -u admin -p
Warning: create_management_key_pair will delete any existing management
 key_pair, CSR and self-signed certificate
Do you want to proceed [y/n]:y
Ok, creating new management key pair. Creating DH parameter may take
 around 20 minutes. Please wait
Management key created at keystore

Copyright ©2022

 | API Security Enforcer | 137

Management dh param file created at /opt/pingidentity/ase/config/certs/
management/dh1024.pem

2. Create a self-signed certificate. Use the CLI to produce a self-signed certificate using the certificate
request located in/pingidentity/ase/config/certs/management/management.csr

/opt/pingidentity/ase/bin/cli.sh create_management_self_sign_cert -u admin
 -p
Warning: create_management_self_sign_cert will delete any existing
 management self-signed certificate
Do you want to proceed [y/n]:y
Creating new management self-signed certificate
OK, self-sign certificate created in key store

3. Restart ASE by stopping and starting.

Method 3: Import an existing certificate and key pair

To install an existing certificate, complete the following steps and import it into ASE. If you have
intermediate certificate from CA, then append the content to your server .crt file.

1. Convert the key from the existing .pem file:

openssl rsa -in private.pem -out private.key

2. Convert the existing .pem file to a .crt file:

openssl x509 -in server-cert.pem -out server-cert.crt

3. Import key pair from step 2:

/opt/pingidentity/ase/bin/cli.sh import_management_key_pair private.key -u
 admin -p
Warning: import_key_pair will overwrite any existing certificates
Do you want to proceed [y/n]:y
Exporting management key to API Security Enforcer...
OK, key pair added to keystore

4. Import the .crt file in ASE using the import_management_cert CLI command

/opt/pingidentity/ase/bin/cli.sh import_management_cert server-crt.crt -u
 admin -p
Warning: import_management_cert will overwrite any existing management
 signed certificate
Do you want to proceed [y/n]:y
Exporting management certificate to API Security Enforcer...
OK, signed certificate added to keystore

5. Restart ASE by stopping and starting.

Configure native and PAM authentication

ASE provides two types of authentication:

▪ Linux Pluggable Authentication Module (PAM)
▪ ASE native authentication (default method)

All actions carried out on ASE require an authenticated user.

The two methods to choose the authentication method include:

▪ Configure auth_method parameter in ase.conf (see ASE Initial Configuration)
▪ Execute a CLI command (update_auth_method <method>).

Copyright ©2022

 | API Security Enforcer | 138

The sections below provide more details on configuring the desired method. The following diagram shows
the transition between authentication modes. The authentication method can be changed during run-time
without restarting ASE.

ASE native authentication

By default, ASE uses native ASE authentication which ships with the system. Each user can execute CLI
commands by including the shared “username” and “password” with each command. The system ships
with a default username (admin) and password (admin). Always change the default password using the
update_password command. For more information on ASE commands, see Appendix A.

To configure ase.conf to support native authentication, use the default configuration values:

auth_method=ase::db

To change the authentication from Native authentication to PAM mode, enter the following command in
ASE command line. In the example, login is a PAM script used for authentication.

/opt/pingidentity/ase/bin/cli.sh update_auth_method pam::login -u admin -p
password>

To switch from PAM mode authentication back to Native authentication, issue the following CLI command:

/opt/pingidentity/ase/bin/cli.sh update_auth_method ase::db -u <pam_user> -
p
password>

Here is an example of a CLI command with native authentication (-u,-p) enabled:

/opt/pingidentity/ase/bin/cli.sh add_server -u admin -p
password>

Copyright ©2022

 | API Security Enforcer | 139

Linux Pluggable Authentication Modules (PAM) authentication

PAM-based authentication provides the flexibility to authenticate administrators using existing
authentication servers, such as your organization’s LDAP directory. When PAM authentication is active,
ASE logs the identity of the user executing each CLI command. This provides a user-specific audit trail of
administrative access to the ASE system.

To activate PAM-based authentication, configure auth_method in ase.conf as
pam::<service>,where <service> is the script that the PAM module reads to authenticate the users.
Service scripts include login, su, ldap, etc. For example, login script allows all system users
administrative access to ASE. To support PAM authentication with login script, update auth_method
configuration values in ase.conf :

auth_method=pam::login

Here is an example using the CLI to change from Native to PAM authentication with login script:

/opt/pingidentity/ase/bin/cli.sh update_auth_method pam::login -u admin -p
password>

i Warning: Make sure that the script name provided for PAM based authentication is the correct one. If
a wrong file name is provided, ASE administrators are locked out of ASE.

To write your own PAM module script, add a custom script (for example ldap) which defines PAM’s
behavior for user authentication to the /etc/pam.d directory. To set the authentication method and use
the ldap script, enter the following command:

/opt/pingidentity/ase/bin/cli.sh update_auth_method pam::ldap -u admin -p
password>

Here is a snippet of a sample script:

root@localhost:/# cat /etc/pam.d/ldap
auth sufficient pam_ldap.so # Authenticate with LDAP server.
#auth sufficient pam_permit.so # Allow everyone. Pass-through mode.
#auth sufficient pam_deny.so # Disallow everyone. Block all access.

In the above example, the PAM module uses the organization’s LDAP server to authenticate users.

Recovering ASE from unavailable pam.dscript

When an invalid script name is entered while changing to PAM authentication, the PAM module defaults to
etc/pam.d/others for authentication. This makes ASE inaccessible to administrators. If this happens,
copy etc/pam.d/login to etc/pam.d/other. ASE will now use the credentials in etc/pam.d/
login to authenticate administrators. After logging back into ASE, change the authentication method to
use the correct file name. Copying the contents of etc/pam.d/login to etc/pam.d/other does not
need a restart of ASE or the host operating system.

ASE management, access and audit logs

ASE generates two three of logs:

▪ Access log contains information about all API traffic
▪ Management log contains information about Controller and Balancer
▪ Audit log contains information about various commands executed in ASE

Copyright ©2022

 | API Security Enforcer | 140

Access logs

Access logs are generated for port 80 (default port) and 443 (default port) traffic. Each Balancer process
has a corresponding Access log file (that is. two port 80 Balancer processes and two port 443 Balancer
processes require four log files). The log file name format is <protocol>_<port>_pid_<process-
ID>_access_<date>.log. Examples for port 80 and port 443 are:

▪ http__ws_80_pid_19017__access__2018-01-22_13-10.log
▪ https_wss_443_pid_19018__access__2018-01-22_13-10.log

Access logs are rotated every 10 minutes and archived. The archived log file format has.gz at the end of
the log file name (for example http_ws_80_pid_19017__access__2018-01-22_13-10.log.gz).

ASE sends all archived log files to API Behavioral Security (ABS) to detect attacks using Machine Learning
algorithms. The files are then moved to the abs_uploaded directory in the logs directory.

The following snippet shows an example log file:

-rw-r--r--. 1 root root 0 Aug 10 13:10
 http_ws_80_pid_0__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10
 https_wss_443_pid_0__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10
 http_ws_80_pid_19010__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10
 http_ws_80_pid_19009__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10
 https_wss_443_pid_19022__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 0 Aug 10 13:10
 https_wss_443_pid_19017__access__2018-01-22_13-10.log
-rw-r--r--. 1 root root 33223 Aug 10 13:11 balancer.log
-rw-r--r--. 1 root root 20445 Aug 10 13:11 controller.log
-rw-r--r--. 1 root root 33244 Aug 10 13:11 balancer_ssl.log

Management logs

Management log detail levels (for example INFO, WARNING, DEBUG) are configured in ase.conf.
Generated by controller and balancers, management logs are stored in the logs directory and include:

▪ Controller logs – controller.log
▪ Balancer log for port 80 (default port) – balancer.log
▪ Balancer log for port 443 – balancer_ssl.log

Controller logs

controller.log is a log file with data from the CLI, REST API, configurations, IPC, SSL, cluster, and
ABS. Rotated every 24 hours, controller.log is the current file name, older files are appended with a
timestamp.

Balancer logs

balancer.log for port 80 and balancer_ssl.log for port 443 are static files which are not rotated.
These files contain information about IPC between controllers and balancer processes as well as IPC
between balancer processes.

In a sideband ASE deployment, balancer checks for request-response parsing error at every 30-second.
Parsing error statistics is logged in balancer.log file only if balancer encounters parsing errors. If there
are no errors in a 30-second period, the balancer.log file does not show the JSON output. Following is
a snippet of request-response parsing error statistics:

{
 "sideband stats": {

Copyright ©2022

 | API Security Enforcer | 141

 "request parsing errors": {
 "total requests failed": 1,
 "request body absent": 0,
 "request body malformed": 0,
 "request source ip absent": 1,
 "request source ip invalid": 0,
 "request method absent": 0,
 "request url absent": 0,
 "request host header absent": 0,
 "request authentication failure": 0,
 "request error unknown": 0
 },
 "response parsing errors": {
 "total responses failed": 1,
 "response body absent": 0,
 "response body malformed": 0,
 "response code absent": 0,
 "response authentication failure": 0,
 "response correlation id not found": 1,
 "response error unknown": 0
 }
 }
}

The snippet shows that in-total there was one parsing error for request and one for the response. The
statistics also lists the type of request and response error.

Balancer log rotation

You can rotate the balancer log file by running the rotate-logs script available in the util directory
of ASE. By default, ASE does not rotate the balancer log like controller logs. However, you can add the
balancer log rotation script to a cron job. Once the balancer log is rotated, it is saved in logs/backup
directory. A separate .gz file is created for balancer.log and balancer_ssl.log file. The balancer
log rotation script also moves the rotated controller.log files to the backup directory.

The rotate-logs script takes [ASE_ROOT_DIR] as the only argument. [ASE_ROOT_DIR]is the
absolute path of ASE root directory.

./rotate-logs.sh --help
name
 rotate-logs.sh

synopsis
 rotate-logs.sh [<ASE_ROOT_DIR> | help | --help]

description
 Rotates balancer logs and moves rotated controller/balancer logs to the
 backup directory.

arguments
 <ASE_ROOT_DIR>
 absolute path of ASE root directory

 help, --help
 show this help message

exit status
 0 for ok,
 1 for errors.

Copyright ©2022

 | API Security Enforcer | 142

You can run the balancer log rotation script as a cron jon. For example, the following command would run
the cron job at mid-night. You can choose to run it at a different time.

0 0 * * * /opt/pingidentity/ase/util/rotate-logs.sh /opt/pingidentity/ase

Audit logs

ASE logs administrator actions (for example CLI commands, configuration changes) and stores audit logs
in the opt/pingidentity/ase/logs directory. Performed on a per ASE node basis, audit logging is
enabled by default.

Use the CLI to enable or disable audit logging using the commands enable_audit and
disable_audit. For example, to enable audit logs, enter the following at the command line:

/opt/pingidentity/ase/bin/cli.sh enable_audit -u admin -p password

The audit log captures information related to:

▪ System changes using CLI or REST API calls
▪ API JSON changes or ase.conf file updates
▪ SSL certificate updates

The logs are rotated every 24 hours with the current log file having no timestamp in its name. For more
information, see Audit log. The following is a snippet of audit log files:

-rw-r--r-- 1 root root 358 Aug 13 10:00 audit.log.2018-08-13_09-54
-rw-r--r-- 1 root root 301 Aug 13 10:12 audit.log.2018-08-13_10-00
-rw-r--r-- 1 root root 1677 Aug 13 11:16 audit.log.2018-08-13_10-12
-rw-r--r-- 1 root root 942 Aug 14 06:26 audit.log.2018-08-14_06-22
-rw-r--r-- 1 root root 541 Aug 15 08:19 audit.log

Change management log levels

The management log (balancer.log and controller.log) levels are initially configured in ase.conf
file by setting log_level to one of the following five values. The default value is INFO:

▪ FATAL
▪ ERROR
▪ WARNING
▪ INFO
▪ DEBUG

You can change the log level of management logs during run-time by using the log_level command.
The log_level command works in an identical way for both sideband and inline ASE modes. In an
ASE cluster set up, run the log_level command on all the ASE nodes. The change in log-level is also
recorded in Audit logs. Following is an example CLI output of the log_level command to change the log-
level to warn. The other values for the command are info, error, fatal, and debug.

#./bin/cli.sh -u admin -p admin log_level warn

You can also verify the current log level by using the ASE status command.

#./bin/cli.sh -u admin -p status
API Security Enforcer
status : started
mode : inline
http/ws : port 8080
https/wss : port 8443
firewall : enabled

Copyright ©2022

 | API Security Enforcer | 143

abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB
log level : warn

timezone : local (MST)

Purge log files

To manage storage space, you can either archive or purge access log, controller log, and audit log files
that have been uploaded to ABS. ASE provides a purge.sh script to remove access log files from the
abs_uploaded directory. The purge script is part of the /opt/pingidentity/ase/util directory.

i Warning: When the purge script is run, the access log files are permanently deleted from ASE.

To run the purge script, enter the following in ASE command line:

/opt/pingidentity/ase/util/purge.sh -d 3
In the above example, purge.sh deletes all the access log files which are
 older than 3 days. Here is a sample output for the purge script.
admin@pingidentity# ./util/purge.sh -d 3
This will delete logs in /opt/pingidentity/ase/logs/abs_uploaded that is
 older than 3 days.
Are you sure (yes/no): yes
removing /opt/pingidentity/ase/logs/abs_uploaded/
Processed_decoy_pid_27889__2017-04-01_11-04.log.gz : last changed at Sat Apr
 1 11:11:01 IST 2017
removing /opt/pingidentity/ase/logs/abs_uploaded/
Processed_http_ws_80_pid_27905__access__2017-04-01_11-04.log.gz : last
 changed at Sat Apr 1 11:11:01 IST 2017

External log archival

The purge script can also archive logs to secondary storage for future reference. The purge script
provides an option to choose the number of days to archive the log files. Use the -l option and the path of
the secondary storage to place the archived log files. For example:

admin@pingidentity# ./util/purge.sh -d 3 -l /tmp/

In the above example, log files older than three days are archived to the tmp directory. To automate log
archival, add the script to a cron job.

Configure syslog

Syslog messages are a standard for sending event notification messages. These messages can be stored
locally or on an external syslog server. ASE generates and sends syslog messages to an external syslog
server over UDP. All the syslog messages sent belong to the informational category.

Configuring syslog server

Configure the IP address or hostname and port number of the syslog server in the ase.conf file to send
syslog messages to the external server. To stop generating syslog messages, remove the syslog server
definition from the ase.conf file, stop and then start ASE. Here is a snippet from the ase.conf file:

; Syslog server settings. The valid format is host:port. Host can be an FQDN
 or an IPv4
address.

Copyright ©2022

 | API Security Enforcer | 144

syslog_server=

Listing syslog server

Show the configured syslog server by executing the list_sys_log_server command:

/opt/pingidentity/bin/cli.sh list_syslog_server -u admin -p
192.168.11.108:514, messages sent: 4, bytes sent: 565

Here is a sample message sent to the syslog server:

Aug 16 06:16:49 myhost ase_audit[11944] origin: cli, resource: add_api,
 info: config_file_path=/opt/pingidentity/ase/api.json, username=admin
Aug 16 06:16:56 myhost ase_audit[11944] origin: cli, resource: list_api,
 info: username=admin

Email alerts and reports

ASE sends email notifications under two categories:

▪ Alerts – alerts are event based.
▪ Reports – sent at a configured frequency (email_report) from one to seven days.

In a cluster deployment, configure the e-mail on the first ASE node. In case the first ASE node is not
available, the ASE node with the next highest up-time takes over the task of sending e-mail alerts and daily
reports. For more information on ASE cluster, see ASE cluster setup on page 126.

; Defines report frequency in days [0=no reports, 1=every day, 2=once in two
 days and max is 7 ; days]
email_report=1
; Specify your email settings
smtp_host=smtp://<smtp-server>
smtp_port=587
; Set this value to true if smtp host support SSL
smtp_ssl=true
; Set this value to true if SSL certificate verification is required
smtp_cert_verification=false
sender_email=
sender_password=
receiver_email=

; Defines threshold for an email alert. For example, if CPU usage is 70%,
 you will get an
; alert.
cpu_usage=70
memory_usage=70
filesystem_size=70

Email alerts

Email alerts are sent based on the following event categories:

▪ System resource – System resources are polled every 30 minutes to calculate usage. An email alert is
sent if the value exceeds the defined threshold. The following system resources are monitored:

▪ CPU: average CPU usage for a 30-minute interval
▪ Memory: memory usage at the 30th minute
▪ Filesystem: filesystem usage at the 30th minute

Copyright ©2022

 | API Security Enforcer | 145

▪ Configuration – When configuration changes occur, an email alert is sent for these events:

▪ Adding or removing an API
▪ Adding or deleting a server
▪ Nodes of a cluster are UP or DOWN

▪ Decoy API –When decoy APIs are accessed for the first time, an email alert is sent. The time between
consecutive alerts is set using decoy_alert_interval in ase.conf. The default value is 180
minutes. For more information on decoy APIs, see In-Context decoy APIs.

▪ ASE-ABS log transfer and communication – ASE sends an alert in the following two conditions:

▪ Access Log transfer failure - When ASE is not able to send access log files to ABS for more than
an hour, ASE sends an alert with the names of the log files.

▪ ASE-ABS communication failure – When interruptions occur in ASE-ABS communication, an
alert is sent identifying the error type. The email also mentions the current and total counter for the
alert. The current counter lists the number of times that failure happened in last one hour. The total
counter lists the total number of times that error has occurred since ASE was started.

▪ ABS seed node resolve
▪ ABS authentication
▪ ABS config post
▪ ABS cluster INFO
▪ ABS service unavailable
▪ Log upload
▪ Duplicate log upload
▪ Log file read
▪ ABS node queue full
▪ ABS node capacity low
▪ ABS attack type fetch

Following is a template for alerts:

Event: <the type of event>
Value: <the specific trigger for the event>
When: <the date and time of the event>
Where: <the IP address or hostname of the server where the event occured>

For example,

Event : high memory usage
Value : 82.19%
When : 2019-May-16 18:30:00 PST
Where : vortex-132

Alerts logged in log file: Following is a list of all the alerts that are logged in controller.log file when
email alerts are disabled (enable_email=false) in ase.conf file.

▪ High CPU use
▪ High memory use
▪ High filesystem use
▪ Adding API to ASE
▪ Removing API from ASE
▪ Updating and API
▪ Adding a backend server
▪ Removing a backend server
▪ ASE cluster node available
▪ ASE cluster node unavailable

Copyright ©2022

 | API Security Enforcer | 146

▪ Backend server state changed to UP
▪ Backend server state changed to DOWN
▪ Log upload service failure
▪ Error while uploading file
▪ Invalid ASE license file
▪ Expired ASE license file

Email reports

Email reports

ASE sends reports at a frequency in number of days configured in ase.conf file. The report is sent at
midnight, 00:00:00 hours based on the local system time. The report contains the following:

▪ Cluster name and location
▪ Status information on each cluster node

▪ Operating system, IP address, management port, and cluster port
▪ Ports and the number of processes (PIDs)
▪ Average CPU, memory utilization – average during 30-minute polling intervals
▪ Disk usage and log size

▪ Information on each API: Name, Protocol, and Server Pool

Following is a template of weekly or daily email report:

Date: Sat, 29 Jun 2019 04:01:47 -0800 (PST)
To: receiver@example.com
From: sender@exmple.com
Subject: API Security Enforcer Daily Reports

Dear DevOps,
Please find the daily report generated by ase2 at 2019-Jun-29 00:01:01 UTC.
============== Cluster Details =================
Cluster Name: pi_cluster
Active Nodes: 2
Inactive nodes: 0
No of APIs: 7
LSM State: disabled
Manual IOC: 0
Automated IOC: 0

================== Node 1 ===================
Host Name: apx1
Management Port: 8010
Cluster Port: 8020
Status: Active
Up Since: 2019-Jan-26 09:27:26
Operating System: Ubuntu 14.04.4 LTS
CPU Usage: 55.80%
Memory Usage: 38.17%
Filesystem Usage: 17.20%
Log Size: 20 GB

================== Node 2 ===================
Host Name : apx2
Management Port: 8010
Cluster Port: 8020
Status: Active
Up Since: 2019-Jan-26 09:26:35
Operating System: Ubuntu 14.04.4 LTS
CPU Usage: 55.79%

Copyright ©2022

 | API Security Enforcer | 147

Memory Usage: 38.17%
Filesystem Usage: 17.20%
Log Size: 20 GB
===

================= API Details ==================
API ID: https-app
Status: loaded
Protocol: https
decoy: in-context
Active Servers: 172.17.0.8:2800 172.17.0.7:2700
Inactive Servers:
===
API ID: http-app
Status: loaded
Protocol: http
decoy: in-context
Active Servers: 172.17.0.7:2100 172.17.0.8:2300 172.17.0.7:2700
Inactive Servers:
===

Best,
API Security Enforcer

Decoy API access reports: ASE sends decoy API access report at a 3-hour interval by default. You can
configure this time interval in minutes in ase.conf file by configuring decoy_alert_interval variable.
ASE sends the report only if the decoy API is accessed during the configured time interval. The report
provides the following details:

▪ The start time when the decoy API was first accessed and the end time when it was last accessed
▪ The ASE cluster name
▪ The total number of requests for decoy API in the ASE cluster
▪ The host name of the ASE where the decoy API was accessed

Following is a sample email template for decoy API:

Date: Sat, 29 Jun 2019 04:01:47 -0800 (PST)
To: receiver@example.com
From: sender@exmple.com
Subject: API Security Enforcer Decoy Access Reports

Dear DevOps,
Please find the decoy report generated by ase2 at 2019-Jun-29 12:01:45 UTC.
 The default location for the decoy log files is in the directory: /opt/
pingidentity/ase/logs/
============== Decoy Summary =================
Cluster Name: pi_cluster
Start Time: 2019-Jun-29 09:00:00
End Time: 2019-Jun-29 12:00:00
Total Requests: 875

================== Node 1 ===================
Host Name: ase2
Total Requests: 428

================== Node 1 ===================
Host Name: ase
Total Requests: 447

Best,
API Security Enforcer

Copyright ©2022

 | API Security Enforcer | 148

ASE alerts resolution

The following table describes the various email alerts sent by ASE and their possible resolution. The
resolution provided is only a starting point to understand the cause of the alert. If ASE is reporting an alert
even after the following the resolution provided, contact PingIntelligence support.

Email alert Possible cause and resolution

ASE start or restart email When ASE starts or restarts, it sends an email to the configured email ID. If
email from ASE is not received, check the email settings in ase.conf file.

high CPU usage Cause: Each ASE node polls for CPU usage of the system every 30-
minutes. If the average CPU usage in the 30-minutes interval is higher than
the configured threshold in ase.conf, then ASE sends an alert.

Resolution: If ASE is reporting a high CPU usage, check if other processes
are running on the machine on which ASE is installed. If ASE controller
or balancer processes are consuming high CPU, it may mean that ASE is
receiving high traffic. You should consider adding more ASE nodes.

high memory usage Cause: Each ASE node polls for memory usage of the system every 30-
minutes. If the average memory usage in the 30-minutes interval is higher
than the configured threshold ase.conf, then ASE sends an alert.

Resolution: If ASE is reporting a high memory usage, check if any other
process is consuming memory of the system on which ASE is installed. Kill
any unnecessary process other than ASE's process.

high filesystem usage Cause: Each ASE node polls for filesystem usage of the system every 30-
minutes. If the average filesystem usage in the 30-minutes interval is higher
than the configured threshold ase.conf, then ASE sends an alert.

Resolution: If ASE is reporting a high filesystem usage, check if the
filesystem is getting full. Run the purge script available in the util directory
to clear the log files.

API added ASE sends an email alert when an API is added to ASE using CLI or REST
API.

Confirm: ASE admin should verify whether correct APIs were added
manually or the APIs were added by AAD because of auto-discovery in
ABS. If an API is accidentally added, you should immediately remove it from
ASE.

API removed ASE sends an email alert when an API is removed using CLI or REST API.

Confirm: ASE admin should verify whether the APIs were deleted
intentionally or accidentally.

API updated ASE sends an email alert when an API definition (the API JSON file) is
updated by using CLI or REST API.

Confirm: ASE admin should verify whether the correct APIs was updated.

Server added ASE sends an email alert when a server is added to an API by using CLI or
REST API.

Confirm: ASE admin should verify whether the correct server was added to
API.

Copyright ©2022

 | API Security Enforcer | 149

Server removed ASE sends an email alert when a server is removed from an API by using
CLI or REST API.

Confirm: ASE admin should verify whether the correct server was removed
from an API.

cluster node up ASE sends an email alert when a node joins an ASE cluster.

Confirm: ASE admin should verify whether the correct ASE node joined the
ASE cluster.

cluster node down ASE sends an email alert when a node is removed from an ASE cluster.

Confirm: ASE admin should check the reason for removal of ASE node
from the cluster. ASE node could disconnect from cluster because of
network issues, a manual stop of ASE, or change in IP address of the ASE
machine.

server state changed to Up ASE sends an email alert when the backend API server changes state from
inactive to active. This alert is applicable for Inline ASE when health check is
enabled for an API. This is an informative alert.

server changed to Down ASE sends an email alert when the backend API server changes state from
active to inactive. This alert is applicable for Inline ASE when health check is
enabled for an API.

Resolution: ASE admin should investigate the reason for the backend
API server being not reachable from ASE. You can run the ASE
health_status command to check the error which caused the server to
become inactive.

decoy API accessed ASE sends an email alert when a decoy API is accessed. This is an
informative alert.

Alerts for uploading access log files to ABS

ASE sends one or more alerts when it is not able to send access log files to ABS. The following table lists
the alerts and possible resolution for the alerts.

Email alert Possible cause and resolution

Network error Cause: ABS IP may not be reachable or ASE is not able to connect ABS IP
and port.

Resolution:

▪ If there is a firewall in the deployment, check whether firewall is blocking
access to ABS.

▪ Check whether ABS is running.
▪ Check whether correct IP address is provided in the abs.conf file.

ABS seed node resolve
error

Cause: The hostname provided in abs.conf could not be resolved.

Resolution: Check whether correct IP address is provided in abs.conf file.

ABS SSL handshake
error

Cause: SSL handshake error could be because of an invalid CA certificate.

Resolution: Check whether a valid CA certificate is configured in ASE.

Copyright ©2022

 | API Security Enforcer | 150

ABS authentication error Cause: Authentication error could be because of invalid access and secret
key.

Resolution: Confirm the access key and secret key configured is the same
that is configured in ABS abs.properties file.

ABS cluster info error Cause: Error while fetching ABS cluster information.

Resolution: Check the controller.log file.

ABS config post error Cause: Error while sending API JSON definition to ABS

Resolution: Check the controller.log file.

ABS service unavailable
error

Cause: ABS returning 503 response code.

Resolution: Check the abs.log file.

Log upload error Cause: API call to upload access log files to ABS fails.

Resolution: Check both ASE's controller.log and ABS abs.log file.

Duplicate log upload
error

This is an informative message.

ABS node queue full
error

Cause: ABS responds with a message that it's queue is full. This can be
because of increased traffic on ASE and large number of access log files
being generated.

Resolution: Increase the number of ABS nodes.

ABS node capacity low
error

Cause: ABS resources are utilized to a maximum.

Resolution: Increase the number of ABS nodes.

ABS attack get error Cause: Error while fetching attack list from ABS

Resolution: Check ASE's controller.log file.

Sideband ASE
When deployed in sideband mode ASE receives API calls from an API gateway which passes API traffic
information for AI processing. In such a deployment, ASE works along with the API gateway to protect your
API environment. The following diagram shows a typical ASE sideband deployment:

Copyright ©2022

 | API Security Enforcer | 151

The following is a description of the traffic flow through the API gateway and Ping Identity ASE.

1. Incoming request to API gateway
2. API gateway makes an API call to send the request metadata in JSON format to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP against the AI

generated Blacklist. If all checks pass, ASE returns a 200-OK response to the API gateway. Otherwise,
a different response code is sent to the Gateway. The request is also logged by ASE and sent to the AI
Engine for processing.

4. If the API gateway receives a 200-OK response from ASE, then it forwards the request to the backend
server. If it receives a 403, the Gateway does not forward the request to the backend server and returns
a different response code to the client.

5. The response from the backend server is received by the API gateway.
6. The API gateway makes a second API call to pass the metadata information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the metadata information and sends a 200-OK to the API gateway.
8. API gateway sends the response received from the backend server to the client.

i Note: Make sure that XFF is enabled in the API gateway for ASE to detect the client IP addresses
correctly.

Copyright ©2022

 | API Security Enforcer | 152

Configuring ASE for sideband

To configure ASE to work in the sideband mode, edit the ase.conf file located in the config directory.
Set the value of the mode parameter to sideband. The default value of the mode parameter is inline.
Following is a snippet of the ase.conf file with the mode parameter set to sideband.

; Defines running mode for API Security Enforcer.
mode=sideband

Enable sideband authentication

To have a secure the connection between your API gateway and ASE, enable sideband authentication in
ASE and generate a sideband token. This token is configured in the API gateway for it to communicate
securely with ASE.

/opt/pingidentity/ase/bin/cli.sh enable_sideband_authentication -u admin -p
 admin
Sideband authentication is successfully enabled

Generate sideband token: Enter the following command to generate ASE sideband token:

/opt/pingidentity/ase/bin/cli.sh create_sideband_token -u admin -p admin
Sideband token d9b7203c97844434bd1ef9466829e019 created.

ASE configuration - ase.conf

To secure your API environment using sideband ASE deployment, APIs need to be configured in API
security Enforcer using an API JSON file. Each API has a unique API JSON file. For example, 5 APIs
would require configuration of 5 API JSON files. ASE ships with sample JSON files located in the /
config/api directory. Two options exist for deploying API JSON files:

1. Automated deployment using AAD which is documented in the ABS Engine admin guide
2. Manually configure the JSON file with the required parameters as shown in the next section.

ASE system level configuration entails modifying parameters in the ase.conf file located in the config
directory. Some values have default settings which can be modified to support application requirements.
The parameter values and descriptions are included in the following table:

Parameter Description

ASE mode

mode Change the mode to sideband for ASE to work in a sideband mode. The
default value is inline.

ASE timezone

timezone Sets ASE's timezone. The values can be local or UTC. Default value is
local. If ASE is deployed in a cluster, configure the same timezone on
each cluster node manually.

enable_sideband_keepalive When set to true, ASE sends a keep-alive in response header for
the TCP connection between API gateway and ASE. With the default
falsevalue, ASE sends a connection close in response header for
connection between API gateway and ASE.

i Note: This parameter is applicable only when mode is set to
sideband.

Copyright ©2022

 | API Security Enforcer | 153

enable_sideband_authentication This parameter only applies in the ASE sideband mode. Set it to true to
enable authentication between in client, for example, an API gateway and
ASE. After setting it to true, generate a sideband authentication token
using ASE create_sideband_token command.

ASE ports

http_ws_port Data port used for http or WebSocket protocol.

The default value is 80.

https_wss_port Data port used for https or Secure WebSocket (wss).

The default value is 443.

management_port Management port used for CLI and REST API management.

The default value is 8010.

ASE administration and audit

admin_log_level The level of log detail captured. Options include:

Fatal – 1, Error – 2, Warning – 3, Info – 4, Debug – 5

enable_audit When set to true, ASE logs all actions performed in ASE in the audit log
files.

The default value is true.

syslog_server Syslog server hostname or IPv4 address:port number.

Leave this parameter blank for no syslog generation.

hostname_refresh N/A

auth_method Authentication method used for administrator access. See Configuring
Native and PAM Authentication for more information on the two options:

▪ ase::db (Default - Native authentication)
▪ pam::ldap (Linux-PAM authentication with script)

ase_health When true, enables load balancers to perform a health check using the
following URL:”http(s)://<ASE Name>/ase” where <ASE Name> is the ASE
domain name

The default value is false.

i Note: Do not configure the /ase URL in an API JSON file.

enable_1G N/A

http_ws_process The number of HTTP processes. It is set to 1. Do not change this value.

https_wss_process The number of HTTPS or processes. It is set to 1. Do not change this
value.

enable_access_log When true, log client traffic request and response information. Default
value is true.

flush_log_immediate When true, log files are immediately written to the file system. When
false, log files are written after a time interval. The default value is true.

Copyright ©2022

 | API Security Enforcer | 154

attack_list_memory The amount of memory used for maintaining black and whitelists. The
default value is 128 MB.

keystore_password Password for the keystore. For more information on updating the keystore
password, see Updating Keystore Password.

enable_hostname_rewrite NA

ASE cluster

enable_cluster When true, run setup in cluster mode.

The default value is false, run in standalone mode.

Security

enable_sslv3 When true, enable SSLv3. Default value is false.

server_ca_cert_path N/A

enable_xff N/A

enable_firewall When true,activates the ASE firewall.

The default value is true.

Real-time API security

enable_ase_detected_attack When true, activates the real-time security in ASE.

The default value is false.

API deception

decoy_alert_interval The time interval between decoy API email alerts.

The default value is 180 minutes.

Maximum value is 1440 minutes (i.e. 24 hours).

AI-based API security (ABS)

enable_abs When true, send access log files to ABS for generating API metrics and
detecting attacks using machine learning algorithms.

enable_abs_attack When true, ASE fetches attack list from ABS and blocks access by clients
in the attack list.

When false, attack list is not downloaded.

abs_attack_request_minute Time interval in minutes at which ASE fetches ABS attack list. The default
value is 10 minutes.

Google Pub/Sub configuration

enable_google_pubsub Set it to true if you want ASE to push metrics data to Google cloud. The
default value is false.

i Note: ASE must be in the sideband mode for Google Pub/Sub
configuration to take effect.

google_pubsub_topic The path to your topic for publishing and subscribing the messages.
For example,/pingidentity/topic/your_topic, for example, /
viatests/topics/ping_incoming.

Copyright ©2022

 | API Security Enforcer | 155

google_pubsub_concurrency The number of concurrent connection between ASE and Google Pub/
Sub. The maximum value is 1024 connections. Default value is 1000
connections.

google_pubsub_qps The number of messages per second that ASE can publish to the topic.
Maximum value is 10,000. The default value is 1000.

google_pubsub_apikey The API Key to establish connection between ASE and Google Pub/Sub.
Configuring API Key for Google Pub/Sub is optional.

cache_queue_size The number of messages that are buffered in cache when ASE is not
able to publish to Google Pub/Sub. Maximum size of the queue is 10,000
messages. The default value is 300 messages.

google_pubsub_timeout The time in seconds for which ASE tries to publish messages to Google
Pub/Sub. In case of failure to publish, ASE makes three attempts
to publish the message, after which it writes the message to the
google_pubsub_failed.log file.

Alerts and reports

enable_email When true, send email notifications. See Email alerts and reports on page
144 for more information. The default value is false.

email_report Time interval in days at which ASE sends reports. Minimum value is one
day and the maximum is seven days.

The default value is 1.

smtp_host Hostname of SMTP server.

smtp_port Port number of SMTP server.

smtp_ssl Set to true if you want email communication to be over SSL. Make sure
that the SMTP server supports SSL. If you set smtp_ssl to true and the
SMTP server does not support SSL, email communication falls back to the
non-SSL channel. The default value is true.

Set it to false if email communication is over a non-SSL channel. The email
communication will fail if you set the parameter to false, but the SMTP
server only supports SSL communication.

smtp_cert_verification Set to true if you want ASE to verify the SMTP server's SSL certificate.
The default value is true.

If you set it to false, ASE does not verify SMTP server's SSL certificate;
however, the communication is still over SSL.

i Note: If you have configured an IP address as smtp_host and set
smtp_cert_verification to true, then make sure that the certificate
configured on the SMTP server has the following:

X509v3 extensions:
 X509v3 Key Usage:
 Key Encipherment, Data Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Subject Alternative Name:
 IP Address: X.X.X.X

Copyright ©2022

 | API Security Enforcer | 156

sender_email Email address for sending email alerts and reports.

sender_password Password of sender’s email account.

i Note: You can leave this field blank if your SMTP server does not
require authentication.

receiver_email Email address to notify about alerts and reports

See email alerts for more information.

ASE server resource utilization

cpu_usage Percentage threshold value of CPU utilization.

See email alerts for more information.

memory_usage Percentage threshold value of memory usage.

email alerts alerts for more information.

filesystem_size Percentage threshold value of filesystem capacity.

See email alerts for more information.

buffer_size Customizable payload buffer size to reduce the number of iterations
required for reading and writing payloads.

Default value is 16KB. Minimum is 1KB and maximum is 32KB.

A sample ase.conf file is displayed below:

; This is API Security Enforcer's main configuration file. This file is in
 the standard .ini format.
; It contains ports, firewall, log, ABS flags. The comments start with a
 semicolon (;).

; Defines running mode for API Security Enforcer (Allowed values are inline
 or sideband).
mode=inline

; Defines http(s)/websocket(s) ports for API Security Enforcer. Linux user
 should have the privilege to bind to these ports.
; If you comment out a port, then that protocol is disabled.
http_ws_port=80
https_wss_port=443

; REST API
management_port=8010

; For controller.log and balancer.log only
; 1-5 (FATAL, ERROR, WARNING, INFO, DEBUG)
admin_log_level=4

; Defines the number of processes for a protocol.
; The maximum number of allowed process for each protocol is 6 (1 master + 5
 child). The
; following defines 1 process for both http/ws and https/wss protocol.
http_ws_process=1
https_wss_process=1

; Enable or disable access logs to the filesystem (request/response).

Copyright ©2022

 | API Security Enforcer | 157

; WARNING! It must be set to true for sending logs to ABS for analytics.
enable_access_log=true
; To write access log immediately to the filesystem, set to true.
flush_log_immediate=true

; Setting this value to true will enable this node to participate in an API
 Security Enforcer
; cluster. Define cluster configurations in the cluster.conf
enable_cluster=false

; Current API Security Enforcer version has 3 firewall features: API
 Mapping, API Pattern
; Enforcement, and Attack Types.
enable_firewall=true

; X-Forwarded For
enable_xff=false

; SSLv3
enable_sslv3=false

; enable Nagle's algorithm (if NIC card is 1G).
enable_1G=true

; tcp send buffer size in bytes(kernel)
tcp_send_buffer_size=65535
; tcp receive buffer size in bytes(kernel)
tcp_receive_buffer_size=65535

; buffer size for send and receive in KBs (user)
buffer_size=16KB

; Set this value to true, to allow API Security Enforcer to send logs to
 ABS. This
; configuration depends on the value of the enable_access_log parameter.
enable_abs=false

; Set this value to true, to allow API Security Enforcer to fetch attack
 list from ABS.
enable_abs_attack=false

; This value determines how often API Security Enforcer will get attack list
 from ABS.
abs_attack_request_minutes=10

; Set this value to true, to allow API Security Enforcer to block auto
 detected attacks.
enable_ase_detected_attack=false

; Set this value to true to enable email for both alerts and daily reports.
enable_email=false

; Defines report frequency in days [0=no reports, 1=every day, 2=once in two
 days and max is 7 ; days]
email_report=1
; Specify your email settings
smtp_host=smtp://<smtp-server>
smtp_port=587
; Set this value to true if smtp host support SSL
smtp_ssl=true
; Set this value to true if SSL certificate verification is required
smtp_cert_verification=false
sender_email=
sender_password=

Copyright ©2022

 | API Security Enforcer | 158

receiver_email=

; Defines threshold for an email alert. For example, if CPU usage is 70%,
 you will get an
; alert.
cpu_usage=70
memory_usage=70
filesystem_size=70

; Authentication method. Format is <auth_agent>::<auth_service>
; Valid values for auth_agent are ase and pam
; ase agent only supports db auth_service
; pam agent can support user configured pam services
; For example ase::db, pam::passwd, pam::ldap etc
auth_method=ase::db

; Enable auditing. Valid values are true or false.
enable_audit=true

; Decoy alert interval in minutes. [min=15, default=3*60, max=24*60]
decoy_alert_interval=180

; Interval for a hostname lookup (in seconds). [min=10, default=60,
 max=86400]
hostname_refresh=60

; Syslog server settings. The valid format is host:port. Host can be an FQDN
 or an IPv4
; address.
syslog_server=

; Attack List size in MB or GB. [min=64MB, max=1024GB]
; ASE will take 3*(configured memory) internally. Make sure that the system
 has at least
; 3*(configured memory) available
; If you are running ASE inside a container, configure the container to use
 3*(configured
; memory) shared memory.
attack_list_memory=128MB

; Enable or Disable health check module. ASE uses '/ase' url for both http
 and https. This is
; useful if ASE is deployed behind a load balancer.
enable_ase_health=false

; Location for server's trusted CA certificates. If empty, Server's
 certificate will not be
; verified.
server_ca_cert_path=

; enable client side authentication. This setting is applicable only in
 sideband mode. Once enabled
; request will be authenticated using authentication tokens.
enable_sideband_authentication=false

; enable connection keepalive for requests from gateway to ase.
; This setting is applicable only in sideband mode.
; Once enabled ase will add 'Connection: keep-alive' header in response
; Once disabled ase will add 'Connection: close' header in response
enable_sideband_keepalive=false

; keystore password
keystore_password=OBF:AES:sRNp0W7sSi1zrReXeHodKQ:lXcvbBhKZgDTrjQOfOkzR2mpca4bTUcwPAuerMPwvM4

Copyright ©2022

 | API Security Enforcer | 159

; enable hostname rewrite for inline mode. ASE will rewrite the host header
 in request
; to the server's hostname
enable_hostname_rewrite=false

; Set the timezone to utc or local. The default timezone is local.
timezone=local

; Google Pub Sub Configuation
enable_google_pubsub=false

google_pubsub_topic=/topic/apimetrics

; Number of concurrent connections to Google Pub/Sub
; Minimum: 1, Default: 1000, Maximum: 1024
google_pubsub_concurrency=1000

; Number of messages published per second.
; Minimum: 1, Default: 1000, Maximum: 10000
google_pubsub_qps=1000

; Google service account API key (Optional)
google_pubsub_apikey=

; Maximum number of messages buffered in memory
; If queue is full, messages are written to logs/google_pubsub_failed.log
; Minimum: 1, Default: 300, Maximum: 10000
cache_queue_size=300

; Timeout in seconds to publish a message to Google Pub/Sub.
; Minimum: 10, Default: 30, Maximum: 300
google_pubsub_timeout=30

API naming guidelines

The API name must follow the following guidelines:

▪ The name should not have the word “model”.
▪ The name should not have the word “threshold”.
▪ The name should not have the word “all”.
▪ The name should not have the word “decoyall”.

Following is the list of allowed characters in API name:

▪ The maximum characters in API name can be 160
▪ - (hyphen), _ (underscore), and white space are allowed in the name
▪ a-z, A-Z, and 0-9
▪ The first character must be alphanumeric

Defining an API – API JSON configuration file

The API JSON file parameters define the behavior and properties of your API. The sample API JSON files
shipped with ASE can be changed to your environment settings and are populated with default values.

The following table describes the JSON file parameters:

Parameter Description

protocol API request type with supported values of:

http - HTTP

Copyright ©2022

 | API Security Enforcer | 160

url The value of the URL for the managed API. You
can configure up to six levels of sub-paths. For
example,

"/shopping"- name of a 1 level API

"/shopping/electronics/phones/brand" –
4 level API

"/" – entire server (used for ABS API Discovery
or load balancing)

hostname Hostname for the API. The value cannot be empty.

“*” matches any hostname.

Configure the client identifiers (for example, cookie, API key, OAuth2 token) used by the API

cookie Name of cookie used by the backend servers.

cookie_idle_timeout

logout_api_enabled

cookie_persistence_enabled

N/A

oauth2_access_token When true, ASE captures OAuth2 Access Tokens.

When false, ASE does not look for OAuth2
Tokens.

Default value is false.

For more information, see Configuring OAuth2
Token.

apikey_qs When API key is sent in the query string, ASE uses
the specified parameter name to capture the API
key value.

For more information, see Configuring API keys.

apikey_header When API key is part of the header field, ASE uses
the specified parameter name to capture the API
key value.

For more information, see Configuring API keys.

login_url Public URL used by a client to connect to the
application.

enable_blocking When true, ASE blocks all types of attack on this
API. When false, no attacks are blocked.

Default value is false.

api_mapping N/A

Copyright ©2022

 | API Security Enforcer | 161

API pattern enforcement

protocol_allowed

http_redirect

methods_allowed

content_type_allowed

error_code

error_type

error_message_body

N/A

Flow control

client_spike_threshold

client_connection_queuing

N/A

api_memory_size Maximum ASE memory allocation for an API.

The default value is 128 MB. The data unit can be
MB or GB.

Health_check

health_check_interval

health_retry_count

health_url

N/A

server_ssl N/A

Servers:

host

port

The IP address or hostname and port number of
each backend server running the API.

server_spike_threshold

server_connection_quota

N/A

Decoy Config

decoy_enabled

response_code

response_def response_message

decoy_subpaths

When decoy_enabled is set to true, decoy sub-
paths function as decoy APIs .

response_code is the status code (for example
200) that ASE returns when a decoy API path is
accessed.

response_def is the response definition (for
example OK) that ASE returns when a decoy API
path is accessed.

response_message is the response message (for
example OK) that ASE returns when a decoy API
path is accessed.

decoy_subpaths is the list of decoy API sub-paths
(for example shop/admin, shop/root)

See Configuring API deception for details

Copyright ©2022

 | API Security Enforcer | 162

JWT

location

username

clientid

When the parameter values of JWTobject are
set, ASE decodes the JWT to extract the user
information.

location is the place of occurrence of JWT in an API
request. The supported values are:

▪ qs:<key name>
▪ h:<custom header name>
▪ h:authorization:bearer
▪ h:authorization:mac
▪ h:cookie:<cookie key>

username is the JWT claim to extract the
username.

clientid is the JWT claim to extract the client-id.

For more information, see Extract user information
from JWT in sideband mode on page 167.

Here is a sample JSON file for a REST API:

 {
 "api_metadata": {
 "protocol": "http",
 "url": "/rest",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": false,
 "health_check_interval": 60,

Copyright ©2022

 | API Security Enforcer | 163

 "health_retry_count": 4,
 "health_url": "/health",
 "health_check_headers": {},
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 },
 "jwt": {
 "location": "h:authorization:bearer",
 "username": "username",
 "clientid": "client_id"
 }
 }
 }

i Note: The sample JSON file has an extension of .example. If you are customizing the example file,
then save the file as a .json file.

Manually add API JSON to ASE

After configuring an API JSON file, add it to ASE to activate ASE processing. To add an API, execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin add_api {file_path/
api_name}

After configuring API JSON files for each API, ASE configuration is complete.

Update a configured API JSON

After activation, an API JSON definition can be updated in real time. Edit the API JSON file located in the
/config/api directory and make the desired changes. Save the edited API JSON file and execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api <api_name>

For example,

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api shop
api shop updated successfully

Copyright ©2022

 | API Security Enforcer | 164

Activate API cybersecurity

API Security Enforcer provides real-time API cybersecurity using the list of attacks generated by
PingIntelligence AI engine. Real time API Cyber Security is activated only when ASE firewall is enabled.

Enable API cybersecurity

To enable API security, enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall
Firewall is now enabled

After enabling API Security, enter the following CLI command to verify cybersecurity is enabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

Disable API cybersecurity

To disable ASE’s cybersecurity feature, type the following CLI command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_firewall
Firewall is now disabled

After disabling ASE’s cybersecurity feature, enter the following CLI command to verify that cybersecurity is
disabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : disabled
abs : disabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

ASE attack detection

API Security Enforcer supports real time ASE attack detection and blocking for API Deception. ASE blocks
hackers who probe a decoy API (see API Deception Environment) and later try to access a real business
API.

Enable ASE detected attacks

Enable real-time ASE attack detection by running the following ASE command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin
 enable_ase_detected_attack

Copyright ©2022

 | API Security Enforcer | 165

ASE detected attack is now enabled

Disable ASE detected attacks

Disable real-time ASE detected attacks by running the following command on the ASE command line:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin
 disable_ase_detected_attack
ASE detected attack is now disabled

i Note: When you disable ASE detected attacks, the attacks are deleted from the Blacklist.

Capture client identifiers

ASE identifies attackers for HTTP(s) protocol using five client identifiers:

▪ Username
▪ API keys
▪ OAuth2 token
▪ Cookie
▪ IP address

i Note: Username is not configured in the api_metadata object of API JSON. However, ASE supports
the extraction of usernames coming in a JSON Web Tokens(JWTs), and a JWT object in API JSON is
used to configure username information. For more information, see Extract user information from JWT in
sideband mode on page 167. For usernames that are not part of the JWTs PingIntelligence AI engine
identifies them based on metadata logged in ASE's access log files.

The following sections describe how to configure ASE to capture OAuth2 Tokens and API keys.

Configure ASE support for OAuth2 tokens

ASE supports capturing and blocking of OAuth2 tokens. To enable OAuth2 token capture, set the value
of oauth2_access_token to true in the API JSON file. Here is a snippet of an API JSON file with OAuth2
token capture activated. To disable, change the value to false.

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },

When blocking is enabled, ASE checks the token against the list of tokens in the whitelist and blacklist. If
the token is in the blacklist, the client using the token is immediately blocked.

The following diagram shows the traffic flow in an OAuth2 environment:

Copyright ©2022

 | API Security Enforcer | 166

Configure ASE support for API keys

ASE supports capturing and blocking of API keys. Depending on the API setup, the API key can be
captured from the query string or API header. Each API JSON file can be configured with either the query
string (apikey_qs) or API header (apikey_header) parameter.

Here is a snippet of an API JSON file showing API key being configured to capture the API key from the
Query String (apikey_qs).

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "key_1.4",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },

When an API key is included in the API JSON file, ASE supports blocking of API keys which are manually
added to the blacklist.

Copyright ©2022

 | API Security Enforcer | 167

Extract user information from JWT in sideband mode

ASE supports the decoding of transparent JSON Web Tokens (JWTs) received as part of API requests.
It extracts the user information from the JWT and logs it in ASE access logs. The ABS (API Behavioral
Security) AI engine analyses these access logs to generate reports and detect attacks.

The following diagram shows the traffic flow when ASE is in sideband mode.

A JWT consists of three parts - header, payload, and signature. They are concatenated with periods(.). The
following is a sample JWT structure.

ASE decodes the payload to extract user information from a JWT. It can decode JWTs received as
part of request headers or query strings. In sideband mode, ASE supports only Bearer scheme in the
Authorization header.

i Note: ASE does not validate JWTs. It just decodes the JWTs and extracts the user information.

ASE supports a list of usernames in JWT. When the username claim in the payload is an array with
multiple elements, ASE extracts the first element of the array. The elements in the array can be strings or

numbers and the array should be a valid JSON array.

i Note: ASE supports arrays only for username claims in the payload. It does not support arrays in
clientid or location claims.

Copyright ©2022

 | API Security Enforcer | 168

When deployed in sideband mode, ASE receives the API request information from the gateway policy and
extracts the metadata. The user_info object contains the user information along with other metadata. The
following is an example snippet of information received by ASE from API gateway.

{
 “source_ip”: “127.0.0.1 ",
 “source_port”: 12345,
 “method”: “GET”,
 “url”: “/api3?query=eyJ0eXAiOiJKV1QiLCJhbGciHuDXOyfQqAnoXC4bA&abc=xyz”,
 “http_version”: “1.1”,
 “user_info”:[{“username”:“abc”,“client_id”:“cabfsghhbsag”}],
 “headers”: [{ “host”: “shop.com” },
 { “content-type”: “application/xml” },
 { “content-length”: “100” },
 { “x-forwarded-for”: “dev.pxy.com” },
 { “user-agent”: “Mozilla/5.0 (X11; Linux x86_64)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.110
 Safari/537.36” }
]
}

ASE extracts the user information from the user_info object or JWT or both. The following scenarios
explain the different ways in which ASE extracts user information :

▪ If the gateway policy sends the user_info object with username and clientid, ASE does not decode the
JWT. It extracts the user information from the user_info object.

▪ If the gateway policy sends the user_info object without username and clientid, ASE decodes the JWT
to extract the information.

▪ If the gateway policy sends the user_info object without a username, but with clientid, ASE decodes the
JWT and extracts username from the JWT and client identifier from the user_info object.

▪ If the gateway policy sends the user_info object with a username, but without a clientid, ASE decodes
the JWT to extract clientid and captures the username from the user_info object.

▪ If the gateway policy does not send user_info object or sends an invalid user_info object, ASE decodes
the JWT to extract the username and clientid information if available.

i Note: If the JWT decoding fails, the API request is not blocked. ASE logs the information got from the
gateway policy in the access logs.

Configure API JSON
The behavior and properties of your API are defined in an API JSON file in ASE. To enable username
capture, set the values for the parameters defined in the JWT object of the API JSON file as per your API
setup. For more information, see Defining an API – API JSON configuration file on page 159.

The following is an example snippet of an API JSON file.

{
 "api_metadata": {
 "protocol": "http",
 "url": "/rest",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": true,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,

Copyright ©2022

 | API Security Enforcer | 169

 "api_mapping": {
 "internal_url": ""
 },
 "jwt": {
 "location": "h:authorization:bearer",
 "username": "username",
 "clientid": "client_id"
 }
 }
}

i Note: The values assigned to username and clientid cannot be same.

The following table explains the parameters in the JWT object of API JSON file.

Parameter Description

location location is the place of occurrence of JWT in an API request. Configure
the parameter with a value applicable to your API.

The supported values for location parameter are:

▪ qs:<key name> - Set the location parameter with this value
when JWT occurs as part of a query string and substitute the <key
name> with the query string parameter. For example,"location": "qs:
access_token" .

https://server.example.com/resource?
access_token=mF_9.B5f-4.1JqM&p=q

▪ h:<custom header name> - Set the location parameter with
this value when JWT is part of a custom header and substitute the
<custom header name> with custom header. For example,"location":
"h:X-jwt-header".

X-jwt-header:
 eyJhbGcUzI1NiI.eyJzDkwIG4gRG9xpZWQiOjwMjJ9.DWw5PDZEl-
g

▪ h:Authorization:bearer - Set the location parameter with
this value when JWT is part of Authorization header, with bearer
scheme. For example, "location": "h:Authorization:bearer".

Authorization: Bearer
 eyJhbGIUzIiI.eyJzdiIxG4gRG9lIiwiZiOjJ9.DWPwNDZEl-
g

▪ h:cookie:<cookie key> - Set the location parameter with
this value when JWT occurs as part of a cookie and substitute
the <cookie key> with the cookie name. For example, "location":
"h:cookie: access_token".

Cookie:
 access_token=eyJhbGiIsI.eyJpc3MiOiJodHRwczotcGxlL.mFrs3ZodqKP4F1cB

username It is the JWT claim to extract the username.

clientid It is the JWT claim to extract the client identifier.

Copyright ©2022

 | API Security Enforcer | 170

When enable_blocking is set to true, ASE checks the username against the list of usernames in the
whitelist and blacklist. If the username is in the blacklist, the client using the username is blocked.

API discovery process -The ABS AI Engine processes the ASE access logs and discovers new and
unknown APIs in your environment. A root API JSON is defined in ASE to enable API discovery by ABS.
For more information on API discovery, see API discovery and configuration on page 329. If the root API
JSON has a JWT object configured with values set for all the keys, then the APIs discovered by the ABS
will have the JWT object.

The following table explains the behavior of ASE when the root API JSON has an incomplete JWT object.
It also describes its impact on the APIs discovered by ABS in your environment.

Scenarios Behavior of ASE API discovery

When a JWT object is not
configured in root API JSON.

ASE processes the root API
JSON file.

A JWT object gets added to the
discovered APIs with all the keys
but empty values. For example.

"jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }

When a JWT object is configured in
the root API JSON file, but with no
keys. For example.

“jwt”:{}

ASE does not process the root
API JSON file.

The API is not discovered.

When a JWT object is configured
with all the keys present but no
values set. For example.

"jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }

ASE processes the root API
JSON file.

A JWT object gets added to the
discovered APIs with all the keys
but empty values. For example.

"jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }

When a JWT object is configured
but not all keys are set. For
example.

"jwt": {
 "username": "",

 "location": ""
 }

ASE does not process the root
API JSON file.

The API is not discovered.

i Note: The API JSON file shipped with ASE is compatible with earlier versions of API JSON files. ASE
automatically adds an empty JWT object to the API JSON file to maintain compatibility.

Manage whitelist and blacklist

ASE maintains the following two types of lists:

Copyright ©2022

 | API Security Enforcer | 171

▪ Whitelist – List of “safe” IP addresses, cookies, OAuth2 Tokens, API keys, or Usernames that are not
blocked by ASE. The list is manually generated by adding the client identifiers using CLI commands.

▪ Blacklist – List of “bad” IP addresses, cookies, OAuth2 Tokens, API keys, or Usernames that are
always blocked by ASE. The list consists of entries from one or more of the following sources:

▪ ABS detected attacks (for example data exfiltration). ABS detected attacks have a time-to-live (TTL)
in minutes. The TTL is configured in ABS.

▪ ASE detected attacks (for example invalid method, decoy API accessed). The ASE detected attacks
▪ List of “bad” clients manually generated by CLI

Manage whitelists

Valid operations for OAuth2 Tokens, cookies, IP addresses, API keys, and usernames on a whitelist
include:

Add an entry

▪ Add an IP address to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist ip
 10.10.10.10
ip 10.10.10.10 added to whitelist

▪ Add a cookie to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist cookie
 JSESSIONID cookie_1.4
cookie JSESSIONID cookie_1.4 added to whitelist

▪ Add a token to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist token
 token1.4
token token1.4 added to whitelist

▪ Add an API Key to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist api_key
 X-API-KEY key_1.4
api_key X-API-KEY key_1.4 added to whitelist

▪ Add a username to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist username
 abc@example.com
username abc@example.com added to whitelist

View whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_whitelist
Whitelist
1) type : ip, value : 1.1.1.1
2) type : cookie, name : JSESSIONID, value : cookie_1.1
3) type : token, value : token1.3
4) type : api_key, name : X-API-KEY, value : key_1.4
5) type : username, value : abc@example.com

Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist ip
 4.4.4.4
ip 4.4.4.4 deleted from whitelist

Copyright ©2022

 | API Security Enforcer | 172

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist cookie
 JSESSIONID cookie_1.1
cookie JSESSIONID cookie_1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist token
 token1.1
token token1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist api_key
 X-API-KEY key_1.4
api_key X-API-KEY key_1.4 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist username
 abc@example.com

Clear the whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : y
Whitelist cleared
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : n
Action canceled

Manage blacklists

Valid operations for IP addresses, Cookies, OAuth2 Tokens, and API keys on a blacklist include:

Add an entry

▪ Add an IP address to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist ip
 1.1.1.1
ip 1.1.1.1 added to blacklist

▪ Add a cookie to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist cookie
 JSESSIONID ad233edqsd1d23redwefew
cookie JSESSIONID ad233edqsd1d23redwefew added to blacklist

▪ Add a token to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist token
 ad233edqsd1d23redwefew
token ad233edqsd1d23redwefew added to blacklist

▪ Add an API Key to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist api_key
 AccessKey b31dfa4678b24aa5a2daa06aba1857d4
api_key AccessKey b31dfa4678b24aa5a2daa06aba1857d4 added to blacklist

▪ Add an username to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist username
 abc@example.com

Copyright ©2022

 | API Security Enforcer | 173

username abc@example.com added to blacklist

i Note: You can also add username with space to blacklist. For example, "your name".

View blacklist - entire blacklist or based on the type of real time violation.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist all
Manual Blacklist
1) type : ip, value : 172.168.11.110
2) type : token, value : cdE94R3osh283B7NoiJR41XHgt7gxroot
3) type : username, value : blockeduser
4) type : cookie, name : JSESSIONID, value : pZlhg5s3i8csImMoas7vh81vz
5) type : api_key, name : x-api-key, value :
 d4d28833e2c24be0913f4267f3b91ce5
ABS Generated Blacklist
1) type : token, value : fAtTzxFJZ2Zkr7HZ9KM17s7kY2Mu
2) type : token, value : oFQOr11Gj8cCRv1k4849RZOPztPP
3) type : token, value : Rz7vn5KoLUcAhruQZ4H5cE00s2mG
4) type : token, value : gxbkGPNuFJw69Z5PF44PoRIfPugA
5) type : username, value : user1
Realtime Decoy Blacklist
1) type : ip, value : 172.16.40.15
2) type : ip, value : 1.2.3.4

Blacklist based on decoy IP addresses

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist decoy
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4

Blacklist based on protocol violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_protocol
Realtime Protocol Blacklist
1) type : token, value : token1.1
2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1

Blacklist based on method violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_method
Realtime Method Blacklist
1) type : token, value : token1.3
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3

Blacklist based on content-type violation

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_content_type
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

Copyright ©2022

 | API Security Enforcer | 174

ABS detected attacks

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 abs_detected
No Blacklist

Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist ip
 1.1.1.1
ip 1.1.1.1 deleted from blacklist
./bin/cli.sh -u admin -p admin delete_blacklist cookie JSESSIONID
 avbry47wdfgd
cookie JSESSIONID avbry47wdfgd deleted from blacklist
./bin/cli.sh -u admin -p admin delete_blacklist token
 58fcb0cb97c54afbb88c07a4f2d73c35
token 58fcb0cb97c54afbb88c07a4f2d73c35 deleted from blacklist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist api_key
 AccessKey b31dfa4678b24aa5a2daa06aba1857d4

Clear the blacklist

./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :y
Blacklist cleared
./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :n
Action canceled

When clearing the blacklist, make sure that the real-time ASE detected attacks and ABS detected attacks
are disabled. If not disabled, the blacklist gets populated again as both ASE and ABS are continuously
detecting attacks.

ASE generated error messages for blocked requests

ASE blocks certain requests based on API Mapping or ABS detected attacks. For these blocked requests,
it sends a standard error message back to the client.

The following table describes the error messages:

Blocked Connection HTTP Error Code Error Definition Message Body

Unknown API 503 Service Unavailable Error: Unknown API

Unknown Hostname 503 Service Unavailable Error: Unknown Hostname

Malformed Request 400 Bad Request Error: Malformed Request

IP attack 403 Unauthorized Error: Unauthorized

Cookie attack 403 Unauthorized Error: Unauthorized

OAuth2 Token attack 403 Unauthorized Error: Unauthorized

API Key attack 403 Unauthorized Error: Unauthorized

Username attack 403 Unauthorized Error: Unauthorized

Copyright ©2022

 | API Security Enforcer | 175

Per API blocking

ASE can be configured to selectively block on a per API basis by configuring an API JSON file parameter.
To enable per API blocking for each API, set the enable_blocking parameter to true in the API JSON. For
example:

api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },

Copyright ©2022

 | API Security Enforcer | 176

If per API blocking is disabled, ABS still detect attacks for that specific API, however, ASE does not block
them. ASE will continue to block attacks on other APIs with the enable_blocking set to true.

API deception environment

A decoy API is configured in ASE and the API gateway. It requires no changes to backend servers. It
appears as part of the API ecosystem and is used to detect the attack patterns of hackers. When a hacker
accesses a decoy API, ASE sends a predefined response (defined in the response_messageparameter
in API JSON file) to the client request and collects the request information as a footprint to analyze API
ecosystem attacks. ASE acts as a backend for decoy APIs configured in the API gateway.

Decoy API traffic is separately logged in files named with the following format:
decoy_pid_<pid_number>__yyyy-dd-mm-<log_file_rotation_time (for example,
decoy_pid_8787__2017-04-04_10-57.log). Decoy log files are rotated every 24-hours and stored
in the opt/pingidentity/ase/logs directory.

Decoy APIs are independent APIs where every path is a decoy API. Any sub-paths accessed in the API
are treated as part of the decoy API. The figure shows an example.

i Note: In sideband ASE deployment you can configure only out-of-context decoy API.

Copyright ©2022

 | API Security Enforcer | 177

The following steps explain the flow of decoy API traffic:

1. The attacker sends decoy API request
2. API gateway forwards the request is to the configured decoy API which is ASE functioning as a

backend server for the decoy API.
3. The configured response is sent to the API gateway.
4. The configured response from ASE is sent back to the attacker.

The decoy request is logged in decoy.log file and sent to PingIntelligence ABS for further analysis.
Following is a snippet of an API JSON file which has been deployed as an out-of-context decoy API:

{
 "api_metadata": {
 "protocol": "http",
 "url": "/account",
 "hostname": "*",
;

Copyright ©2022

 | API Security Enforcer | 178

; Note – other configuration parameters removed
;
 "decoy_config":
 {
 "decoy_enabled": true,
 "response_code" : 200,
 "response_def" : "OK",
 "response_message" : "OK", decoy API configuration
 "decoy_subpaths": [

]
 }

Since the decoy_subpaths parameter is empty, any sub-path accessed by the attacker after /account is
regarded as a decoy path or decoy API.

After configuring a decoy API, check the API listings by running the list_api command:

opt/pingidentity/ase/bin/cli.sh list_api -u admin -p
flight (loaded), https
trading (loaded), https, decoy: out-context

Real-time API deception attack blocking

When a client probes a decoy API, ASE logs but does not drop the client connection. However, if the same
client tries to access a legitimate business API, then ASE block the client in real-time. Here is a snippet of
an ASE access log file showing real time decoy blocking:

[Tue Aug 1422:51:49:707 2018] [thread:209] [info] [connectionid:1804289383]
 [connectinfo:100.100.1.1:36663] [type:connection_drop] [api:decoy]
 [request_payload_length:0] GET /decoy/test/test HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app

The blocked client is added to the blacklist which can be viewed by running the view_blacklist CLI
command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
Realtime Decoy Blacklist
1) type : ip, value : 100.100.1.1

ABS AI-based security

ABS AI engine detects attacks using artificial intelligence (AI) algorithms. After receiving ASE access logs
and API JSON configuration files, ABS applies AI algorithms to track API connections and detect attacks.
If enable_abs_attack is true, ABS sends blacklist to ASE which blocks client identifiers, like, API keys,
usernames, cookie, IP address, and OAuth token on the list.

Copyright ©2022

 | API Security Enforcer | 179

Configure ASE to ABS connectivity

To connect ASE to ABS, configure the ABS address (IPv4:Port or Hostname:Port), access key, and secret
key in the abs.conf file located in the /opt/pingidentity/ase/config directory.

i Note: enable_absmust be set to true in the ase.conf file. when ABS is in a different AWS security
group, use a private IP address

The parameter values and descriptions are included in the following table:

Parameter Description

abs_endpoint Hostname and port or the IPv4 and port of all the ABS nodes

Copyright ©2022

 | API Security Enforcer | 180

access_key The access key or the username for the ABS nodes. It is the same
for all the ABS nodes. The same value has to be configured in ABS
MongoDB database. This value is obfuscated during the start of ASE.

i Note: ":" is a restricted character and allowed in access key.

secret_key The secret key or the password for the ABS nodes. It is the same for all
the ABS nodes. The same value has to be configured in ABS MongoDB
database. This value is obfuscated during the start of ASE.

i Note: ":" is a restricted character and allowed in secret key.

enable_ssl Set the value to true for SSL communication between ASE and ABS.
The default value is true. ASE sends the access log files in plain text if
the value is set to false.

abs_ca_cert_path Location of the trusted CA certificates for SSL/TLS connections from
ASE to ABS.

If the path parameter value is left empty, then ASE does not verify
the validity of CA certificates. However, the connection to ABS is still
encrypted.

i Note: The access_key and secret_key are configured in ABS. For more information, see ABS Admin
Guide.

Here is a sample abs.conf file:

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a
 semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.
; a comma-separated list of abs nodes having hostname:port or ipv4:port as
 an address.
abs_endpoint=127.0.0.1:8080
; access key for abs node
access_key=OBF:AES://ENOzsqOEhDBWLDY
+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0
; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU
+RY5CxUhp3NLcNBel+3Q
; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true
; Configure the location of ABS's trusted CA certificates. If empty, ABS's
 certificate
; will not be verified
abs_ca_cert_path=

Configuring ASE-ABS encrypted communication

To enable SSL communication between ASE and ABS so that the access logs are encrypted and sent
to ABS, set the value of enable_ssl to true. The abs_ca_cert_path is the location of ABS’s trusted CA
certificate. If the field is left empty, ASE does not verify ABS’s certificate, however, the communication is till
encrypted.

Copyright ©2022

 | API Security Enforcer | 181

Check and open ABS ports

The default ports for connection with ABS are 8080 and 9090. Run the check_ports_ase.sh script on
the ASE machine to determine ABS accessibility. Input ABS host IP address and ports as arguments.

/opt/pingidentity/ase/util ./check_ports_ase.sh {ABS IPv4:[port]}

Manage ASE blocking of ABS detected attacks

To configure ASE to automatically fetch and block ABS detected attacks, complete the following steps:

1. Enable ASE Security. Enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall

2. Enable ASE to send API traffic information to ABS. Enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs

3. Enable ASE to fetch and block ABS detected attacks. Enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs_attack

After enabling automated attack blocking, ASE periodically fetches the attack list from ABS and blocks the
identified connections. To set the time interval at which ASE fetches the attack list from ABS, configure the
abs_attack_request_minute parameter in ase.conf file.

; This value determines how often ASE will query ABS.
abs_attack_request_minutes=10

Disable attack list fetching from ABS

To disable ASE from fetching the ABS attack list, entering the following CLI command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs_attack

After entering the above command, ASE will no longer fetch the attack list from ABS. However, ABS
continues generating the attack list and stores it locally. The ABS attack list can be viewed using ABS
APIs and used to manually configured an attack list on ASE. For more information on ABS APIs, see ABS
Admin Guide.

To stop an ASE cluster from sending log files to ABS, enter the following ASE CLI command.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs

After entering this command, ABS will not receive any logs from ASE. Refer to the ABS documentation for
information on types of attacks.

Configure Google Pub/Sub

Google Cloud Pub/Sub is an enterprise event-driven message system. API Security Enforcer (ASE)
integrates with Google Pub/Sub in ASE sideband mode. When you enable Google Pub/Sub in ase.conf
file, ASE sends the event message in a JSON file to Google cloud. You can verify that Google Pub/Sub is
enabled by running the ASE status command:

/opt/pingidentity/ase/bin/cli.sh status -u admin -p admin
API Security Enforcer
status : started
mode : sideband

Copyright ©2022

 | API Security Enforcer | 182

http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB
google pubsub : enabled

Complete the following steps to configure Google Pub/Sub in ASE:

1. Download the Key file in JSON format from your Google Pub/Sub account. For more information on
generating the Key file, see Quickstart: building a functioning Cloud Pub/Sub system

2. Copy the downloaded Key JSON file to /pingidentity/ase/config directory.
3. Rename the file to google_application_credentials.json.
4. Configure the following Google Pub/Sub options in the ase.conf file:

enable_google_pubsub Set it to true if you want ASE to push metrics
data to Google cloud. The default value is false.

i Note: ASE must be in the sideband mode
for Google Pub/Sub configuration to take effect.

google_pubsub_topic The path to your topic for publishing and
subscribing the messages. For example,/
pingidentity/topic/your_topic

google_pubsub_concurrency The number of concurrent connection between
ASE and Google Pub/Sub. The maximum value
is 1024 connections. Default value is 1000
connections.

google_pubsub_qps The number of messages per second that ASE
can publish to the topic. Maximum value is
10,000. The default value is 1000.

google_pubsub_apikey The API Key to establish connection between
ASE and Google Pub/Sub. Configuring API Key
for Google Pub/Sub is optional.

cache_queue_size The number of messages that are buffered in
cache when ASE is not able to publish to Google
Pub/Sub. Maximum size of the queue is 10,000
messages. The default value is 300 messages.

google_pubsub_timeout The time in seconds for which ASE tries to publish
messages to Google Pub/Sub. In case of failure to
publish, ASE makes three attempts to publish the
message, after which it writes the message to the
google_pubsub_failed.log file.

Configure API Key - Optional

You can optionally configure API Key in ase.conf file. Obtain the API Key for your Google project and
configure in google_pubsub_apikey option. Obfuscate the API Key for it to take effect. For more
information on obfuscating keys and password, see Obfuscate keys and passwords on page 124.
Following is a summary of steps that you need to complete:

Copyright ©2022

https://cloud.google.com/pubsub/docs/quickstart-py-mac

 | API Security Enforcer | 183

1. Stop ASE
2. Edit ase.conf file to add API Key
3. Obfuscate the API Key
4. Start ASE

ASE JSON message file

ASE sends the event information to Google Pub/Sub in a JSON message. The message captures the
following information:

▪ Method
▪ URL
▪ Host
▪ Request time-stamp
▪ Request length
▪ Source IP
▪ X-forwarded-for IPs
▪ Response code
▪ Response length, and
▪ Latency in milliseconds

ASE makes 3-attempts to publish the message to Google Pub/Sub after which the entire message is
logged in failed log file. The message that is logged in the failed log file is not in plain text. If the message
is not published to Google Pub/Sub, you can check the reason for failure in balancer.log file. For more
information on balancer.log file, see ASE management, access and audit logs on page 139. When
messages are successfully published to Google Pub/Sub, the message ID is logged in success log file.
Following is a snippet of event message JSON file logged in balancer.log file when ASE is run in
debug mode.

{
 "method": "PUT",
 "url": "/shopapi-books/order",
 "host": "shop-electronics.cloudhub.io",
 "request_timestamp": "1573767522429",
 "request_length": "464",
 "source_ip": "1.2.3.4",
 "x_forwarded_for": "1.1.1.1, 1.1.1.2",
 "response_code": "200",
 "response_length": "26",
 "latency_ms": "208"
}

CLI for sideband ASE

Start ASE

Description

Start ASE

Syntax

./start.sh

Stop ASE

Description

Stop ASE

Syntax

./stop.sh

Copyright ©2022

 | API Security Enforcer | 184

Help

Description

Displays cli.sh help

Syntax

./cli.sh help

Version

Description

Displays the version number of ASE

Syntax

./cli.sh version

Status

Description

Displays the running status of ASE

Syntax

./cli.sh status

Update Password

Description

Change ASE admin password

Syntax

./cli.sh update_password -u admin - p

Change log level

Description

Change balancer.log and controller.log log level

Syntax

./cli.sh log_level -u admin -p

options - warn, info, error, fatal, debug

Get Authentication Method

Description

Display the current authentication method

Syntax

./cli.sh get_auth_method -u admin -p

Update Authentication Method

Description

Update ASE authentication method

Syntax

./cli.sh update_auth_method {method} -u admin -p

Enable Sideband Authentication

Description

Enable authentication between API gateway and ASE when ASE is deployed in sideband mode

Syntax

./cli.sh enable_sideband_authentication -u admin – p

Copyright ©2022

 | API Security Enforcer | 185

Disable Sideband Authentication

Description

Disable authentication between API gateway and ASE when ASE is deployed in sideband mode

Syntax

./cli.sh disable_sideband_authentication -u admin – p

Create ASE Authentication Token

Description

Create the ASE token that is used to authenticate between the API gateway and ASE

Syntax

./cli.sh create_sideband_token -u admin – p

List ASE Authentication Token

Description

List the ASE token that is used to authenticate between the API gateway and ASE

Syntax

./cli.sh list_sideband_token -u admin – p

Delete ASE Authentication Token

Description

Delete the ASE token that is used to authenticate between the API gateway and ASE

Syntax

./cli.sh delete_sideband_token {token} -u admin – p

Enable Audit Logging

Description

Enable audit logging

Syntax

./cli.sh enable_audit -u admin -p admin

Disable Audit Logging

Description

Disable audit logging

Syntax

./cli.sh disable_audit -u admin -p admin

Add Syslog Server

Description

Add a new syslog server

Syntax

./cli.sh –u admin -p admin add_syslog_server host:port

Delete Syslog Server

Description

Delete the syslog server

Syntax

./cli.sh –u admin -p admin delete_syslog_server host:port

List Syslog Server

Copyright ©2022

 | API Security Enforcer | 186

Description

List the current syslog server

Syntax

./cli.sh –u admin -p admin list_syslog_server

Add API

Description

Add a new API file in JSON format. File should have .json extension. Provide the complete path
where you have stored the API JSON file. After running the command, API is added to /opt/
pingindentity/ase/config/api directory

Syntax

./cli.sh –u admin -p admin add_api {config_file_path}

Update API

Description

Update an API after the API JSON file has been edited and saved

Syntax

./cli.sh –u admin -p admin update_api {api_name}

List APIs

Description

Lists all APIs configured in ASE

Syntax

./cli.sh –u admin -p admin list_api

API Info

Description

Displays the API JSON file

Syntax

./cli.sh –u admin -p admin api_info {api_id}

API Count

Description

Displays the total number of APIs configured

Syntax

./cli.sh –u admin -p admin api_count

Enable Per API Blocking

Description

Enables attack blocking for the API

Syntax

./cli.sh –u admin -p admin enable_blocking {api_id}

Disable Per API Blocking

Description

Disable attack blocking for the API

Syntax

./cli.sh –u admin -p admin disable_blocking {api_id}

Delete API

Copyright ©2022

 | API Security Enforcer | 187

Description

Delete an API from ASE. Deleting an API removes the corresponding JSON file and deletes all the
cookies associated with that API

Syntax

./cli.sh –u admin -p admin delete_api {api_id}

Generate Master Key

Description

Generate the master obfuscation key ase_master.key

Syntax

./cli.sh -u admin -p admin generate_obfkey

Obfuscate Keys and Password

Description

Obfuscate the keys and passwords configured in various configuration files

Syntax

./cli.sh -u admin -p admin obfuscate_keys

Create a Key Pair

Description

Creates private key and public key pair in keystore

Syntax

./cli.sh –u admin -p admin create_key_pair

Create a CSR

Description

Creates a certificate signing request

Syntax

./cli.sh –u admin -p admin create_csr

Create a Self-Signed Certificate

Description

Creates a self-signed certificate

Syntax

./cli.sh –u admin -p admin create_self_sign_cert

Import Certificate

Description

Import CA signed certificate into keystore

Syntax

./cli.sh –u admin -p admin import_cert {cert_path}

Create Management Key Pair

Description

Create a private key for management server

Syntax

/cli.sh –u admin -p admin create_management_key_pair

Create Management CSR

Description

Copyright ©2022

 | API Security Enforcer | 188

Create a certificate signing request for management server

Syntax

/cli.sh –u admin -p admin create_management_csr

Create Management Self-signed Certificate

Description

Create a self-signed certificate for management server

Syntax

/cli.sh –u admin -p admin create_management_self_sign_cert

Import Management Key Pair

Description

Import a key-pair for management server

Syntax

/cli.sh –u admin -p admin import_management_key_pair {key_path}

Import Management Certificate

Description

Import CA signed certificate for management server

Syntax

/cli.sh –u admin -p admin import_management_cert {cert_path}

Cluster Info

Description

Displays information about an ASE cluster

Syntax

./cli.sh –u admin -p admin cluster_info

Delete Cluster Node

Description

Delete and inactive ASE cluster node

Syntax

./cli.sh –u admin -p admin delete_cluster_node host:port

Enable Firewall

Description

Enable API firewall. Activates pattern enforcement, API name mapping, manual attack type

Syntax

./cli.sh –u admin -p admin enable_firewall

Disable Firewall

Description

Disable API firewall

Syntax

./cli.sh –u admin -p admin disable_firewall

Enable ASE detected attacks

Description

Enable ASE detected attacks

Copyright ©2022

 | API Security Enforcer | 189

Syntax

./cli.sh –u admin -p admin enable_ase_detected_attack

Disable ASE Detected Attacks

Description

Disable API firewall

Syntax

./cli.sh –u admin -p admin disable_ase_detected_attack

Enable ABS

Description

Enable ABS to send access logs to ABS

Syntax

./cli.sh –u admin -p admin enable_abs

Disable ABS

Description

Disable ABS to stop sending access logs to ABS

Syntax

./cli.sh –u admin -p admin disable_abs

Adding Blacklist

Description

Add an entry to ASE blacklist using CLI. Valid type values are: IP, Cookie, OAuth2 token, API Key,
and username

If type is ip, then Name is the IP address.

If type is cookie, then name is the cookie name, and value is the cookie value

Syntax

./cli.sh –u admin -p admin add_blacklist {type}{name}{value}

Example

/cli.sh -u admin -p admin add_blacklist ip 1.1.1.1

Delete Blacklist Entry

Description

Delete entry from the blacklist.

Syntax

./cli.sh –u admin -p admin delete_blacklist {type}{name}{value}

Example

cli.sh -u admin -p delete_blacklist token
 58fcb0cb97c54afbb88c07a4f2d73c35

Clear Blacklist

Description

Clear all the entries from the blacklist

Syntax

./cli.sh –u admin -p admin clear_blacklist

Copyright ©2022

 | API Security Enforcer | 190

View Blacklist

Description

View the entire blacklist or view a blacklist for the specified attack type (for example,
invalid_method)

Syntax

./cli.sh –u admin -p admin view_blacklist {all|manual|abs_generated|
invalid_content_type|invalid_method|invalid_protocol|decoy}

Adding Whitelist

Description

Add an entry to ASE whitelist using CLI. Valid type values are: IP, cookie, OAuth2 token, API key,
and username

If type is IP, then name is the IP address.

If type is cookie, then name is the cookie name, and value is the cookie value

Syntax

./cli.sh –u admin -p admin add_whitelist {type}{name}{value}

Example

/cli.sh -u admin -p admin add_whitelist api_key AccessKey
 065f73cdf39e486f9d7cda97d2dd1597

Delete Whitelist Entry

Description

Delete entry from the whitelist

Syntax

./cli.sh –u admin -p admin delete_whitelist {type}{name}{value}

Example

/cli.sh -u admin -p delete_whitelist token
 58fcb0cb97c54afbb88c07a4f2d73c35

Clear Whitelist

Description

Clear all the entries from the whitelist

Syntax

./cli.sh –u admin -p admin clear_whitelist

View Whitelist

Description

View the entire whitelist

Syntax

./cli.sh –u admin -p admin view_whitelist

ABS Info

Description

Displays ABS status information.

ABS enabled or disabled, ASE fetching ABS attack types, and ABS cluster information

Copyright ©2022

 | API Security Enforcer | 191

Syntax

./cli.sh –u admin -p admin abs_info

Inline ASE
In the inline deployment mode, ASE sits at the edge of your network to receive the API traffic. It can also
be deployed behind an existing load balancers such as AWS ELB. ASE deployed at the edge of the
datacenter, terminates SSL connections from API clients. It then forwards routes the requests directly to
the correct destination APIs – and app servers such as Node.js, WebLogic, Tomcat, PHP, etc.

To configure ASE to work in the Inline mode, set the mode=inline in the ase.conf file.

Some load balancers (for example, AWS ELB) require responses to keep alive messages from all devices
receiving traffic. In an inline mode configuration, ASE should be configured to respond to these keep alive
messages by updating the ase_health variable in the ase.conf file. When ase_health is true, load
balancers can perform an ASE health check using the following URL: http(s)://<ASE Name>/ase where
<ASE Name> is the ASE domain name. ASE will respond to these health checks.

ASE configuration - ase.conf

ASE system level configuration entails modifying parameters in the ase.conf file located in the
config directory. Some values have default settings which can be modified to support your application
requirements. The parameter values and descriptions are included in the following table:

Parameter Description

ASE mode

mode The mode in which ASE works. Possible values are inline and
sideband. The default value is inline.

Copyright ©2022

 | API Security Enforcer | 192

ASE timezone

timezone Sets ASE's timezone. The values can be local or UTC. Default value is
local. If ASE is deployed in a cluster, configure the same timezone on
each cluster node manually.

enable_sideband_keepalive NA

enable_sideband_authentication NA

ASE ports

http_ws_port Data port used for http or WebSocket protocol.

The default value is 80.

https_wss_port Data port used for https or Secure WebSocket (wss).

The default value is 443.

management_port Management port used for CLI and REST API management.

The default value is 8010.

ASE administration and audit

admin_log_level The level of log detail captured. Options include:

Fatal – 1, Error – 2, Warning – 3, Info – 4, Debug – 5

enable_audit When set to true, ASE logs all actions performed in ASE in the audit log
files.

The default value is true.

syslog_server Syslog server hostname or IPv4 address:port number.

Leave this parameter blank if you do not want to generate for no syslog.

hostname_refresh Time interval at which hostnames are refreshed. The default value is
60 secs. When ASE attempts to refresh the hostname, the hostname
resolution must happen in 5 secs.

auth_method Authentication method used for administrator access. See Configuring
Native and PAM Authentication for more information on the two options:

▪ ase::db (Default - Native authentication)
▪ pam::ldap (Linux-PAM Authentication with script)

enable_ase_health When true, enables load balancers to perform a health check using the
following URL: http(s)://<ASE Name>/ase where <ASE Name> is the ASE
domain name

The default value is false.

i Note: Do not configure the /ase URL in an API JSON file.

Copyright ©2022

 | API Security Enforcer | 193

enable_1G When true, enable 1Gbps Ethernet support.

The default value is true.

i Note: Only applicable when using a 1G NIC card

http_ws_process The number of HTTP or WebSocket processes.

The default value is 1 and the maximum value is 6.

i Note: When running ASE in a cluster deployment, all nodes must
have the same number of processes.

https_wss_process The number of HTTPS or secure WebSocket processes.

The default value is 1 and the maximum value is 6.

i Note: When running ASE in a cluster deployment, all nodes must
have the same number of processes.

enable_access_log When true, log client traffic request and response information. Default
value is true.

flush_log_immediate When true, log files are immediately written to the file system. When
false, log files are written after a time interval. The default value is true.

attack_list_memory The amount of memory used for maintaining black and whitelists. The
default value is 128 MB.

keystore_password Password for the keystore. For more information on updating the keystore
password, see Updating Keystore Password.

Copyright ©2022

 | API Security Enforcer | 194

enable_hostname_rewrite When set to true, ASE rewrites the host header in the client request with
the IP or host and port number configured in the server section of the API
JSON. Make a note of the following points:

server_ssl in API JSON set to false:

▪ In the server section of API JSON, if the configured port is the standard
HTTP port (port number 80), then only the IP or hostname in the
request header is rewritten.

▪ In the server section of API JSON, if the configured port is any port
other than the standard HTTP port (port number 80), then IP or
hostname and port number in the request header is rewritten. For
example, if the configured port number is 8080 in API JSON for a
host example.com, then ASE rewrites the host header in request with
example.com:8080.

server_ssl in API JSON set to true:

▪ In the server section of API JSON, if the configured port is the standard
HTTPS port (port number 443), then only the IP or hostname in the
request header is rewritten.

▪ In the server section of API JSON, if the configured port is any port
other than the standard HTTPS port (port number 443), then IP or
hostname and port number in the request header is rewritten. For
example, if the configured port number is 8443 in API JSON for a
host example.com, then ASE rewrites the host header in request with
example.com:8443.

ASE cluster

enable_cluster When true, run the setup in cluster mode.

The default value is false, run the setup in standalone mode.

Security

enable_sslv3 When true, enable SSLv3. Default value is false.

server_ca_cert_path Location of the trusted CA certificates for SSL/TLS connections from ASE
to backend servers.

If the path parameter value is left empty, then ASE does not verify the
validity of CA certificates. However, the backend connection is still
encrypted.

For RHEL 7.6 CA certificates, the default path is: /etc/pki/tls/
certs/.

Multiple certificates can be placed in this directory.

enable_xff When true, pass XFF header with originating IP address to the backend
server.

enable_firewall When true, activate the following API security features:

▪ API mapping
▪ API pattern enforcement
▪ Connection drop using attack types
▪ Flow control

Default value is true

Copyright ©2022

 | API Security Enforcer | 195

Real-time API security

enable_ase_detected_attack When true, activates the real-time security in ASE. ASE detects and
blocks pattern enforcement violations, wrong API keys and clients probing
decoy API and later accessing real APIs. The default value is false.

API deception

decoy_alert_interval The time interval between decoy API email alerts.

The default value is 180 minutes.

Maximum value is 1440 minutes (i.e. 24 hours).

AI-based API security (ABS)

enable_abs When true, send access log files to ABS for generating API metrics and
detecting attacks using machine learning algorithms.

enable_abs_attack When true, ASE fetches attack list from ABS and blocks access by the
clients that are in the attack list.

When false, attack list is not downloaded.

abs_attack_request_minute Time interval in minutes at which ASE fetches ABS attack list. The default
value is 10-minutes.

Google Pub/Sub configuration

enable_google_pubsub NA

google_pubsub_topic NA

google_pubsub_concurrency NA

google_pubsub_qps NA

google_pubsub_apikey NA

cache_queue_size NA

google_pubsub_timeout NA

Alerts and reports

enable_email When true, send email notifications. The default value is false. ASE
logs the alerts in balancer.log file even when email alerts are disabled.
See Email alerts and reports on page 144 for more information.

email_report Time interval in days at which ASE sends reports. Minimum value is 1 day
and the maximum is 7-days. The default value is 1-day.

smtp_host Hostname of SMTP server.

smtp_port Port number of SMTP server.

smtp_ssl Set to true if you want email communication to be over SSL. Make sure
that the SMTP server supports SSL. If you set smtp_ssl to true and the
SMTP server does not support SSL, email communication falls back to the
non-SSL channel. The default value is true.

Set it to false if email communication is over a non-SSL channel. The email
communication will fail if you set the parameter to false, but the SMTP
server only supports SSL communication.

Copyright ©2022

 | API Security Enforcer | 196

smtp_cert_verification Set to true if you want ASE to verify the SMTP server's SSL certificate.
The default value is true.

If you set it to false, ASE does not verify SMTP server's SSL certificate;
however, the communication is still over SSL.

i Note: If you have configured an IP address as smtp_host and set
smtp_cert_verification to true, then make sure that the certificate
configured on the SMTP server has the following:

X509v3 extensions:
 X509v3 Key Usage:
 Key Encipherment, Data Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Subject Alternative Name:
 IP Address: X.X.X.X

sender_email Email address for sending email alerts and reports.

sender_password Password of sender’s email account.

i Note: You can leave this field blank if your SMTP server does not
require authentication.

receiver_email Email address to notify about alerts and reports

See email alerts for more information.

ASE server resource utilization

cpu_usage Percentage threshold value of CPU utilization.

See email alerts for more information.

memory_usage Percentage threshold value of memory usage.

See email alerts for more information.

filesystem_size Percentage threshold value of filesystem capacity.

See email alerts for more information.

buffer_size Customizable payload buffer size to reduce the number of iterations
required for reading and writing payloads.

Default value is 16KB. Minimum is 1KB and maximum is 32KB.

A sample ase.conf file is displayed below:

; This is API Security Enforcer's main configuration file. This file is in
 the standard .ini format.
; It contains ports, firewall, log, ABS flags. The comments start with a
 semicolon (;).

; Defines running mode for API Security Enforcer (Allowed values are inline
 or sideband).
mode=inline

Copyright ©2022

 | API Security Enforcer | 197

; Defines http(s)/websocket(s) ports for API Security Enforcer. Linux user
 should have the privilege to bind to these ports.
; If you comment out a port, then that protocol is disabled.
http_ws_port=80
https_wss_port=443

; REST API
management_port=8010

; For controller.log and balancer.log only
; 1-5 (FATAL, ERROR, WARNING, INFO, DEBUG)
admin_log_level=4

; Defines the number of processes for a protocol.
; The maximum number of allowed process for each protocol is 6 (1 master + 5
 child). The
; following defines 1 process for both http/ws and https/wss protocol.
http_ws_process=1
https_wss_process=1

; Enable or disable access logs to the filesystem (request/response).
; WARNING! It must be set to true for sending logs to ABS for analytics.
enable_access_log=true
; To write access log immediately to the filesystem, set to true.
flush_log_immediate=true

; Setting this value to true will enable this node to participate in an API
 Security Enforcer
; cluster. Define cluster configurations in the cluster.conf
enable_cluster=false

; Current API Security Enforcer version has 3 firewall features: API
 Mapping, API Pattern
; Enforcement, and Attack Types.
enable_firewall=true

; X-Forwarded For
enable_xff=false

; SSLv3
enable_sslv3=false

; enable Nagle's algorithm (if NIC card is 1G).
enable_1G=true

; tcp send buffer size in bytes(kernel)
tcp_send_buffer_size=65535
; tcp receive buffer size in bytes(kernel)
tcp_receive_buffer_size=65535

; buffer size for send and receive in KBs (user)
buffer_size=16KB

; Set this value to true, to allow API Security Enforcer to send logs to
 ABS. This
; configuration depends on the value of the enable_access_log parameter.
enable_abs=false

; Set this value to true, to allow API Security Enforcer to fetch attack
 list from ABS.
enable_abs_attack=false

; This value determines how often API Security Enforcer will get attack list
 from ABS.

Copyright ©2022

 | API Security Enforcer | 198

abs_attack_request_minutes=10

; Set this value to true, to allow API Security Enforcer to block auto
 detected attacks.
enable_ase_detected_attack=false

; Set this value to true to enable email for both alerts and daily reports.
enable_email=false

; Defines report frequency in days [0=no reports, 1=every day, 2=once in two
 days and max is 7 ; days]
email_report=1
; Specify your email settings
smtp_host=smtp://<smtp-server>
smtp_port=587
; Set this value to true if smtp host support SSL
smtp_ssl=true
; Set this value to true if SSL certificate verification is required
smtp_cert_verification=false
sender_email=
sender_password=
receiver_email=

; Defines threshold for an email alert. For example, if CPU usage is 70%,
 you will get an
; alert.
cpu_usage=70
memory_usage=70
filesystem_size=70

; Authentication method. Format is <auth_agent>::<auth_service>
; Valid values for auth_agent are ase and pam
; ase agent only supports db auth_service
; pam agent can support user configured pam services
; For example ase::db, pam::passwd, pam::ldap etc
auth_method=ase::db

; Enable auditing. Valid values are true or false.
enable_audit=true

; Decoy alert interval in minutes. [min=15, default=3*60, max=24*60]
decoy_alert_interval=180

; Interval for a hostname lookup (in seconds). [min=10, default=60,
 max=86400]
hostname_refresh=60

; Syslog server settings. The valid format is host:port. Host can be an FQDN
 or an IPv4
; address.
syslog_server=

; Attack List size in MB or GB. [min=64MB, max=1024GB]
; ASE will take 3*(configured memory) internally. Make sure that the system
 has at least
; 3*(configured memory) available
; If you are running ASE inside a container, configure the container to use
 3*(configured
; memory) shared memory.
attack_list_memory=128MB

; Enable or Disable health check module. ASE uses '/ase' url for both http
 and https. This is
; useful if ASE is deployed behind a load balancer.

Copyright ©2022

 | API Security Enforcer | 199

enable_ase_health=false

; Location for server's trusted CA certificates. If empty, Server's
 certificate will not be
; verified.
server_ca_cert_path=

; enable client side authentication. This setting is applicable only in
 sideband mode. Once enabled
; request will be authenticated using authentication tokens.
enable_sideband_authentication=false

; enable connection keepalive for requests from gateway to ase.
; This setting is applicable only in sideband mode.
; Once enabled ase will add 'Connection: keep-alive' header in response
; Once disabled ase will add 'Connection: close' header in response
enable_sideband_keepalive=false

; keystore password
keystore_password=OBF:AES:sRNp0W7sSi1zrReXeHodKQ:lXcvbBhKZgDTrjQOfOkzR2mpca4bTUcwPAuerMPwvM4

; enable hostname rewrite for inline mode. ASE will rewrite the host header
 in request
; to the server's hostname
enable_hostname_rewrite=false

; Set the timezone to utc or local. The default timezone is local.
timezone=local

; Google Pub Sub Configuation
enable_google_pubsub=false

google_pubsub_topic=/topic/apimetrics

; Number of concurrent connections to Google Pub/Sub
; Minimum: 1, Default: 1000, Maximum: 1024
google_pubsub_concurrency=1000

; Number of messages published per second.
; Minimum: 1, Default: 1000, Maximum: 10000
google_pubsub_qps=1000

; Google service account API key (Optional)
google_pubsub_apikey=

; Maximum number of messages buffered in memory
; If queue is full, messages are written to logs/google_pubsub_failed.log
; Minimum: 1, Default: 300, Maximum: 10000
cache_queue_size=300

; Timeout in seconds to publish a message to Google Pub/Sub.
; Minimum: 10, Default: 30, Maximum: 300
google_pubsub_timeout=30

API naming guidelines

The API name must follow the following guidelines:

▪ The name should not have the word “model”.
▪ The name should not have the word “threshold”.
▪ The name should not have the word “all”.

Copyright ©2022

 | API Security Enforcer | 200

▪ The name should not have the word “decoyall”.

Following is the list of allowed characters in API name:

▪ The maximum characters in API name can be 160
▪ - (hyphen), _ (underscore), and white space are allowed in the name
▪ a-z, A-Z, and 0-9
▪ The first character must be alphanumeric

Define an Inline API JSON configuration file

The API JSON file parameters define the behavior and properties of your API. The sample API JSON files
shipped with ASE can be changed to your environment settings and are populated with default values.

The following table describes the JSON file parameters:

Parameter Description

protocol API request type with supported values of:

ws - WebSocket ; http - HTTP

url The value of the URL for the managed API. You can configure up to six levels of sub-paths. For example,

"/shopping"- name of a 1 level API

"/shopping/electronics/phones/brand" – 4 level API

"/" – entire server (used for ABS API Discovery or load balancing)

hostname Hostname for the API. The value cannot be empty.

“*” matches any hostname.

cookie Name of cookie used by the backend servers.

cookie_idle_timeout The amount of time a cookie is valid – for example 20m for 20 min.

The time duration formats include:

s: seconds, m: minutes, h: hour, d: day

▪ w: week
▪ mnt: month
▪ yr: year

logout_api_enabled When true, ASE expires cookies when a logout request is sent.

cookie_persistence_enabled When true, the subsequent request from a client is sent to the server which initially responded.

oauth2_access_token When true, ASE captures OAuth2 Access Tokens.

When false, ASE does not look for OAuth2 Tokens. Default value is false.

For more information, see Configuring OAuth2 Token.

apikey_qs When API Key is sent in the query string, ASE uses the specified parameter name to capture the API key value.

For more information, see Configuring API Keys.

apikey_header When API Key is part of the header field, ASE uses the specified parameter name to capture the API key value.

For more information, see Configuring API Keys.

login_url Public URL used by a client to connect to the application.

Copyright ©2022

 | API Security Enforcer | 201

enable_blocking When true, ASE blocks all types of attack on this API. When false, no attacks are blocked.

Default value is false.

api_memory_size Maximum ASE memory allocation for an API.

The default value is 128 MB. The data unit can be MB or GB.

health_check When true, enable health checking of backend servers.

When false, no health checks are performed.

Ping Identity recommends setting this parameter as true.

health_check_interval The interval in seconds at which ASE sends a health check to determine backend server status.

health_retry_count The number of times ASE queries the backend server status after not receiving a response.

health_url The URL used by ASE to check backend server status.

health_check_headers Configure one or more health check headers in the API JSON in a key-value format. This is an optional configuration and applies
only to inline ASE deployment. In the sample JSON, the following example is provided:

"health_check_headers": {
 "X-Host": "%{HOST}",
 "X-Custom-Header": "value"
 },

Example

Example Key Value

X-Host %{HOST} - If your backend server requires the value of header
to contain hostname or IP address of the server, use %{HOST} in
value. During health check, ASE dynamically replaces header values
containing %{HOST} with hostname or IP address of the server.

In the sample API JSON, ASE will dynamically replace %{HOST} with
IP address (127.0.0.1) configured in the servers section.

"servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/
second",
 "server_connection_quota": 0
 }
],

X-Custom-Header Your custom header value. All the custom health check headers
configured are sent to all the backend API servers.

server_ssl When set to true, ASE connects to the backend API server over SSL. If set to false, ASE uses TCP to connect to the backend
server.

Copyright ©2022

 | API Security Enforcer | 202

Servers:

host

port

server_spike_threshold

server_connection_quota

The IP address or hostname and port number of each backend server running the API.

See REST API Protection from DoS and DDoS for information on optional flow control parameters.

API Mapping:

internal_url

Internal URL is mapped to the public external URL

See API Name Mapping – Protect Internal URLs for more information

The following API Pattern Enforcement parameters only apply when API Firewall is activated

Flow Control

client_spike_threshold

server_connection_queueing

bytes_in_threshold

bytes_out_threshold

ASE flow control ensures that backend API servers are protected from surges (for example DDoS, traffic spike) in API traffic.

See WebSocket API Protection from DoS and DDoS for information on parameters.

protocol_allowed List of accepted protocols

Values can be HTTP, HTTPS, WS, WSS.

i Note: When Firewall is enabled, protocol_allowed takes precedence over the protocol parameter.

http_redirect

response_code

response_def

https_url

Redirect unencrypted HTTP requests to http_redirect, the FQDN address of a HTTPS secure connection.

See Configuring Pattern Enforcement for details.

methods_allowed List of accepted REST API methods. Possible values are:

GET, POST, PUT, DELETE, HEAD

content_type_allowed List of content types allowed. Multiple values cannot be listed. For example, application/json.

error_code

error_type

error_message_body

Error message generated by ASE after blocking a client

See ASE Detected Error Messages for details

Decoy Config

decoy_enabled

response_code

response_def response_message

decoy_subpaths

When decoy_enabled is set to true, decoy sub-paths function as decoy APIs .

response_code is the status code (for example, 200) that ASE returns when a decoy API path is accessed.

response_def is the response definition (for example OK) that ASE returns when a decoy API path is accessed.

response_message is the response message (for example OK) that ASE returns when a decoy API path is accessed.

decoy_subpaths is the list of decoy API sub-paths (for example shop/admin, shop/root)

See Configuring API deception for details

Copyright ©2022

 | API Security Enforcer | 203

JWT

location

username

clientid

When the parameter values of JWT object are set, ASE decodes the JWT to extract the user information.

location is the place of occurrence of JWT in an API request. The supported values are:

▪ qs:<key name>
▪ h:<custom header name>
▪ h:authorization:bearer
▪ h:authorization:mac
▪ h:cookie:<cookie key>

username is the JWT claim to extract the username.

clientid is the JWT claim to extract the client-id.

For more information, see Extract user information from JWT in inline mode on page 213.

Here is a sample JSON file for a REST API:

{
 "api_metadata": {
 "protocol": "http",
 "url": "/rest",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": false,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "health_check_headers": {},
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",

Copyright ©2022

 | API Security Enforcer | 204

 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 },
 "jwt": {
 "location": "h:authorization:bearer",
 "username": "username",
 "clientid": "client_id"
 }
 }
}

Add configured API JSON to ASE

After configuring an API JSON file, add it to ASE to activate ASE processing. To add an API, execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin add_api {file_path/
api_name}

After configuring API JSON files for each API, ASE configuration is complete.

Update a configured API

After activation, an API JSON definition can be updated in real time. Edit the API JSON file located in the
/config/api directory and make the desired changes. Save the edited API JSON file and execute the
following CLI command:

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api <api_name>

For example,

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin update_api shop
api shop updated successfully

API routing

ASE uses a combination of header hostname and URL suffix to route incoming API requests to the correct
backend server. The following sections show scenarios for routing based on server and API name.

▪ Multiple host names with same API name for example, shopping.xyz.com/index, trading.xyz.com/index
▪ Single host name with different API names for example, shopping.xyz.com/index, shopping.xyz.com/

auth
▪ Wildcard host name and API name

Copyright ©2022

 | API Security Enforcer | 205

Multiple host names with same API name

ASE supports configuring more than one hostname on one ASE node or cluster. It routes the incoming
traffic based on the host name and the API configured in the JSON file. For example, traffic to two hosts
named shopping.xyz.com and trading.xyz.com is routed based on the configurations in the respective API
JSON file.

For incoming API requests, ASE first checks for the host name in the JSON file. If the host name is
configured, then it checks for the API name. If both host and API name are defined, then the incoming API
request is routed to one of the configured servers.

In the above example, ASE checks whether shopping.xyz.com is configured in the JSON file
(shopping.json). It then checks for the API, /index. If it finds both to be present, then it routes the
traffic to one of the defined backend servers. Following is a snippet from a sample JSON file which shows
the values that should be configured for shopping.json:

"api_metadata": {
 "protocol": "https",
 "url": "/index,
 "hostname": "shopping.xyz.com",
 "cookie": "JSESSIONID",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": true,

Copyright ©2022

 | API Security Enforcer | 206

 "cookie_persistence_enabled": false,

For each API, configure a separate JSON file.

Single host name with different API names

ASE supports configuring the same hostname with different API names. For example, hostname
shopping.xyz.com has two different APIs, /index and /auth. Traffic to each API is routed using the API
specific JSON file: shopping-index.json or shopping-auth.json.

In the following illustration, any requests for shopping.xyz.com/index are routed by ASE to a server
configured in shopping-index.json. In this case, shopping-index.json file parameters must match for
both the hostname and API. Similarly, requests to shopping.xyz.com/auth, are routed by ASE to a server
configured in shopping-auth.json.

Wildcard hostname and API name

ASE can also be used as a simple load balancer to route traffic for legacy web applications. The load
balancing technique used for server load balancing is based on protocol and cookie information. To
configure ASE as a simple load balancer, set the following parameters in a JSON file:

“hostname”: “*”,

Copyright ©2022

 | API Security Enforcer | 207

"url": "/",

When hostname “*” and url “/” are configured in a JSON file, any request that does not match a
specific hostname and url defined in another JSON file uses the destination servers specified in this file to
route the traffic.

In the above illustration, hostname is configured as “*” and url as “/”. ASE does not differentiate
between hostname and API name. It simply balances traffic across all backend servers.

i Note: For all scenarios, when connections are being routed to a backend server which goes down,
ASE dynamically redirects the connections to a live server in the pool.

Real-time API cybersecurity

API Security Enforcer provides real-time API cybersecurity to stop hackers. Violations are immediately
blocked, and attack information is sent to the ABS engine. Real time API Cyber Security is activated only
when ASE firewall is enabled.

Copyright ©2022

 | API Security Enforcer | 208

Enable API cybersecurity

To enable API security, enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall
Firewall is now enabled

After enabling API Security, enter the following CLI command to verify cybersecurity is enabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

Disable API cybersecurity

To disable ASE’s cybersecurity feature, type the following CLI command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_firewall
Firewall is now disabled

After disabling ASE’s cybersecurity feature, enter the following CLI command to verify that cybersecurity is
disabled:

/opt/pingidentity/ase/bin/cli.sh status
Ping Identity Inc., API Security Enforcer
status : started
http/ws : port 80
https/wss : port 443
firewall : disabled
abs : disabled
abs attack : disabled
audit : enabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40 MB

ASE attack detection

API Security Enforcer supports the following real time ASE attack detection and blocking:

▪ API pattern enforcement – validate traffic to ensure it is consistent with the API definition
▪ API deception – blocks hackers probing a decoy API (see API deception environment on page 225)

Enable ASE detected attacks

Enable real-time ASE attack detection by running the following ASE command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin
 enable_ase_detected_attack
ASE detected attack is now enabled

Copyright ©2022

 | API Security Enforcer | 209

Disable ASE detected attacks

Disable real-time ASE detected attacks by running the following command on the ASE command line:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin
 disable_ase_detected_attack
ASE detected attack is now disabled

i Note: When you disable ASE Detected attacks, the attacks are deleted from the blacklist.

Configure pattern enforcement

After enabling API cybersecurity, configure API pattern enforcement to block API traffic that does not
match the permitted criteria in the following categories:

▪ Protocol (HTTP, HTTPS, WS, WSS) – only allow the defined protocols
▪ Method (GET, POST, PUT, DELETE, HEAD) – only allow the specified methods
▪ Content Type – only allow the defined content type, not enforced if an empty string is entered
▪ HTTPS Only – only allow HTTPS traffic

ASE blocks attacks based on parameters configured in the API JSON file. If a client request includes
values not configured in the API JSON, ASE blocks the connection in real-time. When the connection is
blocked, the OAuth2 token, cookie, or IP address is blocked from accessing any APIs.

The following API JSON file snippet shows an example of pattern enforcement parameters:

"api_pattern_enforcement": {
 "protocol_allowed": "https",
 "http_redirect": {
 "response_code": 301,
 "response_def": "Moved Permanently",
 "https_url": "https://shopping.xyz.com/login/"
 },
 "methods_allowed": [
 "GET",
 "POST"
],
 "content_type_allowed": "application/json",
 "error_code": 401,
 "error_def": "Unauthorized",
 "error_message_body": " Error: Unauthorized"
 },

The above example sets up the following enforcement:

▪ Only HTTPS traffic is allowed access to the API. If an HTTP request is sent, it will be redirected to the
https_url defined in the http_redirect section.

▪ Only GET and POST methods are allowed; PUT, DELETE, and HEAD will be blocked.
▪ Only application/json content type is allowed; other content types are blocked.

If a request satisfies all three parameters (protocol, method, and content type), ASE will send the request
to the backend API server for processing. Otherwise, ASE sends an error code using the following API
JSON parameters:

▪ Error_code – for example, “401”
▪ error_def – error definition, for example, “Unauthorized”
▪ error_message_body – error message content, for example, “Error: Unauthorized”

Copyright ©2022

 | API Security Enforcer | 210

If an empty string is specified for content_type_allowed, ASE does not enforce content type for the
incoming traffic.

"content_type_allowed": ""

i Note: When API security is enabled, the protocol_allowed parameter takes precedence over the
protocolparameter in the beginning of the API JSON file

Detection of attacks for pattern enforcement violation

The following is a snippet of access log file showing what is logged when a connection is blocked based on
any pattern enforcement violation.

i Note: Make sure that ASE detected attacks are enabled.

The following example shows a method violation for an OAuth2 token:

[Fri Aug 10 15:59:12:435 2018] [thread:14164] [info]
 [connectionid:1681692777] [seq:1] [connectinfo:100.100.1.5:36839]
 [type:request] [api_id:shop] PATCH /shopapi/categories/list HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app
Content-Type: application/text
Cookie: JSESSIONID=ebcookie
Authorization: Bearer OauthTokenusemethoid12345
[Fri Aug 10 15:59:12:435 2018] [thread:14164] [info]
 [connectionid:1681692777] [seq:1] [connectinfo:100.100.1.5:36839]
 [type:connection_drop] [enforcement:method] [api_id:shop] PATCH /shopapi/
categories/list HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app
Content-Type: application/text
Cookie: JSESSIONID=ebcookie
Authorization: Bearer OauthTokenusemethoid12345

Violations logged in the ASE access log files are sent to API Behavioral Security engine for further analysis
and reporting.

API name mapping – hide internal URLs

After enabling API cybersecurity, API name mapping can be configured to protect API servers by hiding
internal URLs from the outside world. Internal URLs may also be modified without updating entries in the
public DNS server.

For example, the following JSON snippet from an API JSON file maps an external URL (“/index”) for
shopping.xyz.com to an internal URL (“/a123”).

"api_metadata": {
 "protocol": "http",
 "url": "/index",
 "hostname": "127.0.0.1",
 "cookie": "JSESSIONID",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": true,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",

Copyright ©2022

 | API Security Enforcer | 211

 "apikey_header": "",
 "cookie_persistence_enabled": true,
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "login_url": "/index/login",
 "api_mapping": {
 "internal_url": "/a123"
 },

The following diagram illustrates the data flow from the client to the backend server through ASE:

Capturing client identifiers

ASE identifies attackers for HTTP(s) and WS(s) protocols using four client identifiers:

▪ OAuth2 token
▪ Cookie
▪ IP address
▪ API keys

Copyright ©2022

 | API Security Enforcer | 212

▪ Username

i Note: Username is not configured in the api_metadata object of API JSON. However, ASE
supports the extraction of usernames coming in a JSON Web Tokens(JWTs), and a JWT object in API
JSON is used to configure username information. For more information, see Extract user information
from JWT in inline mode on page 213 . For usernames that are not part of the JWTs PingIntelligence
AI engine identifies them based on metadata logged in ASE's access log files..

The following sections describe how to configure ASE to capture OAuth2 Tokens and API keys.

Configure ASE support for OAuth2 tokens

ASE supports capturing and blocking of OAuth2 tokens. To enable OAuth2 token capture, set the value of
oauth2_access_token to true in the API JSON file. Here is a snippet of an API JSON file with OAuth2
Token capture activated. To disable, change the value to false.

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },

When blocking is enabled, ASE checks the token against the list of tokens in the whitelist and blacklist. If
the token is in the blacklist, the client using the token is immediately blocked.

When pattern enforcement violations are detected on an API configured to support tokens, the attacking
client token is added to the blacklist in real-time, recorded in the ASE access log, and sent to ABS for
further analytics. The following diagram shows the traffic flow in an OAuth2 environment:

Copyright ©2022

 | API Security Enforcer | 213

Configure ASE support for API keys

ASE supports capturing and blocking of API keys. Depending on the API setup, the API key can be
captured from the query string or API header. Each API JSON file can be configured with either the query
string (apikey_qs) or API header (apikey_header) parameter.

Here is a snippet of an API JSON file showing API Key being configured to capture the API Key from the
Query String (apikey_qs).

"api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": true,
 "oauth2_access_token": true,
 "apikey_qs": "key_1.4",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },

When an API Key is included in the API JSON file, ASE supports blocking of API keys which are manually
added to the Blacklist.

Extract user information from JWT in inline mode
ASE supports the decoding of transparent JSON Web Tokens (JWTs) received as part of API requests.
It extracts the user information from the JWT and logs it in the ASE access logs. The ABS AI engine
analyzes these access logs to detect attacks and anomalies.

The following diagram shows the traffic flow when ASE is in inline mode.

A JWT consists of three parts, header, payload, and signature, concatenated with periods(.). The following
image shows a sample JWT structure.

ASE decodes the payload to extract user information from a JWT. ASE can decode JWTs received as
part of request headers or query strings. In inline mode, ASE supports Bearer and MAC schemes in the
Authorization header.

Copyright ©2022

 | API Security Enforcer | 214

i Note:

ASE decodes the JWTs and extracts the user information. It does not validate JWTs.

ASE supports a list of usernames in JWT. When the username claim in the payload is an array with
multiple elements, ASE extracts the first element of the array. The elements in the array can be strings or
numbers, and the array should be a valid JSON array.

i Note:

ASE supports arrays only for username claims in the payload. It does not support arrays in clientid or
location claims.

When ASE is deployed in inline mode, it decodes the JWTs only when the username and location values
are configured in an API JSON file for the API.

i Note:

If the JWT decoding fails, the API request is not blocked. ASE logs the metadata in the access logs.

Configure API JSON

The behavior and properties of your API are defined in an API JSON file in ASE. To enable username
capture, set the values for the parameters defined in the JWT object of the API JSON file as per your API
setup. For more information, see Define an Inline API JSON configuration file on page 200.

The following is an example snippet of an API JSON file.

{
 "api_metadata": {
 "protocol": "http",
 "url": "/rest",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": true,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "jwt": {
 "location": "h:authorization:bearer",
 "username": "username",
 "clientid": "client_id"
 }

Copyright ©2022

 | API Security Enforcer | 215

 }
}

i Note:

The values assigned to username and clientid must be different.

The following table describes the parameters in the JWT object of API JSON file.

Copyright ©2022

 | API Security Enforcer | 216

Parameter Description

location The JWT location in an API request. Configure the
parameter with a value applicable to your API.

The supported values for the location parameter
are:

qs: <key name>

Set the location parameter with this value
when JWT occurs as part of a query string
and substitute the <key name> with the query
string parameter. For example,"location":
"qs:access_token".

https://server.example.com/
resource?
access_token=mF_9.B5f-4.1JqM&p=q

h: <custom header name>

Set the location parameter with this value
when JWT is part of a custom header and
substitute the <custom header name> with
custom header. For example,"location": "h:X-
jwt-header".

X-jwt-header:
 eyJhbGcUzI1NiI.eyJzDkwIG4gRG9xpZWQiOjwMjJ9.DWw5PDZEl-
g

h:Authorization:bearer

Set the location parameter with this value
when JWT is part of Authorization header,
with bearer scheme. For example, "location":
"h:Authorization:Bearer".

Authorization: Bearer
 eyJhbGIUzIiI.eyJzdiIxG4gRG9lIiwiZiOjJ9.DWPwNDZEl-
g

h:Authorization:MAC

Set the location parameter with this value
when JWT is part of Authorization header,
with MAC scheme. For example, "location":
"h:Authorization:MAC" .

Authorization: MAC
 id="eyJhbGcI1NiI",

 nonce="272095:dp63hm5s",

 mac="PNPQW4mg43cjQfEpUs3QWub4o6xE="

h:cookie:<cookie key>

Set the location parameter with this value
when JWT occurs as part of a cookie and
substitute the <cookie key> with the cookie
name. For example, "location":"h:cookie:
access_token".

Cookie:
 access_token=eyJhbGiIsI.eyJpc3MiOiJodHRwczotcGxlL.mFrs3ZodqKP4F1cB

Copyright ©2022

 | API Security Enforcer | 217

Parameter Description

username The JWT claim to extract the username.

clientid The JWT claim to extract the client-id.

When enable_blocking is set to true, ASE checks the username against the list of usernames in the
whitelist and blacklist. If the username is in the blacklist, the client using the username is blocked.

API discovery process
The ABS AI Engine processes the ASE access logs and discovers new and unknown APIs in your
environment. A root API JSON is defined in ASE to enable API discovery by ABS. For more information on
API discovery, see API discovery and configuration on page 329. If the root API JSON has a JWT object
configured with values set for all the keys, then the APIs discovered by the ABS will have the JWT object.

The following table explains the behavior of ASE when the API JSON has an incomplete JWT object and
describes its impact on the APIs discovered by ABS in your environment.

Scenarios Behavior of ASE Impact on API discovery

A JWT object is not configured in
API JSON.

ASE processes the API JSON
file.

A JWT object gets added to the
discovered APIs with all the keys but
empty values. For example.

"jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }

A JWT object is configured in API
JSON file but with no keys. For
example.

“jwt”:{}

ASE does not process the API
JSON file.

The API is not discovered.

A JWT object is configured with
all the keys present but with no
values set. For example.

"jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }

ASE processes the API JSON
file.

A JWT object gets added to the
discovered APIs with all the keys but
empty values. For example.

"jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }

When a JWT object is configured,
but not all keys are set. For
example.

"jwt": {
 "username": "",

 "location": ""
 }

ASE does not process the API
JSON file.

The API is not discovered.

Copyright ©2022

 | API Security Enforcer | 218

i Note:

The API JSON file shipped with ASE is compatible with earlier versions of API JSON files. ASE
automatically adds an empty JWT object to the API JSON file to maintain compatibility.

Manage whitelist and blacklist

ASE maintains the following two types of lists:

▪ Whitelist – List of “safe” IP addresses, cookies, OAuth2 Tokens, API keys, or Usernames that are not
blocked by ASE. The list is manually generated by adding the client identifiers using CLI commands.

▪ Blacklist – List of “bad” IP addresses, cookies, OAuth2 Tokens, API keys, or Usernames that are
always blocked by ASE. The list consists of entries from one or more of the following sources:

▪ ABS detected attacks (for example data exfiltration). ABS detected attacks have a time-to-live (TTL)
in minutes. The TTL is configured in ABS.

▪ ASE detected attacks (for example invalid method, decoy API accessed). The ASE detected attacks
▪ List of “bad” clients manually generated by CLI

Manage whitelists

Valid operations for OAuth2 Tokens, cookies, IP addresses, API keys, and usernames on a whitelist
include:

Add an entry

▪ Add an IP address to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist ip
 10.10.10.10
ip 10.10.10.10 added to whitelist

▪ Add a cookie to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist cookie
 JSESSIONID cookie_1.4
cookie JSESSIONID cookie_1.4 added to whitelist

▪ Add a token to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist token
 token1.4
token token1.4 added to whitelist

▪ Add an API Key to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist api_key
 X-API-KEY key_1.4
api_key X-API-KEY key_1.4 added to whitelist

▪ Add a username to whitelist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist username
 abc@example.com
username abc@example.com added to whitelist

View whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_whitelist
Whitelist
1) type : ip, value : 1.1.1.1

Copyright ©2022

 | API Security Enforcer | 219

2) type : cookie, name : JSESSIONID, value : cookie_1.1
3) type : token, value : token1.3
4) type : api_key, name : X-API-KEY, value : key_1.4
5) type : username, value : abc@example.com

Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist ip
 4.4.4.4
ip 4.4.4.4 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist cookie
 JSESSIONID cookie_1.1
cookie JSESSIONID cookie_1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist token
 token1.1
token token1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist api_key
 X-API-KEY key_1.4
api_key X-API-KEY key_1.4 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist username
 abc@example.com

Clear the whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : y
Whitelist cleared
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : n
Action canceled

Manage blacklists

Valid operations for IP addresses, Cookies, OAuth2 Tokens, and API keys on a blacklist include:

Add an entry

▪ Add an IP address to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist ip
 1.1.1.1
ip 1.1.1.1 added to blacklist

▪ Add a cookie to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist cookie
 JSESSIONID ad233edqsd1d23redwefew
cookie JSESSIONID ad233edqsd1d23redwefew added to blacklist

▪ Add a token to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist token
 ad233edqsd1d23redwefew
token ad233edqsd1d23redwefew added to blacklist

Copyright ©2022

 | API Security Enforcer | 220

▪ Add an API Key to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist api_key
 AccessKey b31dfa4678b24aa5a2daa06aba1857d4
api_key AccessKey b31dfa4678b24aa5a2daa06aba1857d4 added to blacklist

▪ Add an username to blacklist:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist username
 abc@example.com
username abc@example.com added to blacklist

i Note: You can also add username with space to blacklist. For example, "your name".

View blacklist - entire blacklist or based on the type of real time violation.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist all
Manual Blacklist
1) type : ip, value : 172.168.11.110
2) type : token, value : cdE94R3osh283B7NoiJR41XHgt7gxroot
3) type : username, value : blockeduser
4) type : cookie, name : JSESSIONID, value : pZlhg5s3i8csImMoas7vh81vz
5) type : api_key, name : x-api-key, value :
 d4d28833e2c24be0913f4267f3b91ce5
ABS Generated Blacklist
1) type : token, value : fAtTzxFJZ2Zkr7HZ9KM17s7kY2Mu
2) type : token, value : oFQOr11Gj8cCRv1k4849RZOPztPP
3) type : token, value : Rz7vn5KoLUcAhruQZ4H5cE00s2mG
4) type : token, value : gxbkGPNuFJw69Z5PF44PoRIfPugA
5) type : username, value : user1
Realtime Decoy Blacklist
1) type : ip, value : 172.16.40.15
2) type : ip, value : 1.2.3.4

Blacklist based on decoy IP addresses

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist decoy
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4

Blacklist based on protocol violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_protocol
Realtime Protocol Blacklist
1) type : token, value : token1.1
2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1

Blacklist based on method violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_method
Realtime Method Blacklist
1) type : token, value : token1.3
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3

Copyright ©2022

 | API Security Enforcer | 221

Blacklist based on content-type violation

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_content_type
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

ABS detected attacks

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 abs_detected
No Blacklist

Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist ip
 1.1.1.1
ip 1.1.1.1 deleted from blacklist
./bin/cli.sh -u admin -p admin delete_blacklist cookie JSESSIONID
 avbry47wdfgd
cookie JSESSIONID avbry47wdfgd deleted from blacklist
./bin/cli.sh -u admin -p admin delete_blacklist token
 58fcb0cb97c54afbb88c07a4f2d73c35
token 58fcb0cb97c54afbb88c07a4f2d73c35 deleted from blacklist
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist api_key
 AccessKey b31dfa4678b24aa5a2daa06aba1857d4

Clear the blacklist

./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :y
Blacklist cleared
./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :n
Action canceled

When clearing the blacklist, make sure that the real-time ASE detected attacks and ABS detected attacks
are disabled. If not disabled, the blacklist gets populated again as both ASE and ABS are continuously
detecting attacks.

Map server error messages to custom error messages

Backend server error messages (for example, Java stack trace) can reveal internal information to hackers.
ASE supports hiding the internal details and only sending a customized simple error message. The error
message mappings are defined in /config/server_error.json file.

Copyright ©2022

 | API Security Enforcer | 222

For each custom HTTP error code, specify all three parameters in server_error.json. For example,
the snippet of server_error.json shows parameters for mapping error codes 500 and 503.

{
 "server_error": [
 {
 "error_code" : "500",
 "error_def" : "Internal Server Error",
 "msg_body" : "Contact Your Administrator"
 },
 {
 "error_code" : "503",
 "error_def" : "Service Unavailable",
 "msg_body" : "Service Temporarily Unavailable"
 }
]
}

In the above example, an ASE which receives an error 500 or 503 message from the application
replaces the message with a custom name error_def and message msg_body as defined in the
server_error.json file.

Copyright ©2022

 | API Security Enforcer | 223

To send the original error message from the backend server, do not include the associated error code in
the server_error.json file. An empty server_error.json file as shown below will not translate any
backend error messages.

{
 "server_error": [
]
}

i Note: ASE checks for the presence of the server_error.json file. If this file is not available, ASE
will not start.

ASE generated error messages for blocked requests

ASE blocks certain requests based on API Mapping or ABS detected attacks. For these blocked requests,
it sends a standard error message back to the client.

The following table describes the error messages:

Blocked Connection HTTP Error Code Error Definition Message Body

Unknown API 503 Service Unavailable Error: Unknown API

Unknown Hostname 503 Service Unavailable Error: Unknown Hostname

Malformed Request 400 Bad Request Error: Malformed Request

IP attack 403 Unauthorized Error: Unauthorized

Cookie attack 403 Unauthorized Error: Unauthorized

OAuth2 Token attack 403 Unauthorized Error: Unauthorized

API Key attack 403 Unauthorized Error: Unauthorized

Username attack 403 Unauthorized Error: Unauthorized

Copyright ©2022

 | API Security Enforcer | 224

Per API blocking

ASE can be configured to selectively block on a per API basis by configuring an API JSON file parameter.
To enable per API blocking for each API, set the enable_blocking parameter to true in the API JSON. For
example:

api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },

Copyright ©2022

 | API Security Enforcer | 225

If per API blocking is disabled, ABS still detect attacks for that specific API, however, ASE does not block
them. ASE will continue to block attacks on other APIs with the enable_blocking set to true.

API deception environment

A decoy API is configured in ASE and requires no changes to backend servers. It appears as part of the
API ecosystem and is used to detect the attack patterns of hackers. When a hacker accesses a decoy API,
ASE sends a predefined response (defined inresponse_message parameter in API JSON file) to the client
request and collects the request information as a footprint to analyze API ecosystem attacks. ASE does not
forward Decoy API request traffic to backend servers.

Decoy API traffic is separately logged in files named with the following format:
decoy_pid_<pid_number>__yyyy-dd-mm-<log_file_rotation_time> (for example,
decoy_pid_8787__2017-04-04_10-57.log). decoy log files are rotated every 24-hours and stored
in the opt/pingidentity/ase/logs directory.

ASE Provides the following decoy API types:

▪ In-context decoy APIs
▪ Out-of-context decoy APIs

In-context decoy API

In-context decoy APIs consist of decoy paths within existing APIs supporting legitimate traffic to backend
servers. Any traffic accessing a decoy path receives a preconfigured response. For example, in the
shopping API, /root and /admin are decoy APIs; /shoes is a legitimate API path. Traffic
accessing /shoes is redirected to the backend API server, while the traffic that accesses /root or /
admin receives a preconfigured response.

Copyright ©2022

 | API Security Enforcer | 226

The following snippet of an API JSON file shows an in-context decoy API:

{
 "api_metadata": {
 "protocol": "http",
 "url": "/shop",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },
;
; Note – other configuration parameters removed
;
 "decoy_config":
 {
 "decoy_enabled": true,
 "response_code" : 200, decoy API Configuration

Copyright ©2022

 | API Security Enforcer | 227

 "response_def" : "OK",
 "response_message" : "OK",
 "decoy_subpaths": [
 "/shop/root",
 "/shop/admin"
]
 }
 }
}

The API JSON file defines normal API paths consisting of the path /shop. The decoy configuration is
enabled for “/shop/root” and “/shop/admin” with the following parameters:

▪ decoy_enabled parameter is set to true. If set to false, no decoy paths are configured.
▪ response_code is set to 200. When a decoy sub-path is accessed, return a 200 response.
▪ response_def is set to OK. When a decoy sub-path is accessed, return OK as the response.

An in-context decoy API can have a maximum of 32 sub-paths configured for an API.

i Warning: When configuring in-Context decoy APIs, do not leave empty sub-paths which makes your
business API into an out-of-context API. No traffic will be forwarded to backend application servers.

Out-of-context decoy API

Out-of-Context Decoy APIs are independent APIs where every path is a decoy API. Any sub-paths
accessed in the API are treated as part of the decoy API. The figure shows an example.

Following is a snippet of a trading API JSON which has been deployed as a decoy API:

{
 "api_metadata": {
 "protocol": "http",
 "url": "/account",
 "hostname": "*",
;

Copyright ©2022

 | API Security Enforcer | 228

; Note – other configuration parameters removed
;
 "decoy_config":
 {
 "decoy_enabled": true,
 "response_code" : 200,
 "response_def" : "OK",
 "response_message" : "OK", Decoy API Configuration
 "decoy_subpaths": [

]
 }

Since the decoy_subpaths parameter is empty, any sub-path accessed by the attacker after /account
is regarded as a decoy path or decoy API.

After configuring In-Context or Out-of-Context Decoy API, check the API listings by running the list_api
command:

opt/pingidentity/ase/bin/cli.sh list_api -u admin -p
flight (loaded), https
shop (loaded), https, decoy: in-context
trading (loaded), https, decoy: out-context

Real-time API deception attack blocking

ASE detects any client probing a decoy API. When a client probes an out-of-context decoy API, ASE logs
but does not drop the client connection. However, if the same client tries to access a legitimate path in the
in-context decoy API, then ASE block the client in real-time. Here is a snippet of an ASE access log file
showing real time decoy blocking:

[Tue Aug 14 22:51:49:707 2018] [thread:209] [info] [connectionid:1804289383]
 [connectinfo:100.100.1.1:36663] [type:connection_drop] [api:decoy]
 [request_payload_length:0] GET /decoy/test/test HTTP/1.1
User-Agent: curl/7.35.0
Accept: */*
Host: app
The blocked client is added to the blacklist which can be viewed by running
 the view_blacklist CLI command:
/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
Realtime Decoy Blacklist
1) type : ip, value : 100.100.1.1

ASE DoS and DDoS protection

ASE flow control ensures that backend API servers are protected from unplanned or malicious (for
example DDoS) surges in API traffic. flow control combines client and backend server traffic control at an
API level to protect REST and WebSocket API servers.

Protection for REST APIs

▪ Client Rate Limiting – Protects against abnormally high traffic volumes from any client (for example,
Denial-of-Service - DoS attack). By controlling inbound requests from REST API clients, client rate
limiting protects API servers from being overloaded by a single client.

▪ Aggregate Server TCP Connection Limits – Prevents server overload from too many concurrent
TCP connections across one or a cluster of ASE nodes. Restricts the total number of TCP connections
allowed from a cluster of ASE nodes to a specific API on each server.

▪ Aggregate Server HTTP Request Limits – Prevents REST API server overload from too many
concurrent HTTP requests across one or a cluster of ASE nodes. Unlike traditional per node flow
control, this implementation protects any REST API server from too much aggregate client traffic

Copyright ©2022

 | API Security Enforcer | 229

coming from a cluster of ASE nodes (for example, traffic load bursts, Distributed Denial-of-Service
(DDoS) attacks).

▪ Client Request Queuing – Queues and retries REST API session requests when servers are busy.

Protection for WebSocket APIs

▪ Client Rate Limiting – Protects against abnormally high traffic volumes from any client (for example,
Denial-of-Service - DoS attack). By controlling the client HTTP requests and WebSocket traffic
volumes, rate limiting protects API servers from being overloaded by a single client.

▪ Aggregate Server Connection Limits – Prevents server overload from too many simultaneous
session connections across one or a cluster of ASE nodes. Restricts the total number of WebSocket
sessions allowed from a cluster of ASE nodes to a specific API on each server.

▪ Outbound Rate Limiting – Protects against abnormally high traffic volumes to a client. By managing
outbound traffic volumes to WebSocket clients, outbound rate limiting protects against exfiltration.

The following table lists the control functions which apply to each protocol:

REST API (HTTP/HTTPS) WebSocket and Secure WebSocket

Client Spike Threshold

Server Connection Quota

Server Connection Queuing

Server Spike Threshold -NA-

Bytes-in Threshold -NA-

Bytes-out Threshold -NA-

REST API protection from DoS and DDoS

flow control protects REST API servers using four control variables which are independently configured. By
default, no flow control is enabled.

Variable Description

Configured once in every API JSON file

client_spike_threshold Maximum requests per time-period from a single client IP to a specific
REST API.

Time can be in seconds, minutes or hours.

server_connection_queueing When true, queue API connection requests when all backend servers
reach server connection quota. Default value is false.

Configured for each server in every API JSON file

Copyright ©2022

 | API Security Enforcer | 230

server_connection_quota Maximum number of concurrent connections to a specific REST API on
a server. Prevents aggregate connections from one or a cluster of ASE
nodes from overloading a REST API running on a specific server.

server_spike_threshold Maximum requests per time-period to the REST API running on the
specified server. Prevents the aggregate request rate from one or
a cluster of ASE nodes from overloading a REST API running on a
specific server.

Time can be in seconds, minutes, or hours.

Client flow control monitors incoming traffic from each client connection and drops the session when traffic
limits are exceeded. The diagram shows the following client scenarios:

▪ IP1 sending request volumes which exceed the client_spike_threshold value. ASE 1 sends an error
message and terminates the session to stop the attack.

▪ IP2 and IP3 sending request traffic which stays below the client_spike_threshold value. Requests are
passed to the backend API servers.

Server-side flow control manages traffic volumes and session count for an API on an application server.
server_connection_quota sets the maximum number of concurrent connections that can be established
to each API on a server. server_spike_threshold controls the aggregate traffic rate to an API on a server.
The concurrent connections and request rate consist of the aggregate traffic from all ASE nodes forwarding
traffic to an API on a server. The diagram shows two server scenarios including:

▪ A new connection request from ASE 1 is allowed because it is within the server_connection_quota
threshold.

▪ ASE 2 detects the combined traffic rate from ASE 1 and ASE 2 will exceed the server_spike_threshold
for REST API 1. Thus, it drops IP 3 traffic and sends an error message to the client.

The following diagram shows the effect of the parameters on traffic flow through ASE to backend servers.
In the diagram, client-side flow control is managed by client_spike_threshold and server-side flow control is
regulated by a combination of server_spike_threshold and server_connection_quota.

Copyright ©2022

 | API Security Enforcer | 231

Example:

Here is an example for an Application Server on the previous diagram.

Variable Configured value

client_spike_threshold 50,000 requests per second per IP

server_spike_threshold 30,0000 requests per second per server

server_connection_quota 20,000 concurrent connections per server

server_connection_queueing true

Client flow control permits a maximum of 50,000 requests/second from an individual IP. If IP 1, 2, or 3
exceeds the 50,000/second limit, ASE drops the client session. Otherwise, all requests are passed to the
backend servers.

Copyright ©2022

 | API Security Enforcer | 232

Server flow control allows 30,000 requests/second to REST API 1 on the application server. If the sum of
requests/second from the ASE cluster nodes (i.e. ASE 1 + ASE 2 request rate) to REST API1 exceeds
30,000/second, then traffic is dropped from the client causing aggregate traffic to exceed the maximum
request rate. Otherwise, ASE 1 and ASE 2 forward all traffic.

Server flow control allows 20,000 concurrent connections to REST API1 on the application server. If the
sum of connections from the ASE cluster nodes (i.e. ASE 1 + ASE 2 connection count) to REST API1
exceeds 20,000, then ASE will queue the request for a time since server_connection_queuing is
enabled. If queuing is not enabled, then the request is dropped.

Summary table for REST API flow control

Parameter Notes

client_spike_threshold Maximum request rate from a client to an API

server_spike_threshold Maximum aggregate request rate through ASE cluster nodes to an API
on a specific server.

server_connection_quota Maximum number of concurrent sessions from ASE cluster nodes to an
API on a specific server.

i Note: You can also configure server connection quota and server spike threshold separately for each
backend server.

JSON configuration for REST API flow control

ASE flow control is configured separately for each API using the API JSON file. Here are the flow control
related definitions in an API JSON file:

{
 "api_metadata": {
 "protocol": "http",

 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing" : false
 },
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "100/second",
 "server_connection_quota": 20
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "200/second",
 "server_connection_quota": 40
 }
]
 }
}

The flow control section includes definitions which apply globally across the API definition and
include client_spike_threshold and server_connection_queueing. Server specific definitions include
server_spike_threshold and server_connection_quota which are configured on each individual server. The
default is no flow control with all values set to zero. Note that different values can be specified for each
server for server_connection_quota and server_spike_threshold.

Copyright ©2022

 | API Security Enforcer | 233

i Note: If server connection quota is set to zero for one server, then it must be zero for all other servers
in the API JSON definition.

Flow control CLI for REST API

ASE CLI can be used to update flow control parameters:

Update client spike threshold:

Enter the following command to update the client spike threshold:

update_client_spike_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_client_spike_threshold shop_api 5000/second

Update server spike threshold

Enter the following command to update the server spike threshold:

update_server_spike_threshold {api_id} {host:port} {+ve digit/(second|
minute|hour)}

For example: update_server_spike_threshold shop_api 5000/second

Update server connection quota

update_server_connection_quota {api_id} {host:port}{+ve digit}

For example: update_server_connection_quota shop_api 5000

i Note: API security must be enabled for ASE flow control to work. For more information on enabling
API security, see Enable API security

WebSocket API protection from DoS and DDoS

Flow control protects WebSocket servers using five control variables which are independently configured.
By default, no flow control is enabled.

Variable Description

Configured once in every API JSON file

client_spike_threshold Maximum number of HTTP requests per time-
period from a single IP to a specific WebSocket
API.

Time can be in seconds, minutes or hours.

bytes_in_threshold Maximum number of bytes per time-period from a
single IP to an ASE node.

Time can be in seconds, minutes or hours.

bytes_out_threshold Maximum number of bytes per time-period sent
from an ASE node to a single IP.

Time can be in seconds, minutes or hours.

Copyright ©2022

 | API Security Enforcer | 234

server_connection_queueing When true, queue connection requests when all
backend servers reach the server connection quota.

The default value is false.

Configured for each server in every API JSON file

server_connection_quota Maximum number of concurrent connections to
a specific WebSocket API on a server. Prevents
aggregate connections from one or a cluster of ASE
nodes from overloading a WebSocket API on a
specific server.

The following diagram shows the effect of the parameters on traffic flow through ASE. In the
diagram, client-side flow control is managed by client_spike_threshold, bytes_in_threshold, and
bytes_out_threshold. The bytes_out threshold protects against data exfiltration. Server flow control is
regulated by server_connection_quota.

Copyright ©2022

 | API Security Enforcer | 235

Client flow control monitors incoming traffic from each client connection and drops sessions when HTTP
request or bytes in threshold limits are exceeded. In addition, outbound traffic from each ASE Node is
monitored to protect against exfiltration. The diagram shows client scenarios including:

▪ IP1 sending HTTP request volumes which exceed the client_spike_threshold value. ASE 1 sends an
error message and terminates the session to stop the attack.

▪ IP2 sending WebSocket streaming traffic volumes which exceed the bytes_in_threshold limits. ASE 1
sends an error message and terminates the session to stop the traffic.

▪ IP3 and IP4 within client spike threshold and bytes in threshold criteria and requests are forwarded to
the backend server.

▪ Traffic from ASE 2 to IP5 exceeds the bytes out threshold value. ASE blocks the traffic and drops the
client session.

The server-side flow control provides the ability to control session count to an API on an application server.
server_connection_quota sets the maximum number of concurrent connections that can be established

Copyright ©2022

 | API Security Enforcer | 236

to an API on a server. The concurrent connections are the aggregate connections from all ASE nodes
forwarding traffic to the specified API on a given server.

Example:

Here is an example with a hypothetical deployment for the Application Server in the previous diagram.

Variable Configured value

client_spike_threshold 50,000 requests per second per IP

bytes_in_threshold 2000 bytes per second per IP

bytes_out_threshold 1000 bytes per second per server

server_connection_quota 20,000 concurrent connections per server

server_connection_queueing true

Client flow control permits a maximum of 50,000 HTTP requests/second from an individual IP. If IP 1, 2, or
3 exceeds the 50,000/second limit, ASE drops the client session. Otherwise, all requests are passed to the
backend servers.

Client flow control allows a maximum of 2,000 bytes/second from each WebSocket client connection to an
ASE node. If IP 1, 2, or 3 exceeds the 2,000 bytes/second limit, ASE drops the client session. Otherwise,
all requests are passed to the backend servers.

Server flow control allows 20,000 concurrent connections to WebSocket API 1 on the application server. If
the sum of connections from the ASE cluster nodes (i.e. ASE 1 + ASE 2 connection count) to WebSocket
API1 exceeds 20,000, then ASE will queue the request for a time-period since server_connection_queuing
is enabled. If queuing is not enabled, then the request is dropped.

Client Flow Control allows a maximum of 1,000 bytes/second from a WebSocket API to any WebSocket
client connection. If outbound traffic exceeds the 1,000 bytes/second limit, ASE blocks the traffic and drops
the client session. Otherwise, all requests are passed to the backend servers.

Summary table for WebSocket flow control

Parameter Notes

client_spike_threshold Maximum HTTP request rate from a client to an API

bytes_in_threshold Maximum number of bytes per time-period from a
client to a specific ASE node

bytes_out_threshold Maximum number of bytes per time-period from an
ASE node

server_connection_quota Maximum number of concurrent sessions from ASE
cluster nodes to an API on a specific server.

Configuring flow control for WebSocket API

ASE flow control is configured separately for each API using the API JSON file. Here are the flow control
related definitions in an API JSON file:

{
 "api_metadata": {
 "protocol": "ws",

 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",

Copyright ©2022

 | API Security Enforcer | 237

 "server_connection_queueing" : false
 },
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 10
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 20
 }
]
 }
}

The flow control section includes definitions which apply globally across all servers running the defined
WebSocket API. These are client_spike_threshold, bytes_in_threshold, bytes_out_threshold, and
server_connection_queueing. Server specific definitions include server_connection_quota which is
configured on each individual server. The default is no flow control with all values set to zero. Note that
different values can be specified for each server for server_connection_quota.

i Note: If server connection quota is set to zero for one server, then it must be zero for all other servers
in the API JSON definition..

i Note: API security must be enabled for ASE flow control to work. For more information on enabling
API security using the configuration file, see Define an Inline API JSON configuration file on page 200 or
using the CLI, see Enable API Cybersecurity

Flow control CLI for WebSocket API

ASE CLI can be used to update flow control parameters:

Update Client Spike Threshold:

Enter the following command to update the client spike threshold:

update_client_spike_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_client_spike_threshold shop_api 5000/second

Update Bytes-in

update_bytes_in_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_bytes_in_threshold shop_api 8096/second

Update Bytes-out

update_bytes_out_threshold {api_id} {+ve digit/(second|minute|hour)}

For example: update_bytes_out_threshold shop_api 8096/second

Update Server Quota

update_server_connection_quota {api_id} {host:port}{+ve digit}

For example: update_server_connection_quota shop_api 5000

Copyright ©2022

 | API Security Enforcer | 238

i Note: API security must be enabled for ASE flow control to work. For more information on enabling
API security, see Enable API Cybersecurity .

Server connection queuing for REST and WebSocket APIs

ASE can queue server connection requests when the backend API servers are busy. When enabled,
server connection queuing applies to both REST and WebSocket APIs and is configured in the API JSON
file.

Connection queuing for stateless connections

Stateless connections are connections without cookies. Before enabling connection queuing, configure
connection quota values for the backend API servers. After both connection quota and connection queuing
are set, the requests are routed based on the following weightage formula:

Where Q i is the server connection quota for servers from i=1 to i=n

For example, if two backend servers have connection quota set as 20,000 and 40,000 connections, then
the connections are served in a ratio of 20000/ (20000+40000) and 40000/ (20000+40000), that is, in the
ratio of 1/3 and 2/3 for the respective servers.

When queuing is enabled and the backend servers are occupied, the connections are queued for a period.
The connections are forwarded to the next available backend server during the queuing period based on
the weighted ratio of server connection quota.

Connection queueing for stateful connections

Stateful connections are connections with cookies. In this mode, cookies are used to establish sticky
connections between the client and the server. Before enabling connection queuing, configure connection
quota values for the backend API servers. After both connection quota and connection queuing are set, the
requests are routed based on the following formula:

Where Q i is the server connection quota for servers from i=1 to i=n

For example, if two backend servers have connection quota set as 20,000 and 40,000 connections, then
the connections are served in a ratio of 20000/ (20000+40000) and 40000/ (20000+40000), that is, in the
ratio of 1/3 and 2/3 for the respective servers. The weighted ratio of connection distribution is reached
when the server connection quota is reached for all backend servers. Stateful connection distribution
considers cookie stickiness with backend servers.

When queuing is enabled and the backend servers are occupied, the connections are queued for a period.
Stateful connections are attempted with the same backend server. If the server becomes available during
the queuing period, the connections are served. If the backend server is not available, the connections are
dropped.

ABS AI-based security

ABS AI engine detects attacks using artificial intelligence (AI) algorithms. After receiving ASE access logs
and API JSON configuration files, ABS applies AI algorithms to track API connections and detect attacks.
If enable_abs_attack is true, ABS sends blacklist to ASE which blocks client identifiers, like, API keys,
usernames, cookie, IP address, and OAuth token on the list.

Copyright ©2022

 | API Security Enforcer | 239

Configure ASE to ABS connectivity

To connect ASE to ABS, configure the ABS address (IPv4:Port or Hostname:Port), access key, and secret
key in the abs.conf file located in the /opt/pingidentity/ase/config directory.

i Note: enable_absmust be set to true in the ase.conf file. when ABS is in a different AWS security
group, use a private IP address

The parameter values and descriptions are included in the following table:

Parameter Description

abs_endpoint Hostname and port or the IPv4 and port of all the ABS nodes

Copyright ©2022

 | API Security Enforcer | 240

access_key The access key or the username for the ABS nodes. It is the same
for all the ABS nodes. The same value has to be configured in ABS
MongoDB database. This value is obfuscated during the start of ASE.

i Note: ":" is a restricted character and allowed in access key.

secret_key The secret key or the password for the ABS nodes. It is the same for all
the ABS nodes. The same value has to be configured in ABS MongoDB
database. This value is obfuscated during the start of ASE.

i Note: ":" is a restricted character and allowed in secret key.

enable_ssl Set the value to true for SSL communication between ASE and ABS.
The default value is true. ASE sends the access log files in plain text if
the value is set to false.

abs_ca_cert_path Location of the trusted CA certificates for SSL/TLS connections from
ASE to ABS.

If the path parameter value is left empty, then ASE does not verify
the validity of CA certificates. However, the connection to ABS is still
encrypted.

i Note: The access_key and secret_key are configured in ABS. For more information, see ABS Admin
Guide.

Here is a sample abs.conf file:

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a
 semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.
; a comma-separated list of abs nodes having hostname:port or ipv4:port as
 an address.
abs_endpoint=127.0.0.1:8080
; access key for abs node
access_key=OBF:AES://ENOzsqOEhDBWLDY
+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0
; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU
+RY5CxUhp3NLcNBel+3Q
; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true
; Configure the location of ABS's trusted CA certificates. If empty, ABS's
 certificate
; will not be verified
abs_ca_cert_path=

Configuring ASE-ABS encrypted communication

To enable SSL communication between ASE and ABS so that the access logs are encrypted and sent
to ABS, set the value of enable_ssl to true. The abs_ca_cert_path is the location of ABS’s trusted CA
certificate. If the field is left empty, ASE does not verify ABS’s certificate, however, the communication is till
encrypted.

Copyright ©2022

 | API Security Enforcer | 241

Check and open ABS ports

The default ports for connection with ABS are 8080 and 9090. Run the check_ports_ase.sh script on
the ASE machine to determine ABS accessibility. Input ABS host IP address and ports as arguments.

/opt/pingidentity/ase/util ./check_ports_ase.sh {ABS IPv4:[port]}

Manage ASE blocking of ABS detected attacks

To configure ASE to automatically fetch and block ABS detected attacks, complete the following steps:

1. Enable ASE Security. Enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_firewall

2. Enable ASE to send API traffic information to ABS. Enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs

3. Enable ASE to fetch and block ABS detected attacks. Enter the following command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs_attack

After enabling automated attack blocking, ASE periodically fetches the attack list from ABS and blocks the
identified connections. To set the time interval at which ASE fetches the attack list from ABS, configure the
abs_attack_request_minute parameter in ase.conf file.

; This value determines how often ASE will query ABS.
abs_attack_request_minutes=10

Disable attack list fetching from ABS

To disable ASE from fetching the ABS attack list, entering the following CLI command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs_attack

After entering the above command, ASE will no longer fetch the attack list from ABS. However, ABS
continues generating the attack list and stores it locally. The ABS attack list can be viewed using ABS
APIs and used to manually configured an attack list on ASE. For more information on ABS APIs, see ABS
Admin Guide.

To stop an ASE cluster from sending log files to ABS, enter the following ASE CLI command.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs

After entering this command, ABS will not receive any logs from ASE. Refer to the ABS documentation for
information on types of attacks.

CLI for inline ASE

Start ASE

Description

Starts ASE

Syntax

./start.sh

Stop ASE

Copyright ©2022

 | API Security Enforcer | 242

Description

Stops ASE

Syntax

./stop.sh

Help

Description

Displays cli.sh help

Syntax

./cli.sh help

Version

Description

Displays the version number of ASE

Syntax

./cli.sh version

Status

Description

Displays the running status of ASE

Syntax

./cli.sh status

Update Password

Description

Change ASE admin password

Syntax

./cli.sh update_password {-u admin}

Change log level

Description

Change balancer.log and controller.log log level

Syntax

./cli.sh log_level -u admin -p

options - warn, info, error, fatal, debug

Get Authentication Method

Description

Display the current authentication method

Syntax

./cli.sh get_auth_method {method} {-u admin}

Update Authentication Method

Description

Update ASE authentication method

Syntax

./cli.sh update_auth_method {method} {-u admin}

Enable Audit Logging

Copyright ©2022

 | API Security Enforcer | 243

Description

Enable audit logging

Syntax

./cli.sh enable_audit -u admin -p admin

Disable Audit Logging

Description

Disable audit logging

Syntax

./cli.sh disable_audit -u admin -p admin

Add Syslog Server

Description

Add a new syslog server

Syntax

./cli.sh –u admin -p admin add_syslog_server host:port

Delete Syslog Server

Description

Delete the syslog server

Syntax

./cli.sh –u admin -p admin delete_syslog_server host:port

List Syslog Server

Description

List the current syslog server

Syntax

./cli.sh –u admin -p admin list_syslog_server

Add API

Description

Add a new API from config file in JSON format. File should have .json extension

Syntax

./cli.sh –u admin -p admin add_api {config_file_path}

Update API

Description

Update an API after the API JSON file has been edited and saved.

Syntax

./cli.sh –u admin -p admin update_api {api_name}

List APIs

Description

Lists all APIs configured in ASE

Syntax

./cli.sh –u admin -p admin list_api

API Info

Description

Copyright ©2022

 | API Security Enforcer | 244

Displays the API JSON file

Syntax

./cli.sh –u admin -p admin api_info {api_id}

API Count

Description

Displays the total number of APIs configured

Syntax

./cli.sh –u admin -p admin api_count

List API Mappings

Description

Lists all the external and internal URL mappings.

Syntax

./cli.sh –u admin -p admin list_api_mappings

Delete API

Description

Delete an API from ASE. Deleting an API removes the corresponding JSON file and deletes all the
cookies associated with that API

Syntax

./cli.sh –u admin -p admin delete_api {api_id}

Add a Server

Description

Add a backend server to an API. Provide the IP address and port number of the server

Syntax

./cli.sh –u admin -p admin add_server {api_id}{host:port}[quota]
[spike_threshold]

List Server

Description

List all servers for an API

Syntax

./cli.sh –u admin -p admin list_server {api_id}

Delete a Server

Description

Delete a backend server from an API. Provide the IP address and port number of the server

Syntax

./cli.sh –u admin -p admin delete_server {api_id}{host:port}

Enable Per API Blocking

Description

Enables attack blocking for the API

Syntax

./cli.sh –u admin -p admin enable_blocking {api_id}

Disable Per API Blocking

Description

Copyright ©2022

 | API Security Enforcer | 245

Disable attack blocking for the API

Syntax

./cli.sh –u admin -p admin disable_blocking {api_id}

Enable Health Check

Description

Enable health check for a specific API

Syntax

./cli.sh -u admin -p admin enable_health_check shop_api

Disable Health Check

Description

Disable health check for a specific API

Syntax

./cli.sh -u admin -p admin disable_health_check {api_id}

Generate Master Key

Description

Generate the master obfuscation key ase_master.key

Syntax

./cli.sh -u admin -p admin generate_obfkey

Obfuscate Keys and Password

Description

Obfuscate the keys and passwords configured in various configuration files

Syntax

./cli.sh -u admin -p admin obfuscate_keys

Create a Key Pair

Description

Creates private key and public key pair in keystore

Syntax

./cli.sh –u admin -p admin create_key_pair

Create a CSR

Description

Creates a certificate signing request

Syntax

./cli.sh –u admin -p admin create_csr

Create a Self-Signed Certificate

Description

Creates a self-signed certificate

Syntax

./cli.sh –u admin -p admin create_self_sign_cert

Import Certificate

Description

Import CA signed certificate into keystore

Copyright ©2022

 | API Security Enforcer | 246

Syntax

./cli.sh –u admin -p admin import_cert {cert_path}

Create Management Key Pair

Description

Create a private key for management server

Syntax

/cli.sh –u admin -p admin create_management_key_pair

Create Management CSR

Description

Create a certificate signing request for management server

Syntax

/cli.sh –u admin -p admin create_management_csr

Create Management Self-signed Certificate

Description

Create a self-signed certificate for management server

Syntax

/cli.sh –u admin -p admin create_management_self_sign_cert

Import Management Key Pair

Description

Import a key-pair for management server

Syntax

/cli.sh –u admin -p admin import_management_key_pair {key_path}

Import Management Certificate

Description

Import CA signed certificate for management server

Syntax

/cli.sh –u admin -p admin import_management_cert {cert_path}

Health Status

Description

Displays health status of all backend servers for the specified API

Syntax

./cli.sh –u admin -p admin health_status {api_id}

Cluster Info

Description

Displays information about an ASE cluster

Syntax

./cli.sh –u admin -p admin cluster_info

Server Count

Description

Lists the total number of APIs associated with an API

Syntax

Copyright ©2022

 | API Security Enforcer | 247

./cli.sh –u admin -p admin server_count {api_id}

Cookie Count

Description

Lists the live cookie count associated with an API

Syntax

./cli.sh –u admin -p admin cookie_count {api_id}

Persistent Connection Count

Description

Lists the WebSocket or http-keep alive connection count for an API

Syntax

./cli.sh –u admin -p admin persistent_connection_count {api_id}

Clear cookies

Description

Clear all cookies for an API

Syntax

./cli.sh –u admin -p admin clear_cookies{api_id}

Enable Firewall

Description

Enable API firewall. Activates pattern enforcement, API name mapping, manual attack type

Syntax

./cli.sh –u admin -p admin enable_firewall

Disable Firewall

Description

Disable API firewall

Syntax

./cli.sh –u admin -p admin disable_firewall

Enable ASE detected attacks

Description

Enable ASE detected attacks

Syntax

./cli.sh –u admin -p admin enable_ase_detected_attack

Disable ASE Detected Attacks

Description

Disable API firewall

Syntax

./cli.sh –u admin -p admin disable_ase_detected_attack

Enable ABS

Description

Enable ABS to send access logs to ABS

Syntax

./cli.sh –u admin -p admin enable_abs

Copyright ©2022

 | API Security Enforcer | 248

Disable ABS

Description

Disable ABS to stop sending access logs to ABS

Syntax

./cli.sh –u admin -p admin disable_abs

Enable ABS Detected Attack Blocking

Description

Enable ASE to fetch ABS detected attack lists and block access of list entries.

Syntax

./cli.sh –u admin -p admin enable_abs_attack

Disable ABS Detected Attack Blocking

Description

Stop ASE from blocking and fetching ABS detected attack list. This command does not stop ABS
from detecting attacks.

Syntax

./cli.sh –u admin -p admin disable_abs_attack

Adding Blacklist

Description

Add an entry to ASE blacklist using CLI. Valid type values are: IP, Cookie, OAuth2 token, API Key,
and username

If type is ip, then Name is the IP address.

If type is cookie, then name is the cookie name, and value is the cookie value

Syntax

./cli.sh –u admin -p admin add_blacklist {type}{name}{value}

Example

/cli.sh -u admin -p admin add_blacklist ip 1.1.1.1

Delete Blacklist Entry

Description

Delete entry from the blacklist.

Syntax

./cli.sh –u admin -p admin delete_blacklist {type}{name}{value}

Example

cli.sh -u admin -p delete_blacklist token 58fcb0cb97c54afbb88c07a4f2d73c35

Clear Blacklist

Description

Clear all the entries from the blacklist

Syntax

./cli.sh –u admin -p admin clear_blacklist

View Blacklist

Description

View the entire blacklist or view a blacklist for the specified attack type (for example,
invalid_method)

Copyright ©2022

 | API Security Enforcer | 249

Syntax

./cli.sh –u admin -p admin view_blacklist {all|manual|abs_generated|
invalid_content_type|invalid_method|invalid_protocol|decoy}

Adding Whitelist

Description

Add an entry to ASE whitelist using CLI. Valid type values are: IP, cookie, OAuth2 token, API key,
and username

If type is IP, then name is the IP address.

If type is cookie, then name is the cookie name, and value is the cookie value

Syntax

./cli.sh –u admin -p admin add_whitelist {type}{name}{value}

Example

/cli.sh -u admin -p admin add_whitelist api_key AccessKey 065f73cdf39e486f9d7cda97d2dd1597

Delete Whitelist Entry

Description

Delete entry from the whitelist

Syntax

./cli.sh –u admin -p admin delete_whitelist {type}{name}{value}

Example

/cli.sh -u admin -p delete_whitelist token 58fcb0cb97c54afbb88c07a4f2d73c35

Clear Whitelist

Description

Clear all the entries from the whitelist

Syntax

./cli.sh –u admin -p admin clear_whitelist

View Whitelist

Description

View the entire whitelist

Syntax

./cli.sh –u admin -p admin view_whitelist

ABS Info

Description

Displays ABS status information.

ABS enabled or disabled, ASE fetching ABS attack types, and ABS cluster information

Syntax

./cli.sh –u admin -p admin abs_info

Enable XFF

Description

Enable X-Forwarded For

Syntax

./cli.sh –u admin -p admin enable_xff

Copyright ©2022

 | API Security Enforcer | 250

Disable XFF

Description

Disable X-Forwarded For

Syntax

./cli.sh –u admin -p admin disable_xff

Update Client Spike

Description

Update Client Spike Threshold

Syntax

update_client_spike_threshold {api_id} {+ve digit/(second|minute|hour)}

Example

update_client_spike_threshold shop_api 5000/second

Update Server Spike

Description

Update Server Spike Threshold

“*” - use the same value for all servers

Syntax

update_server_spike_threshold {api_id} {host:port} {+ve digit/(second|
minute|hour)}

Example

update_server_spike_threshold shop_api 127.0.0.1:9090 5000/second

update_server_spike_threshold shop_api "*" 5000/second

Update Bytes-in

Description

Update bytes in value for a WebSocket API

Syntax

update_bytes_in_threshold {api_id} {+ve digit/(second|minute|hour)}

Example

update_bytes_in_threshold shop_api 8096/second

Update Bytes-out

Description

Update bytes out value for a WebSocket API

Syntax

update_bytes_out_threshold {api_id} {+ve digit/(second|minute|hour)}

Example

update_bytes_out_threshold shop_api 8096/second

Update Server Quota

Description

Update the number of API connections allowed on a backend server

“*” - use the same value for all backend servers

Syntax

update_server_connection_quota {api_id} {host:port} {+ve digit}

Copyright ©2022

 | API Security Enforcer | 251

Example

update_server_connection_quota shop_api 127.0.0.1:9090 5000

update_server_connection_quota shop_api "*" 5000

ASE REST APIs using Postman

Multiple options are available for accessing the ASE REST API reporting including:

▪ Postman App
▪ Java, Python, C Sharp, or similar languages.
▪ Java client program (such as Jersey)
▪ C sharp client program (such as RestSharp)

For the Postman application, Ping Identity provides two set of Postman collections which are used by
Postman to access the ASE REST API JSON information. The collections for Inline and Sideband ASE.
Make sure to install Postman 6.2.5 or higher.

ASE self-signed certificate with Postman

ASE ships with a self-signed certificate. If you want to use Postman with the self-signed certificate of ASE,
then from Postman’s settings, disable the certificate verification option. Complete the following steps to
disable Postman from certificate verification:

1.

Click on the spanner on the top-right corner of Postman client. A drop-down window is
displayed.

2. Select Settings from the drop-down window:

Copyright ©2022

 | API Security Enforcer | 252

3. In the Settings window, switch-off certificate verification by clicking on the SSL certificate verification
button:

View ASE REST APIs in Postman

To view the reports, complete the following steps:

1. Download ASE_4.3_Inline or ASE_4.3_Sideband and ASE_4.3_Environment JSON files from
Ping Identity Download site. These configuration files will be used by Postman.

2. Download and install the Postman application 6.2.5 or higher.
3. In Postman, import the two Ping Identity files downloaded in step 1 by clicking the Import button.

4.
After importing the files, click the gear button in the upper right corner.

5. In the MANAGE ENVIRONMENTS pop-up window, click ASE_4.3_Environment

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html
https://www.getpostman.com

 | API Security Enforcer | 253

6. In the pop-up window, configure the following values and then click Update

▪ ASE_IP: IP address of the ASE node.
▪ Port: Port number of the ASE node.
▪ Access_Key_Header and Secret_Key_Header: Use the default values.
▪ Access_Key and Secret_Key: Use admin for access key and secret key. If you have changed the

admin password, use the updated one.
▪ API_Name: The name of the API which you want to administer.

i Note: Do not edit any fields that start with the word System.

7. In the main Postman window, select the report to display on the left column and then click Send.

Copyright ©2022

 | API Security Enforcer | 254

REST API for inline and sideband ASE
ASE REST API allows you to manage adding, removing, and modifying your backend servers. The REST
API payload uses a JSON format. REST API also helps in integrating ASE with third-party products. The
default port for ASE REST API is 8010.

The following is a list of formats for ASE’s REST APIs:

▪ Create API (POST) – Inline and sideband ASE
▪ Read API (GET) – Inline and sideband ASE
▪ List API (GET) – Inline and sideband ASE
▪ Update API (PUT) – Inline and sideband ASE
▪ Create Server (POST) – Inline ASE
▪ Read Server (GET) – Inline ASE
▪ Delete Server (DELETE) – Inline ASE
▪ Read Cluster (GET) – Inline ASE
▪ Read Persistent Connections (GET) – Inline ASE
▪ Read Firewall Status (GET) – Inline and sideband ASE
▪ Update Firewall Status (POST) – Inline and sideband ASE
▪ Add Attack Type to Blacklist (POST) – Inline and sideband ASE
▪ Delete Attack Type from the Whitelist (DELETE) – Inline and sideband ASE
▪ Clear the Blacklist (DELETE) – Inline and sideband ASE
▪ View Blacklist (GET) – Inline and sideband ASE
▪ Add Attack Type to Whitelist (POST) – Inline and sideband ASE
▪ Delete Attack Type from the Whitelist (DELETE) – Inline and sideband ASE
▪ Clear Whitelist (DELETE) – Inline and sideband ASE
▪ View Whitelist (POST) – Inline and sideband ASE
▪ Read Flow Control of an API (GET) – Inline ASE
▪ Update Flow Control for an API (POST) – Inline ASE
▪ Update Flow Control for a Server of an API (POST) – Inline ASE

Common request headers

Header Value

x-ase-access-key
admin

i Note: The default and only allowed access key
is admin.

x-ase-secret-key
<Secret Key>

i Note: The default secret key is admin. You
can change the default secret key using the
update_passowrd command.

Accept application/json

Create API (POST)

Request

Copyright ©2022

 | API Security Enforcer | 255

POST /v4/ase/api?api_id=sample_api

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

REST API request

{
 "api_metadata": {
 "protocol": "http",
 "url": "/your_rest_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0

Copyright ©2022

 | API Security Enforcer | 256

 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

WebSocket API request

{
 "api_metadata": {
 "protocol": "ws",
 "url": "/your_websocket_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 0
 },
 {

Copyright ©2022

 | API Security Enforcer | 257

 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 0
 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

Response

HTTP Code Status Content body (application/json)

200 success
{“status” : “success” , “status_message” :
 “success”
 }

403 fail
{“status” :”api_already_exists” ,”status_message” :”api
 sample_api
 already exists”}

403 fail
{“status” : “validation_error” ,
 “status_message” : “<detailed
 validation error
 description” }

Read API (GET)

Request

GET /v4/ase/api?api_id=sample_api

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

Copyright ©2022

 | API Security Enforcer | 258

200 success REST API

{
 "api_metadata": {
 "protocol": "http",
 "url": "/your_rest_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

WebSocket API

{
 "api_metadata": {
 "protocol": "ws",
 "url": "/your_websocket_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 0
 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

404 not found
{“status” :”api_not_found” ,”status_message” :”api
 sample_api does
 not exist”}

Copyright ©2022

 | API Security Enforcer | 259

List API (GET)

Request

GET /v4/ase/api

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success
{
 "api_count": "1",
 "api": [
 {
 "api_id": "sample_api",
 "status": "loaded"
 }
]
}

404 not found
{“status” :”api_not_found” ,”status_message” :”api
 sample_api does
 not exist”}

Update API (PUT)

Request

PUT /v4/ase/api?api_id=sample_api

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

REST API request

{
 "api_metadata": {
 "protocol": "http",
 "url": "/your_rest_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",
 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""

Copyright ©2022

 | API Security Enforcer | 260

 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_spike_threshold": "0/second",
 "server_connection_quota": 0
 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

WebSocket API request

{
 "api_metadata": {
 "protocol": "ws",
 "url": "/your_websocket_api",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "",

Copyright ©2022

 | API Security Enforcer | 261

 "enable_blocking": true,
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "401",
 "error_def": "Unauthorized",
 "error_message_body": "401 Unauthorized"
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "0/second",
 "bytes_out_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "128mb",
 "health_check": true,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/health",
 "server_ssl": false,
 "servers": [
 {
 "host": "127.0.0.1",
 "port": 8080,
 "server_connection_quota": 0
 },
 {
 "host": "127.0.0.1",
 "port": 8081,
 "server_connection_quota": 0
 }
],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

Response

Copyright ©2022

 | API Security Enforcer | 262

HTTP Code Status Content body (application/json)

200 success
{“status” : “success” , “status_message” :
 “success”
 }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample_api does
 not exist”}

Delete API (DELETE)

Request

DELETE /v4/ase/api?api_id=sample_api

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success
{“status” : “success” , “status_message” :
 “success”
 }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample_api does
 not exist”}

Create server (POST)

Request

POST /v4/ase/server?api_id=<api>

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

REST API request

{
 "server":
 {
 "host": "192.168.1.100",
 "port": 8080,
 "server_spike_threshold": "1/second",
 "server_connection_quota": 100
 }

Copyright ©2022

 | API Security Enforcer | 263

}
WebSocket API Request
{
 "server":
 {
 "host": "192.168.1.100",
 "port": 8080,
 "server_connection_quota": 100
 }
}

Response

HTTP Code Status Content body (application/json)

200 success
{“status” : “success” , “status_message” :
 “success”
 }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample_api does
 not exist”}

403 fail
{“status” : “validation_error” ,
 “status_message” : “detailed info
 about validation error”}

403 fail
{“status” : “server_exists” ,
 “status_message” :”server already
 exists”}

Read server (GET)

Request

GET /v4/ase/server?api_id=<api_id>

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

Copyright ©2022

 | API Security Enforcer | 264

200 success REST API

{
“api_id” : “sample_api”
 “server_count” : 2,
 “server”:
 [{
 “host” : “192.168.1.100”
 “port” : 8080,
 "server_connection_quota": 1000,
 "server_spike_threshold": "10/second",
 “health_status” :”Up”
 }, {
 “host” : “192.168.1.100”
 “port” : 8081,
 server_connection_quota": 1000,
 "server_spike_threshold": "10/second",
 “health_status” :”Down”
 }] }

WebSocket API

{
 “api_id” : “sample_api”
 “server_count” : 2,
 “server”:
 [{
 "host" : “192.168.1.100”
 “port” : 8080,
 "server_connection_quota": 1000,
 “health_status” :”Up”
 }, {
 "host" : “192.168.1.100”
 “port” : 8081,
 "server_connection_quota": 1000,
 “health_status” :”Down”
 }] }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample_api does
 not exist”}

Delete server (DELETE)

Request

DELETE /v4/ase/server?api_id=<api>

Content-Type application/json

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

{
 “server”:
 {
 "host" : “192.168.1.100”,

Copyright ©2022

 | API Security Enforcer | 265

 "port" : 8080
 }
}

Response

HTTP Code Status Content body (application/json)

200 success
{“status” : “success” , “status_message” :
 “success”
 }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample_api does
 not exist”}

404 fail
{“status” :”server_not_found” ,”status_message” :”server
 does not
 exist”}

403 fail
{“status” : “validation_error” ,
 “status_message” : “detailed info
 about json validation
 error”}

Read cluster (GET)

Request

GET /v4/ase/cluster

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

Copyright ©2022

 | API Security Enforcer | 266

HTTP Code Status Content body (application/json)

200 success
{
 “cluster_id” : “test_cluster”
 “node_count” : 2
, “node”:
 [
 {
 "host" : “192.168.2.100”
 “port” : 8080
 “uuid” : “1c359368-22b6-4713-
a5be-15e5cbbddf7a”
 “status” :”active”
 },
 {
 "host" : “192.168.2.101”
 “port” : 8080
 “uuid” : “2d359368-20b6-4713-
a5be-15e5cbbde8d”
 “status” :”inactive”
 }
]
}

404 fail
{“status” :”no_cluster_mode” ,”status_message” :”ase
 is not in
 cluster mode”}

Read persistent connections (GET)

Request

GET /v4/ase/persistentconnection?
api_id=sample

x-ase-access-key <Access Key>

x-ase-secret-key <Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

200 success
{
 “api_id” : “sample”
 “persistent_connection_count” :
 {
 “ws”:1,
 “wss”:0
 }
}

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample does not
 exist”}

Copyright ©2022

 | API Security Enforcer | 267

Read firewall status (GET)

Request

GET /v4/ase/firewall

x-ase-access-key
<Access
 Key>

x-ase-secret-key
<Secret
 Key>

Accept application/json

Response

HTTP code Status Content body (application/json)

200 success {

“status” :”enabled/disabled”,

”status_message” :”Ok”

}

Update firewall status (POST)

Request

POST /v4/ase/firewall?status=enable/disable

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

Response

HTTP Code Status Content body (application/json)

Copyright ©2022

 | API Security Enforcer | 268

200 success If there is a status change

{
“status” :”enabled/disabled”,
”status_message” :”Firewall is now enabled/
disabled”
}

If there is no change in status

{
“status” :”enabled/disabled”,
”status_message” :”Firewall is already
 enabled/disabled”
}

403 fail
{“status” :”invalid_value” ,”status_message” :”query
 parameter status
 contains invalid value”}

Add attack type to blacklist (POST)

Request

POST /v4/ase/firewall/blacklist

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",
 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Response

Status code Response body

200 OK Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia added to
blacklist

Copyright ©2022

 | API Security Enforcer | 269

403 Forbidden Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

Delete attack type to blacklist (DELETE)

Request

DELETE /v4/ase/firewall/blacklist

x-ase-access-key
<Access
 Key>

x-ase-secret-key
<Secret
 Key>

Accept application/json

===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",
 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Response

Status code Response body

200 OK Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia deleted from
blacklist

403 Forbidden Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

Copyright ©2022

 | API Security Enforcer | 270

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

Clear the blacklist (DELETE)

Request

DELETE /v4/ase/firewall/blacklist?tag=all

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

Response

Status code Response body

200 OK Blacklist cleared

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server Error unknown error

View blacklist (GET)

Request

GET /v4/ase/firewall/blacklist?tag=

Tags tag=all (default is all)

▪ all
▪ manual
▪ abs_generated
▪ invalid_content_type
▪ invalid_method
▪ invalid_protocol
▪ decoy

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

Response

Copyright ©2022

 | API Security Enforcer | 271

Status code Response body

200 OK
{
 "manual_blacklist" : [
 {
 "type" : "cookie",
 "name" : "JSESSIONID",
 "value" : "ljkhasiosalia",
 },
 {
 "type" : "ip",
 "value" : "1.1.1.1",
 }
],
 "abs_generated_blacklist" : [
 {
 "type" : "cookie",
 "name" : "JSESSIONID",
 "value" : "ljkhasisadosalia",
 },
 {
 "type" : "ip",
 "value" : "1.1.1.2",
 }
]
}

403 Forbidden Cookie JSESSIONID ljkhasioutfdqbjsfdmakhflia already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server
Error

unknown error

Add attack type to whitelist (POST)

Request

POST /v4/ase/firewall/whitelist

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",

Copyright ©2022

 | API Security Enforcer | 272

 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Response

Status code Response body

200 OK Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia added to
whitelist

403 Forbidden Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

Delete attack type from the whitelist (DELETE)

Request

DELETE /v4/ase/firewall/whitelist

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

===============for IP===============
{
 "type" : "ip",
 "value" : "1.1.1.1"
}
===============for Token=============
{
 "type" : "token",
 "value" : "sadjhasiufgkjdsbfkgfa"
}
=============for Cookie/api_key=======
{
 "type" : "cookie/token/api_key",
 "name" : "JSESSIONID",
 "value" : "ljkhasioutfdqbjsfdmakhflia"
}

Copyright ©2022

 | API Security Enforcer | 273

Response

Status code Response body

200 OK Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia added to
whitelist

403 Forbidden Cookie JSESSIONID
ljkhasioutfdqbjsfdmakhflia already exist

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

403 Forbidden json parsing error

500 Internal Server Error unknown error

Clear whitelist (DELETE)

Request

DELETE /v4/ase/firewall/whitelist?tag=all

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

Response

Status code Response body

200 OK Whitelist cleared

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server Error unknown error

View whitelist (POST)

Request

GET /v4/ase/firewall/whitelist

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Copyright ©2022

 | API Security Enforcer | 274

Accept application/json

Response

Status code Response body

200 OK
{
 "whitelist" : [
 {
 "type" : "cookie",
 "name" : "JSESSIONID",
 "value" : "ljkhasiosalia",
 },
 {
 "type" : "ip",
 "value" : "1.1.1.1",
 }
]
}

403 Forbidden content-type header missing

403 Forbidden x-ase-access-key header missing

403 Forbidden x-ase-secret-key header missing

403 Forbidden authorization failure

500 Internal Server Error unknown error

Read flow control of an API (GET)

Request

GET /v4/ase/firewall/flowcontrol?
api_id=<api_name>

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

Response

HTTP code Status Content body (application/json)

Copyright ©2022

 | API Security Enforcer | 275

200 success Flow control for REST API

{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 }
}

Flow control for WebSocket API

{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "100/second",
 "bytes_in_threshold": "10/second",
 "bytes_out_threshold": "10/second",
 "server_connection_queueing": false
 }
}

403 fail
{“status” : “validation_error” ,
 “status_message” : “<detailed
 validation error
 description” }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample does not
 exist”}

Update flow control for an API (POST)

Request

POST /v4/ase/firewall/flowcontrol?
api_id=<api_name>

x-ase-access-key
<Access Key>

x-ase-secret-key
<Secret Key>

Accept application/json

REST APIs

{ "flow_control": {
 "client_spike_threshold": "0/second"
 }
 }

WebSocket APIs

{ "flow_control": {
 "client_spike_threshold": "10/second",

Copyright ©2022

 | API Security Enforcer | 276

 "bytes_in_threshold": "10/second",
 "bytes_out_threshold": "10/second"
 }
}

Response

HTTP code Status Content body (application/json)

200 success Flow control for REST APIs

{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 } }

Flow control for WebSocket APIs

{
 “api_id”: “api_name”
 "flow_control": {
 "client_spike_threshold": "0/second",
 "bytes_in_threshold": "10/second",
 "bytes_out_threshold": "10/second",
 "server_connection_queueing": false
 }}

403 fail
{“status” : “validation_error” ,
 “status_message” : “<detailed
 validation error
 description” }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample does not
 exist”}

Update flow control for a server of an API (POST)

Request

POST /v4/ase/firewall/flowcontrol/server?
api_id=<api_name>

x-ase-access-key
<Access Key>

x-ase-secret-key <<Secret Key>

Accept application/json

REST APIs

{
 "server":
 {
 "host": "127.0.0.2",

Copyright ©2022

 | API Security Enforcer | 277

 "port": 8080,
 "server_connection_quota": 1000,
 "server_spike_threshold": "10/second"
 }
}

WebSocket APIs

{
 "server":
 {
 "host": "127.0.0.2",
 "port": 8080,
 "server_connection_quota": 100000
 }
}

Response

HTTP code Status Content body (application/json)

200 success
{
 "status": "success",
 "status_message": "server updated
 successfully"
}

403 fail
{“status” : “validation_error” ,
 “status_message” : “<detailed
 validation error
 description” }

404 fail
{“status” :”api_not_found” ,”status_message” :”api
 sample does not
 exist”}

Audit log
This appendix details audit log entries in the audit.log file. The entries in the audit log files have four
components as shown in the following table:

Date Subject Action Resources

YYYY-MM-DD hh:mm:ss Subject is the module through
which actions are performed: CLI,
REST API or cluster

Actions are the executed
commands.

Resources are the
parameters associated with
the actions.

Following are the subjects and their description:

Subject Description

cli CLI commands executed

rest_api REST API requests received by ASE

cluster Changes requested by peer node in a cluster

Copyright ©2022

 | API Security Enforcer | 278

Here is sample output of an audit log file:

2019-06-13 10:45:12 | cli | delete_api | username=admin, api_id=cart
2019-06-13 10:46:13 | rest_api | GET /v4/ase/cluster | x-ase-access-
key=admin, x-ase-secret-key=**********
2019-06-13 10:46:25 | cluster | delete_api | peer_node=192.168.11.108:8020,
 api_id=shop

CLI

The following table lists the actions and resources for ASE CLI

Action Resources

status -NA-

add_api username=, config_file_path=

list_api username=

api_info username=, api_id=

api_count username=

list_api_mappings username=

delete_api username=, api_id=

add_server username=, api_id=, server=,

server_spike_threshold=, server_connection_quota=

list_server username=, api_id=

server_count username=, api_id=

delete_server username=, api_id=, server=

create_key_pair username=

create_csr username=

create_self_sign_cert username=

import_cert username=, cert_path=

health_status username=, api_id=

enable_health_check username=, api_id=

disable_health_check username=, api_id=

update_password username=

cluster_info username=

cookie_count username=, api_id=

enable_firewall username=

disable_firewall username=

enable_abs username=

disable_abs username=

enable_abs_attack username=

disable_abs_attack username=

Copyright ©2022

 | API Security Enforcer | 279

abs_info username=

enable_xff username=

disable_xff username=

update_bytes_in_threshold username=, api_id=, bytes_in_threshold=

update_bytes_out_threshold username=, api_id=, bytes_out_threshold=

update_client_spike_threshold username=, api_id=, client_spike_threshold=

update_server_spike_threshold username=, api_id=, server=, server_spike_threshold=

update_server_connection_quota username=, api_id=, server=, server_connection_quota

get_auth_method -NA-

update_auth_method username=, auth_method=

enable_audit username=

disable_audit username=

stop username=

REST API

Action Resource

POST /v4/ase/api Content-Type=application/json, x-ase-access-key=,

x-ase-secret-key=**********

GET /v4/ase/api -SAME AS ABOVE-

DELETE /v4/ase/api -SAME AS ABOVE-

POST /v4/ase/server -SAME AS ABOVE-

GET /v4/ase/server -SAME AS ABOVE-

DELETE /v4/ase/server -SAME AS ABOVE-

GET /v4/ase/cluster -SAME AS ABOVE-

POST /v4/ase/firewall -SAME AS ABOVE-

GET /v4/ase/firewall -SAME AS ABOVE-

POST /v4/ase/firewall/flowcontrol -SAME AS ABOVE-

GET /v4/ase/firewall/flowcontrol -SAME AS ABOVE-

POST /v4/ase/firewall/flowcontrol/
server

-SAME AS ABOVE-

Cluster

Action Resource

add_api peer_node=, api_id=

delete_api peer_node=, api_id=

add_server peer_node=, api_id=, server=,

server_spike_threshold=, server_connection_quota=

Copyright ©2022

 | API Security Enforcer | 280

delete_server peer_node=, api_id=, server

enable_health_check peer_node=, api_id=

disable_health_check peer_node=, api_id=

enable_firewall peer_node=

disable_firewall peer_node=

enable_abs peer_node=

disable_abs peer_node=

enable_abs_attack peer_node=

disable_abs_attack peer_node=

enable_xff peer_node=

disable_xff peer_node=

update_bytes_in_threshold peer_node=, api_id=, bytes_in_threshold=

update_bytes_out_threshold peer_node=, api_id=, bytes_out_threshold=

update_client_spike_threshold peer_node=, api_id=, client_spike_threshold=

update_server_spike_threshold peer_node=, api_id=, server=, server_spike_threshold=

update_server_connection_quota peer_node=, api_id=, api_id=, server=,

server_connection_quota=

enable_audit peer_node=

disable_audit peer_node=

stop peer_node=

Supported encryption protocols
A complete list of supported encryption protocols for TLS1.2 based on the operating system is shown in the
boxes below.

RHEL 7.6

ECDHE-RSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256

ECDHE-ECDSA-AES256-GCM-SHA384 DH-RSA-AES128-GCM-SHA256

ECDHE-RSA-AES256-SHA384 ECDHE-RSA-AES128-SHA256

ECDHE-ECDSA-AES256-SHA384 ECDHE-ECDSA-AES128-SHA256

DHE-DSS-AES256-GCM-SHA384 DHE-DSS-AES128-GCM-SHA256

DHE-RSA-AES256-GCM-SHA384 DHE-RSA-AES128-GCM-SHA256

DHE-RSA-AES256-SHA256 DHE-RSA-AES128-SHA256

DHE-DSS-AES256-SHA256 DHE-DSS-AES128-SHA256

ECDH-RSA-AES256-GCM-SHA384 ECDH-RSA-AES128-GCM-SHA256

ECDH-ECDSA-AES256-GCM-SHA384 ECDH-ECDSA-AES128-GCM-SHA256

ECDH-RSA-AES256-SHA384 ECDH-RSA-AES128-SHA256

Copyright ©2022

 | API Security Enforcer | 281

ECDH-ECDSA-AES256-SHA384 ECDH-ECDSA-AES128-SHA256

AES256-GCM-SHA384 AES128-GCM-SHA256

AES256-SHA256 AES128-SHA256

ECDHE-RSA-AES128-GCM-SHA256

Ubuntu 16.04

ECDHE-RSA-AES256-GCM-SHA384 DHE-DSS-AES128-GCM-SHA256

ECDHE-ECDSA-AES256-GCM-SHA384 DHE-RSA-AES128-GCM-SHA256

ECDHE-RSA-AES256-SHA384 DHE-RSA-AES128-SHA256

ECDHE-ECDSA-AES256-SHA384 DHE-DSS-AES128-SHA256

DHE-DSS-AES256-GCM-SHA384 ECDH-RSA-AES128-GCM-SHA256

DHE-RSA-AES256-GCM-SHA384 ECDH-ECDSA-AES128-GCM-SHA256

DHE-RSA-AES256-SHA256 ECDH-RSA-AES128-SHA256

DHE-DSS-AES256-SHA256 ECDH-ECDSA-AES128-SHA256

ECDH-RSA-AES256-GCM-SHA384 AES128-GCM-SHA256

ECDH-ECDSA-AES256-GCM-SHA384 AES128-SHA256

ECDH-RSA-AES256-SHA384 DH-RSA-AES128-GCM-SHA256

ECDH-ECDSA-AES256-SHA384 DH-DSS-AES128-GCM-SHA256

AES256-GCM-SHA384 DH-RSA-AES128-SHA256

AES256-SHA256 DH-DSS-AES128-SHA256

ECDHE-RSA-AES128-GCM-SHA256 DH-DSS-AES256-GCM-SHA384

ECDHE-ECDSA-AES128-GCM-SHA256 DH-RSA-AES256-GCM-SHA384

ECDHE-RSA-AES128-SHA256 DH-RSA-AES256-SHA256

ECDHE-ECDSA-AES128-SHA256 DH-DSS-AES256-SHA256

Autoscaling ASE in AWS environment
You can auto-scale ASE setup in AWS environment by completing the following steps:

1. Create and AMI for ASE
2. Create an IAM role in the Security, Identity, and Compliance
3. Create the Security Group
4. Create Launch Configuration
5. Create an Autoscale group

Create an AMI for ASE

Complete the following steps to create an AMI for ASE:

1. Create an RHEL 7.6 or Ubuntu 16.04 LTS EC2 instance

Copyright ©2022

 | API Security Enforcer | 282

2. Install the AWS CLI by completing the following steps:

a. Install Python 2.7
b. Enter the following command:

sudo curl "https://s3.amazonaws.com/aws-cli/awscli-bundle.zip" -o
 "awscli-bundle.zip"

c. Unzip the CLI bundle

sudo unzip awscli-bundle.zip

d. Install the CLI:

sudo ./awscli-bundle/install -i /usr/local/aws -b /usr/bin/aws

3. Download the ASE AWS binary. After downloading the file, copy the ASE file to the /optdirectory.
4. Untar the binary in the EC2 instance. At the command prompt, type the following command to untar the

ASE file:

tar –zxvf <filename>

For example:

tar –zxvf ase-rhel-4.0.tar.gz
5. To verify that ASE successfully installed, enter the ls command at the command prompt. This should list

the pingidentity directory and the build's tar file.For example:

/opt/$ ls
pingidentity ase-rhel-4.0.tar.gz

6. Change directory to /opt/pingidentity/ase/bin
7. Run the install_service.sh aws script:

/opt/pingidentity/ase/bin$sudo ./install_service.sh aws
Installing ASE service for AWS Autoscale
This script will install ASE as a service
Do you wish to proceed (y/n)? y
Starting service installation
RHEL7.6 detected, installing ASE service
Created symlink from /etc/systemd/system/multi-user.target.wants/
ase.service to /etc/systemd/system/ase.service.
ASE service successfully installed

8. Create an AMI using this EC2 instance.

i Note: When you are creating the AMI, do not select the “No Reboot” option

Creating an IAM role in the security, identity, and compliance

About this task
Complete the following steps to create an IAM role in the security, identity, and compliance:

Copyright ©2022

 | API Security Enforcer | 283

Steps

1. Create an IAM role by selecting the EC2

instance:

2. Assign AmazonEC2ReadOnlyAccess privilege to the

role.

Copyright ©2022

 | API Security Enforcer | 284

3.

Provide the role name:

Create the security group

You must create a security group for the following ports used by ASE:

▪ Port 80: Accessible by API Clients/ELB
▪ Port 443: Accessible by API Clients/ELB
▪ Port 8010: Accessible by operations to execute CLI commands and REST API calls.
▪ Port 8020: Only accessible by peer ASE nodes in the same security group.

Create a security group based on the following table:

Type Protocol Port Source

Custom TCP TCP 80 API clients/ELB

Custom TCP TCP 443 API clients/ELB

Custom TCP TCP 80 Same security group

Custom TCP TCP 443 Same security group

Custom TCP TCP 8010 Same security group

Custom TCP TCP 8020 Same security group

Creating launch configuration

About this task

Create the launch configuration that the auto-scaling group will use. To create the launch configuration,
complete the following steps:

Steps

1. Select the AMI created in Create an AMI for ASE section.

2. Create the EC2 instance based on the sizing requirement.

3. Assign the IAM role created in the Create an IAM Role in the Security, Identity, and Compliance
section to the launch configuration.

4. Complete the creation of launch configuration.

Copyright ©2022

 | API Security Enforcer | 285

Creating an auto-scale group

About this task
Complete the following steps to create the auto scale group:

Steps

1. Create an auto-scale group using the launch configuration created in the previous section.

2. (Optional) Attach the ELB to the auto-scale group created in step 1.

3. Configure the following rules for the auto scale group:

a. Configure the “Increase Group Size” rule - Add one instance, when the Average CPU utilization is
greater than 90% for at least 2 consecutive periods of 5-minutes.

b. Configure the “Decrease Group Size” rule - Remove one instance, when the Average CPU
utilization is less than 10% for at least two consecutive periods of 5-minutes.

Optional: Uninstall the ASE service

If you wish to uninstall the ASE service installed in the Create an AMI for ASE section, run the
following command:

/opt/pingidentity/ase/bin$sudo ./uninstall_service.sh
This script will uninstall ASE service
Do you wish to proceed (y/n)? y
Starting service uninstallation
RHEL 7.6 detected, uninstalling ASE Service..
ase stop/waiting
ASE service successfully uninstalled

ASE log messages

The following tables list the critical log messages from controller.log and balancer.log files.
Note that balancer.log file is not rotated while controller.log file is rotated evevy 24-hours. For more
information on ASE logs, see ASE management, access and audit logs on page 139

controller.log mesaages:

Log message Description

unknown cluster uuid This message is logged in controller.log when
a ASE node with a different cluster ID or secret key
tries to join an ASE cluster. For more information,
see Start ASE cluster on page 129

resolve error This message is logged in controller.log when
ASE is not able to resolve ABS or server hostname

connect error This message is logged in controller.log when
ASE is not able to connect to ABS or a server.

handshake error This message is logged in controller.log when
connection to ABS or server because of problems
in SSL handshake.

error while sending message to lb connection This message is logged in controller.log when
there is a IPC connection failure between ASE's
controller and balancer modules.

Copyright ©2022

 | API Security Enforcer | 286

Log message Description

error while reading message from lb connection This message is logged in controller.log when
there is a IPC connection failure between ASE's
controller and balancer modules

License file <license file path> is expired. Please
renew your license

This message is logged in controller.log when
PingIntelligence license has expired. For more
information, see ASE license on page 118.

Unexpected Error This message is logged in controller.log when
ASE's controller module is unavailable. This is a
fatal error.

info | event | event type : <event type>

event value : <value of event>

The following events are logged logs even if email
alert is not enabled:

▪ Cluster node up
▪ Cluster node down
▪ server state changed to Up
▪ server state changed to Down
▪ log upload service failed
▪ error while uploading log file

If email_alert is enabled, then all events will be
available in logs. Fore more information, see Email
alerts and reports on page 144

api memory limit reached. total number of cookies
dropped <count>

This message is logged in controller.log
when ASE is dropping cookies because of
low API memory. For more information, see
api_memory_size in Defining an API – API JSON
configuration file on page 159

stopping API Security Enforcer This message is logged in controller.log when
ASE stops.

API Security Enforcer started This message is logged in controller.log when
ASE starts.

balancer.log

Log message Description

/bin/bash: line 0: echo: write error: Permission
denied

/bin/bash: line 0: echo: write error: Permission
denied

| warn | process_id : process_id_number | tcp_fe
| !!!! low memory : connection dropped due to low
memory !!!!

This message is logged in controller.log when
ASE is runnig low on memory because of which
ASE drops the client connections.

Copyright ©2022

 | ABS AI Engine | 287

ABS AI Engine

Introduction
ABS AI Engine is a Java-based distributed system which analyzes API traffic to provide API traffic insight,
visibility, and security. API traffic information is received from ASE nodes in log files containing:

▪ Client details such as device, browser, IP address, and operating system
▪ Session information including HTTP or WebSocket connections and methods.

These logs are periodically, that is, at every 10 minutes forwarded to ABS nodes for processing. Using
machine learning algorithms, ABS generates API traffic insight, anomaly data, and attack insight which
identifies clients responsible for attacks. To prevent future attacks, ABS can automatically program inline
devices (such as API Security Enforcer) to block clients based on attack lists. PingIntelligence for APIs
Dashboard provides visualization of API attack, deception, and metrics.

ABS AI engine provides the following functionality:

▪ Collection and consolidation of access logs from ASE nodes
▪ Machine learning algorithms to identify anomalies and attacks
▪ Detection of attacks from HTTP(s) and WebSocket(s) traffic
▪ Optional sending of blacklists to ASE which blocks client access
▪ Centralized database for storing AI data
▪ Stateless cluster for scalability and resiliency
▪ REST APIs for fetching traffic metrics, anomalies, and attack information
▪ Email alerts
▪ Data visualization

Configuring ABS consists of setting up three entities:

1. Database system: ABS uses a MongoDB database to store metadata and all Machine Learning (ML)
analytics. The MongoDB database system is configured in a replica set for production deployments.
MongoDB is separately installed before starting ABS.

2. ABS AI engine: One or more ABS instances are configured to receive and process logs and to
store results in MongoDB. Ping Identity recommends installing ABS in a cluster for high availability
deployments.

3. PingIntelligence for APIs Dashboard: The Dashboard uses Elasticsearch and Kibana to render
reference graphs for attack types, traffic metrics, and anomaly data. Please refer to ABS Dashboard
Admin Guide for installation and configuration information.

Administration
Administering ABS requires understanding:

▪ Directory structure
▪ Obfuscating passwords for securing ABS
▪ Configuring SSL for secure communication for between PingIntelligence products
▪ Different types of ABS users
▪ Understanding the port requirements
▪ Creating ABS cluster
▪ Understanding ABS log files
▪ Purging access logs from ABS
▪ ABS REST API format

Copyright ©2022

 | ABS AI Engine | 288

ABS License and timezone

To start ABS, you need a valid license. There are two types of ABS licenses:

▪ Trial license – The trial license is valid for 30-days. At the end of the trial period, ABS stops processing
and shuts down.

▪ Subscription license – The subscription license is based on the total number of transactions
subscribed per month and the duration of the license. It is a good practice to configure your email
before configuring the ABS license. ABS sends an email notification to the configured email ID when
the license has expired. Contact the PingIntelligence for APIs sales team for more information. The
following points should be noted:

▪ Maximum transaction set to 0: If your subscription ABS license has zero as maximum transaction,
it means that the license has unlimited monthly transaction. Such a license only expires at the end of
subscription period.

▪ License expiry: In case when the subscription license has expired, ABS continues to run until a
restart. ABS needs a valid license file to start.

Add an ABS license

If you have not received an ABS license, request a license file from Ping sales. The name of the license
file must be PingIntelligence.lic. Copy the license file to the/opt/pingidentity/abs/config
directory and then start ABS.

Update an existing license

If your existing license has expired, obtain a new license from Ping sales and replace the license file in the
/opt/pingidentity/abs/config directory. Stop and then start ABS after the license file is updated.

Checking the current transaction count

Use the Admin REST API on page 316 to view the current transaction count against your subscribed
transaction limit. Following snippet of the Admin REST API shows the license information:

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS
 clusters, and ASE logs",
 "license_info": {
 "tier": "Subscription",
 "expiry": "Wed Jan 15 00:00:00 UTC 2020",
 "max_transactions_per_month": 1000000000,
 "current_month_transactions": 98723545,
 "max_transactions_exceeded": false,
 "expired": false
 }

ABS timezone

Configure the timezone of ABS host machine to either local or in UTC. ABS does not provide any
configuration to change its timezone. Adjust the timezone by changing the timezone of the host machines'
operating system.

Change default settings

It is recommended that you change the default key and password in ABS. Following is a list of commands
to change the default values:

Copyright ©2022

 | ABS AI Engine | 289

Change default JKS password

You can change the default password for KeyStore and the key. Complete the following steps to change
the default passwords. Make sure that ABS is stopped before changing the JKS password.

1. Change the KeyStore password: Enter the following command to change the KeyStore password.
The default KeyStore password is abs123.

keytool -storepasswd -keystore config/ssl/abs.jks
Enter keystore password: abs123
New keystore password: newjkspassword
Re-enter new keystore password: newjkspassword

2. Change the key password: Enter the following command to change the key password. The default key
password is abs123

keytool -keypasswd -alias pingidentity -keypass abs123 -new
 newjkspassword -keystore config/ssl/abs.jks
Enter keystore password: newjkspassword

Start ABS after you have changed the default passwords.

Change abs_master.key

Run the following command to create your own ABS master key to obfuscate keys and password in ABS.

Command: generate_obfkey. ABS must be stopped before creating a new abs_master.key

Stop ABS: If ABS is running, then stop ABS before generating a new ABS master key. Enter the following
command to stop ABS:

/opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

Change abs_master.key: Enter the generate_obfkey command to change the default ABS master key:

/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin
Please take a backup of config/abs_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate
 all config keys also using cli.sh -obfuscate_keys
Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exists. This command will
 delete it and create a new key in the same file
Do you want to proceed [y/n]: y
Creating new obfuscation master key
Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

Change admin password

You can change the default admin password by entering the following command:

/opt/pingidentity/abs/bin/cli.sh update_password -u admin -p admin
New Password>
Reenter New Password>
Success. Password updated for CLI

Copyright ©2022

 | ABS AI Engine | 290

Change default access and secret key in MongoDB

To change the default access and secret key, stop the ABS nodes and complete the following steps:

1. Connect to MongoDB by entering the following command:

mongo --host <mongo-host> --port <mongo-port> --authenticationDatabase
 admin -u absuser -p abs123

absuser and abs123 is the default user name and password for MongoDB.
2. On the MongoDB prompt, run the following command:

use abs_metadata
db.auth_info.updateOne({ access_key: "<new-access-key>", secret_key:
 "<new-secret-key>"})

Start the ABS nodes after you have changed the default access and secret key.

Obfuscate passwords

Using ABS command line interface, you can obfuscate the keys and passwords configured in
abs.properties. The keys and passwords obfuscated include:

▪ mongo_password
▪ jks_password
▪ email_password

ABS ships with a default abs_master.key which is used to obfuscate the keys and passwords. It is
recommended to generate your own abs_master.key.

i Note: During the process of obfuscation of keys and password, ABS must be stopped .

The following diagram summarizes the obfuscation process:

Generate abs_master.key

You can generate the abs_master.key by running the generate_obfkey ABS CLI command.

/opt/pingidentity/abs/bin/cli.sh generate_obfkey -u admin -p admin
Please take a backup of config/abs_master.key before proceeding.
Warning: Once you create a new obfuscation master key, you should obfuscate
 all config keys also using cli.sh -obfuscate_keys
Warning: Obfuscation master key file
/pingidentity/abs/config/abs_master.key already exists. This command will
 delete it and create a new key in the same file
Do you want to proceed [y/n]: y
Creating new obfuscation master key

Copyright ©2022

 | ABS AI Engine | 291

Success: created new obfuscation master key at /pingidentity/abs/config/
abs_master.key

The new abs_master.key is used to obfuscate the passwords in abs.properties file.

Important: After the keys and passwords are obfuscated, the abs_master.key must be moved to a
secure location and not stored on ABS.

In an ABS cluster, the abs_master.key must be manually copied to each of the cluster nodes.

Obfuscate key and passwords

Enter the keys and passwords in clear text in the abs.properties file. Run the obfuscate_keys
command to obfuscate keys and passwords:

/opt/pingidentity/abs/bin/cli.sh obfuscate_keys -u admin -p admin
Please take a backup of config/abs.password before proceeding
Enter clear text keys and passwords before obfuscation.
Following keys will be obfuscated
config/abs.properties: mongo_password, jks_password and email_password
Do you want to proceed [y/n]: y
obfuscating /pingidentity/abs/config/abs.properties
Success: secret keys in /pingidentity/abs/config/abs.properties obfuscated

Start ABS after passwords are obfuscated.

ABS POC mode

You can run ABS AI engine in (proof-of-concept) POC mode which requires substantially lesser number of
requests for detecting an attack. This mode is only for the purpose of demonstrating the capabilities of the
AI engine. All the REST API attacks can be detected in the POC mode. For more information on different
attack types, see REST API attack types on page 339 .

i Warning: Do not deploy the AI engine in production environment in POC mode. It is recommended
to uninstall all PingIntelligence components from POC mode and reinstall for production environment. The
ABS AI engine in POC mode is not suitable for security testing as well.

Configure POC mode

You can install ABS AI engine in POC mode by configuring the parameter during automated installation.
For more information on configuring the POC mode at the time of installation, see Change ABS default
settings on page 61.

If you are using manual installation to install ABS AI engine and MongoDB, configure poc to true in
global_config of /pingidentity/abs/mongo/abs_init.js file. Following is a snippet of
abs_init.js file:

db.global_config.insert({
 "poc": true,
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": true,
 "discovery_initial_period" : "1",
 "discovery_subpath": "1",
 "continuous_learning": true,

Copyright ©2022

 | ABS AI Engine | 292

 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

Verify the POC mode

Use the ABS Admin REST API to verify whether ABS AI engine is running in the POC mode. The report
can be accessed by calling the ABS system at the following URL:

https://<abs_ip>:<abs_port>/v4/abs/admin.

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS
 clusters, and ASE logs",
 "license_info": {
 "tier": "Subscription",
 "expiry": "Sun Feb 21 00:00:00 UTC 2021",
 "max_transactions_per_month": 100000000,
 "current_month_transactions": 41243418,
 "max_transactions_exceeded": false,
 "expired": false
 },
 "across_api_prediction_mode": true,
 "poc": true,

 "api_discovery": {
 "subpath_length": "1",
 "status": true
 },

...truncated admin API output...
}

Start and Stop ABS

Start ABS

To start ABS, run the start.sh script located in the /opt/pingidentity/abs/bin directory. Change
working directory to /opt/pingidentity/abs/bin. Then start ABS by typing the following command.
To start ABS, you need to accept EULA. You can accept EULA in two ways:

▪ Scroll through the text on screen and enter yes to accept EULA, or
▪ Use the --acceptLicense option with start.sh as shown in the screen output below. By using this

option, you do not have to scroll through the EULA.

Once the EULA is accepted, ABS creates a license.accepted file in the /opt/pingidentity/abs/
config directory. On subsequent start of ABS, it checks for

$ /opt/pingidentity/abs/bin/start.sh --acceptLicense
End-User License Agreement accepted
Starting API Behavioral Security Version 4.1...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

Copyright ©2022

 | ABS AI Engine | 293

To verify whether ABS has started, change the working directory to data directory and look for two .pid
files, abs.pid and stream.pid. Check the newly added ABS node is connecting to MongoDB and has a
heartbeat.

> use abs_metadata
switched to db abs_metadata
> db.abs_cluster_info.find().pretty()
 {
 "_id" : ObjectId("58d0c633d78b0f6a26c056ed"),
 "cluster_id" : "c1",
 "nodes" : [
 {
 "os" : "Red Hat Enterprise Linux Server release 7.1 (Maipo)",
 "last_updated_at" : "1490088336493",
 "management_port" : "8080",
 "log_port" : "9090",
 "cpu" : "24",
 "start_time" : "1490077235426",
 "log_ip" : "2.2.2.2",
 "uuid" : "8a0e4d4b-3a8f-4df1-bd6d-3aec9b9c25c1",
 "dashboard_node" : false,
 "memory" : "62G",
 "filesystem" : "28%"
 }] }

Stop ABS

To stop ABS, first stop API Security Enforcer (if it is running) or turn OFF the ABS flag in API Security
Enforcer. If no machine learning jobs are processing, run the stop.sh script available in the bin directory.

/opt/pingidentity/abs/bin/stop.sh
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

If streaming or machines learning jobs are in progress, add the force parameter to kill running jobs and
stop ABS.

/opt/pingidentity/abs/bin/stop.sh --force
checking API Behavioral Security status
sending shutdown signal to ABS, please wait...
API Behavioral Security stopped

i Note: Ensure that you stop ABS before performing any of the following tasks:

▪ When deleting the ABS directory.
▪ When deleting the data or metadata DB.
▪ When changing the user permissions.

Omitting to do so will result in excessive logs in the Mongo DB node.

ABS users for API reports

ABS has two type of users to access the API reports and PingIntelligence for APIs Dashboard. The API
reports displayed is based on the type of user accessing the reports. The two users are:

Copyright ©2022

 | ABS AI Engine | 294

▪ Admin user: An Admin user has complete access to API reports. All the cookies, tokens, API keys,
and Username are visible in the reports. Use the following headers in the API report URL to access API
reports as an Admin user:

▪ x-abs-ak (access key header)
▪ x-abs-sk (secret key header)

▪ Restricted user: A Restricted user has limited access to the API reports. The Restricted user can view
the API reports however the cookies, tokens, and API keys are obfuscated. Use the following headers
in the API report URL to access API reports as an Admin user:

▪ x-abs-ak-ru (access key header)
▪ x-abs-sk-ru (secret key header)

The restricted user can access all the API Reports except:

▪ Threshold API
▪ Cookie, OAuth2 Token, IP, API Key, and Username Forensics APIs

For a complete list of external REST APIs, see ABS External REST APIs.

The default access and secret key are configured in the opt/pingidentity/mongo/abs_init.js file.
Following is a snippet of the abs_init.js showing the default passwords for both type of users.

db.auth_info.insert({
 "access_key": "abs_ak",
 "secret_key": "abs_sk",
 "access_key_ru" : "abs_ak_ru",
 "secret_key_ru" : "abs_sk_ru"
});

ABS directory structure

The directories that ABS creates as part of the installation process are shown in the following table:

Directory Purpose

config Contains abs.properties, a Java properties file
used to configure ABS.

data Stores logs sent by API Security Enforcer.

logs Stores all ABS related logs.

lib For internal use. Do not change anything in this
directory.

bin Contains various scripts to start and stop ABS.

i Note: Do not edit the scripts in the bin
directory.

mongo Contains the abs_init.js file used to load the
default schema, secret key, and access key.

Copyright ©2022

 | ABS AI Engine | 295

util Contains utilities to:

▪ Check and Open MongoDB Default Port
▪ Purge the Processed Access Logs from ABS
▪ Purge ABS Data from MongoDB
▪ Various service and systemctl scripts
▪ Reset MongoDB script, and
▪ Update script to change the values of global

configuration defined in /pingidentity/abs/
mongo/abs_init.js file

▪ open_ports_abs.sh:Open the default
ports 8080 and 9090 for ABS REST API and
connectivity from ASE respectively. Run the
script on the ABS machine.

Configure SSL

ABS supports only TLS 1.1 and TLS 1.2 and requires Open JDK 11.0.2. You can configure SSL by setting
the value of enable_ssl parameter to true in pingidentity/abs/mongo/abs_init.js file. Setting
the value to true enables SSL communication between ASE and ABS as well as for ABS external REST
APIs. Following is a snippet of the abs.init file with enable_ssl parameter:

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": false,
 "discovery_initial_period" : "24",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1"
});

ABS ships with a default self-signed certificate with Java Keystore at abs/config/ssl/abs.jks and
the default password set to abs123 in the abs.properties file. The default password is obfuscated in
the abs.properties file. It is recommended to change the default passwords and obfuscate the new
passwords. See, Obfuscating Passwords for steps to obfuscate passwords.

If you want to use your own CA-signed certificates, you can import them in ABS.

Import existing CA-signed certificates

You can import your existing CA-signed certificate in ABS. To import the CA-signed certificate, stop ABS if
it is already running. Complete the following steps to import the CA-signed certificate:

1. Export your CA-signed certificate to the PKCS12 store by entering the following command:

openssl pkcs12 -export -in <your_CA_cerficate.crt> -inkey
 <your_certificate_key.key> -out abs.p12 -name <alias_name>

For example:

openssl pkcs12 -export -in ping.crt -inkey ping.key -out abs.p12 -name
 exampleCAcertificate

Copyright ©2022

 | ABS AI Engine | 296

Enter Export Password:
Verifying - Enter Export Password:

i Note: If you have an intermediate certificate from CA, then append the content to
<your_CA_certificate.crt> file.

2. Import the certificate and key from the PKCS12 store to Java Keystore by entering the following
command. The command requires the destination keystore password. The destination keystore
password entered in the command should be same as configured in the abs.properties file.

Here is a snippet of the abs.properties file where the destination keystore password is stored. The
password is obfuscated.

Java Keystore password
jks_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=

Enter the following command:

keytool -importkeystore -destkeystore abs.jks -srckeystore abs.p12 -
srcstoretype PKCS12 -alias <alias_name> -storetype jks

For example:

keytool -importkeystore -destkeystore abs.jks -srckeystore abs.p12 -
srcstoretype PKCS12 -alias exampleCAcertificate -storetype jks
Importing keystore abs.p12 to abs.jks...
Enter destination keystore password:
Re-enter new password:
Enter source keystore password:

3. Copy the abs.jks file created in step 2 to /opt/pingidentity/abs/config/ssl directory.
4. Start ABS by entering the following command:

/opt/pingidentity/abs/bin/start.sh
Starting API Behavioral Security 4.0...
please see /opt/pingidentity/abs/logs/abs/abs.log for more details

ABS ports

ABS uses the following ports:

Port number Description

8080 This port is used by ASE to log in to ABS and also
used by Postman to access data to generate API
reports

9090 This port is used by ASE to send access logs to
ABS

27017 Default port for MongoDB

Check and open MongoDB default port

MongoDB’s default port for connection with ABS is 27017. Run the check_ports_abs.sh script
on the ABS machine to determine whether MongoDB’s default port is available. Provide MongoDB
host IP address and default port as arguments. For example:/opt/pingidentity/abs/util/
check_ports_abs.sh {MongoDB IPv4:[port]}

Copyright ©2022

 | ABS AI Engine | 297

Check and open MongoDB default port

Run the check_ports_abs.sh script on the ABS machine to determine whether MongoDB’s default port
is available. Input the MongoDB host IP address and default port (27017) as arguments. For example:

/opt/pingidentity/util/check_ports_abs.sh {MongoDB IPv4:[port]}

Run the script for MongoDB primary and secondary nodes. If the default ports are not accessible, open the
port from the MongoDB machine.

ABS configuration - abs.properties

The ABS configuration file (abs.properties) is located in the ABS config directory. The following
table explains the parameters and provides recommended values.

Parameter Description

ABS IP, port, log level, and JKS password

host_ip The externally visible IP address of the host ABS machine.

management_port Port for ABS to ASE and REST API to ABS communication.

The default value is 8080.

log_port Port for ASE to send log files to ABS. The default value is 9090.

jks_password The password of the JKS Keystore. ABS ships with a default
obfuscated password. You can reset the password and obfuscate it.
This password should be the same that you would use in importing
your CA-signed certificate .

log_level Log detail captured. The default is INFO.

Additional options - DEBUG, ERROR, WARN, FATAL.

ABS performance configurations

system_memory Memory size in MB allocated to run machine learning jobs.
Recommended to be at least 50% of system memory.

system_json_size Memory size in KB allocated for API JSON files.

The default is 500 KB.

runaway_time Maximum time in minutes to wait for a job to finish.

The default value is 120 minutes.

queue_size Do not change the value of this parameter. The default is 10.

ABS email configurations for alerts and reporting

enable_emails Enable (true) or disable (false) ABS email notifications.

sender_email Email address used for sending email alerts and reports.

receiver_email Email address notified about alerts and reports. If you want more
than one person to be notified, use an email alias.

email_password Password of sender's email account.

i Note: You can leave this field blank if your SMTP server does
not require authentication.

Copyright ©2022

 | ABS AI Engine | 298

smtp_port Port number of SMTP server.

smtp_host Hostname of SMTP server.

smtp_ssl Set to true if you want email communication to be over SSL.
Make sure that the SMTP server supports SSL. If you set smtp_ssl
to true and the SMTP server does not support SSL, email
communication falls back to the non-SSL channel. The default value
is true.

Set it to false if email communication is over a non-SSL channel.
The email communication will fail if you set the parameter to false,
but the SMTP server only supports SSL communication.

smtp_cert_verification Set to true if you want ABS to verify the SMTP server's SSL
certificate. The default value is false.

If you set it to false, ASE does not verify SMTP server's SSL
certificate; however, the communication is still over SSL.

i Note: If you have configured an IP address as smtp_host and
set smtp_cert_verification to true, then make sure that the
certificate configured on the SMTP server has the following:

X509v3 extensions:
 X509v3 Key Usage:
 Key Encipherment, Data
 Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Subject Alternative Name:
 IP Address: X.X.X.X

Here x.x.x.x is the IP address is the address configured in
smtp_host.

MongoDB configuration

mongo_rs Comma separated MongoDB replica set nodes IP addresses and
port numbers. A maximum of three nodes can be configured.

metadata_dbname The MongoDB metadata database name.

The default value is abs_metadata.

data_dbname The MongoDB data database name.

The default value is abs_data.

mldata_dbname The MongoDB machine learning database name.

The default value is abs_mldata

Copyright ©2022

 | ABS AI Engine | 299

mongo_auth_mechanism Defines the method in which MongoDB authenticates. The possible
values can be:

▪ NONE - Set it to NONE, if authentication is not configured in
MongoDB

▪ DEFAULT - Set it to DEFAULT, if you want to use native
MongoDB username and password. Prove the values in the next
two variables.

▪ PLAIN - Set it to PLAIN, if you want to use LDAP authentication.
In this case, provide the LDAP username and password in the
next two variables.

mongo_username Username of MongoDB.

i Note: Required for MongoDB authentication

mongo_password MongoDB password

mongo_ssl Set it to true if MongoDB is configured to use SSL connections.
The default value is false.

ABS reporting node

dashboard_node When true, designated as a dedicated Reporting or Dashboard
node. This ABS node does not process log data or participate in an
ABS cluster.

The default value is false.

i Note: Multiple nodes can be Reporting or Dashboard nodes.

A sample abs.properties file is displayed below.

Ping Identity Corporation, ABS config file
All the keys should be present, leave blank value if not applicable
ABS node host IP
If you have multiple network interfaces or if you are running inside a
 Docker, specify the externally visible IP address for ABS to bind
host_ip=127.0.0.1
REST API port
management_port=8080
Streaming port
log_port=9090
Log levels (ALL > DEBUG > INFO > WARN > ERROR > FATAL > OFF)
log_level=DEBUG
Java KeyStore password
jks_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=
MongoDB replica set nodes comma separated IP addresses and port numbers.
 For example, <IP1>:<Port>, <IP2>:<Port>, <IP3>:<Port>. Maximum three nodes
 can be configured.
mongo_rs=localhost:27017
MongoDB Database
metadata_dbname=abs_metadata
data_dbname=abs_data
mldata_dbname=abs_mldata
MongoDB authentication
If authentication is not enabled in MongoDB, set the mongo_auth_mechanism
 to NONE
The supported MongoDB authentication mechanisms are DEFAULT and PLAIN.

Copyright ©2022

 | ABS AI Engine | 300

If authentication mechanism is DEFAULT, provide MongoDB username and
 password for mongo_username
and mongo_password. If authentication mechanism is PLAIN, provide external
LDAP username and password in mongo_username and mongo_password.
mongo_auth_mechanism=DEFAULT
mongo_username=absuser
mongo_password=OBF:AES:Q3vcrnj7VZILTPdJnxkOsyimHRvGDQ==:daYWJ5QgzxZJAnTkuRlFpreM1rsz3FFCulhAUKj7ww4=
Mongo DB SSL
Set to true if Mongo DB instance is configured in SSL mode.
By default, ABS will try to connect to Mongo using non-SSL connection
mongo_ssl=false
Time to mark a job runaway in minutes
runaway_time=120
Job queue size per node
queue_size=10
Setting as true makes an ABS node for dashboard query only and does not
 participate in ABS cluster for log processing
dashboard_node=false
Memory for webserver and streaming server (unit is in MB)
system_memory=4096
Memory for ASE JSON (unit is KB)
system_json_size=8192
E-mail alerts
enable_emails=false
SMTP host
smtp_host=smtp.example.com
SMTP port
smtp_port=587
Set this value to true if smtp host support SSL
smtp_ssl=true
Set this value to true if SSL certificate verification is required
smtp_cert_verification=false
Sender email id
sender_email=sender@example.com
Sender's email password
email_password=OBF:AES:UXzB+y+69Bn3xiX6N822ad4hf5IfNfJY9w==:T
+QzM6qtc0+6MVsx4gU5p0LMHAI/y+w8DDsWv6VxVAk=
Receiver's email id
receiver_email=receiver@example.com

Connect ABS to API Security Enforcer

Before connecting ABS, API Security Enforcer must be installed. For more information on installing and
configuring API Security Enforcer, see the ASE Admin guide.

The following diagram summarizes the process of connecting ABS to API Security Enforcer:

Copyright ©2022

 | ABS AI Engine | 301

The following is a sample abs.conf file which is part of the API Security Enforcer (ASE):

; API Security Enforcer ABS configuration.
; This file is in the standard .ini format. The comments start with a
 semicolon (;).
; Following configurations are applicable only if ABS is enabled with true.
; a comma-separated list of abs nodes having hostname:port or ipv4:port as
 an address.
abs_endpoint=127.0.0.1:8080
; access key for abs node
access_key=OBF:AES://ENOzsqOEhDBWLDY
+pIoQ:jN6wfLiHTTd3oVNzvtXuAaOG34c4JBD4XZHgFCaHry0
; secret key for abs node
secret_key=OBF:AES:Y2DadCU4JFZp3bx8EhnOiw:zzi77GIFF5xkQJccjIrIVWU
+RY5CxUhp3NLcNBel+3Q
; Setting this value to true will enable encrypted communication with ABS.
enable_ssl=true
; Configure the location of ABS's trusted CA certificates. If empty, ABS's
 certificate
; will not be verified
abs_ca_cert_path=

The access_key and secret_key are the keys that were defined in the abs_init.js file when
configuring MongoDB.

i Note: To connect an API Security Enforcer cluster to ABS, configure the abs.conf file on any API
Security Enforcer in the cluster and run the CLI commands. This ensures all the API Security Enforcer
nodes in the cluster will be updated to connect with ABS.

If ABS is running in cluster mode, choose the IP address and port from any ABS node to add to the
abs.conf file in API Security Enforcer.

Dataflow

API Security Enforcer connects to the ABS node defined in abs.conf to obtain available ABS IP
addresses (step 1). In stand-alone mode, ABS sends the only IP address. In cluster mode, ABS sends the
IP addresses of all available ABS nodes to API Security Enforcer.

After API Security Enforcer receives the IP address, it establishes a session with ABS by sending the
secret and access keys (step 2). After successful authentication, API Security Enforcer streams the access
log files and API JSON files to the ABS node (step 3). After sending the files, it receives the attack lists
(only available if blocking is activated for API Security Enforcer) from ABS (step 4). When the transaction is
complete, API Security Enforcer logs out from ABS (step 5).

ABS uses machine learning (ML) algorithms to discover attacks, anomalies, and other traffic information.
It stores incoming API Security Enforcer logs and then passes these logs to the machine learning engine
for analysis. In high load environments, a single ABS node may not be able to process all log files, and
multiple ABS nodes should be deployed for log processing.

The following diagrams show the API Security Enforcer – ABS Dataflow.

Stand-alone mode

In stand-alone mode, a single MongoDB node is used for both read and write operations. A stand-alone
mode of deployment is only recommended for testing purposes.

Copyright ©2022

 | ABS AI Engine | 302

Cluster mode

In cluster mode, API Security Enforcer nodes synchronize the abs.conf file as well as the state of each
ABS node. The ABS cluster nodes do not communicate among themselves. Each node records its status
in MongoDB and reads about the state of other nodes from the database.

Copyright ©2022

 | ABS AI Engine | 303

ABS cluster

An ABS cluster consists of stateless ABS nodes communicating with a MongoDB replica set. Each ABS
node connects to the MongoDB cluster to obtain cluster configuration information that describes peer
nodes. ABS nodes themselves do not communicate with each other; they periodically send heartbeats to
MongoDB with status information. Each ABS node exposes:

▪ REST APIs for log streaming between ABS and API Security Enforcer
▪ REST APIs between ABS and management applications which fetch metrics, anomalies, attack types,

backend error, blocked connections, flow control, and cluster status.

An ABS cluster is depicted in the following diagram:

Copyright ©2022

 | ABS AI Engine | 304

To configure an ABS cluster, complete the following steps:

1. Install MongoDB in a replica set
2. Connect ABS to MongoDB

To set up an ABS cluster, no separate steps have to be completed. To create an ABS cluster, add an ABS
node and connect it to MongoDB primary node. Since ABS forms a stateless cluster, the information of all
the nodes in the cluster is fetched by ABS nodes from MongoDB.

Scale down ABS cluster: To scale down the cluster, stop the ABS node that you wish to remove from the
cluster. Edit the abs.properties file to remove MongoDB IP address.

ABS logs

The active ABS log file abs.log is located in the logs directory and rotated every 24-hours at midnight
local time. The rotated log files append timestamps to the name and follow the naming convention of
abs.log.<yyyy>-<mm>-<dd> (for example, abs.log.2018-11-24). Here is an example:

-rw-r--r--. 1 root root 68K Apr 25 23:59 abs.log.2019-04-25
-rw-r--r--. 1 root root 68K Apr 25 23:59 abs.log.2019-04-24
-rw-r--r--. 1 root root 68K Apr 26 23:59 abs.log.2018-04-26
-rw-r--r--. 1 root root 158K Apr 27 23:59 abs.log.2018-04-27
-rw-r--r--. 1 root root 32K Apr 28 11:21 abs.log

The ABS log file contains INFO messages (for example, ABS started, MongoDB status) and ERROR
messages (for example, MongoDB is not reachable). The log files also contains entry of all the email alerts
sent. Here is a snippet of an abs.log file:

2019-04-28 11:16:45 INFO - starting abs periodic actions

Copyright ©2022

 | ABS AI Engine | 305

2019-04-28 11:16:45 INFO - MongoDB heartbeat success
2019-04-28 11:16:45 INFO - notification node not set.
2019-04-28 11:16:45 INFO - training period 1 hours.
2019-04-28 11:16:45 INFO - system threshold update interval 1 hour(s).
2019-04-28 11:16:45 INFO - api discovery interval 1 hour(s).
2019-04-28 11:16:45 INFO - subpath limit: 100
2019-04-28 11:16:45 INFO - ABS started successfully...
2019-04-28 11:17:45 INFO - MongoDB heartbeat success
2019-04-28 11:19:45 ERROR - MongoDB heartbeat failure

Purge the processed access logs from ABS

A purge.sh script either archives or purges processed access log files which are stored in the /opt/
pingidentity/abs/data directory.

i Note: When the purge script is run, the processed access log files are permanently deleted from the
/opt/pingidentity/abs/data directory. Always backup the files before deleting.

Located in the /opt/pingidentity/abs/util directory, the purge script deletes logs older than the
specified number of days. Run the script using the ABS command line. For example:

/opt/pingidentity/abs/util/purge.sh -d 3
In the above example, purge.sh deletes all access log files older than 3
 days. Here is sample output.
/opt/pingidentity/abs/util/purge.sh -d 3
This will delete the data in /opt/ pingidentity/abs/data which is older than
 3 days.
Are you sure (yes/no): yes
removing /opt/pingidentity/abs/
data/2018-04-10-11_21/9k2unv5l2bsgurneot3s3pmt03/ : last changed at Mon Jan
 10 11:32:31 IST 2018
removing /opt/ pingidentity/abs/data/2018-04-10-11_21/
ilq67a3g5sve2pmpkkp271o37c/ : last changed at Mon Jan 10 11:32:31 IST 2018

External log archival

The purge script can also archive logs older than the specified number of days to secondary storage. Use
the -l option and include the path of the secondary storage to archive log files. For example:

/opt/pingidentity/abs/util/purge.sh -d 3 -l /tmp/

In the above example, log files older than 3-days are archived to the tmp directory. To automate log
archival, add the script to a cron job.

Purge MongoDB data

Purge MongoDB data

The ABS MongoDB purge script dumps and/or deletes processed ABS and machine learning data from
MongoDB. It is recommended to archive the data before purging it. The purge_mongo.sh script is
available in the /opt/pingidentity/abs/util directory. Copy the script from the util directory to
your MongoDB primary node.

The script offers three options:

1. Dump data into a directory and then purge it
2. Only dump data
3. Only purge data

Copyright ©2022

 | ABS AI Engine | 306

To execute the script, enter the following information on the command line:

▪ MongoDB credentials: mongo_username, mongo_password in abs.properties
▪ Database name and port number: data_dbname, mldata_dbname, and mongo_master_port

in abs.properties
▪ Days of data to retain: minimum of one and maximum of 365 days
▪ The path to dump the data
▪ If your MongoDB installation is configured to use TLS/SSL, use the --tls option. The following examples

assumes that MongoDB is configured to use TLS/SSL.

For more information on the purge script parameters, run the purge help script from the MongoDB
command line:

/opt/pingidentity/mongo/purge_mongo.sh –help

By default, the script dumps all data and then removes processed data older than seven days. Here are
examples of the three options:

1. Dump and purge example: The following example shows both abs_data and abs_mldata

/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --tls --
data_db abs_data --mldata_db abs_mldata --auth_db admin --port 27017 -d 80
 -l /tmp

Dumps all log files to /tmp and purges log files greater than 80 days old.
2. Dump example:

/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --tls --
data_db abs_data --auth_db admin --port 27017 -d 45 -l /tmp --dump_only

Dumps all log files to /tmp and purges log files greater than 45 days old.

The following example shows dumping only the ABS data:

/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --tls --
data_db abs_data --auth_db admin --port 27017 -d 45 -l /tmp --dump_only

Dumps all log files to /tmp and purges log files greater than 45 days old.
3. Purge example:

/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --tls --
data_db abs_data --auth_db admin --port 27017 -d 80 --purge_only

Purges log files greater than 80 days old.

i CAUTION: Once the MongoDB data is purged, it cannot be retrieved.

The following example shows purging only the mldata:

/opt/pingidentity/mongo/purge_mongo.sh -u absuser -p abs123 --mldata_db
 abs_mldata --auth_db admin --port 27017 -d 80 --purge_only

Reset MongoDB

ABS AI engine provides a script to factory reset MongoDB data. Make sure to take a backup of your
current data before running the reset script. Once you run the MongoDB reset script, the deleted data
cannot be retrieved.

Copyright ©2022

 | ABS AI Engine | 307

The reset MongoDB script deletes all the documents from all the collections of abs_data and
abs_mldata from MongoDB. The reset_mongo.sh script is available in the /opt/pingidentity/
abs/util directory. Copy the script from the util directory to your MongoDB primary node.

To execute the script, you need the following information:

▪ MongoDB credentials: mongo_username and mongo_password configured in abs.properties.
▪ Database name and port number: data_dbname, mldata_dbname, and mongo_master_port

configured in abs.properties
▪ If your MongoDB installation is configured to use SSL, use the --ssl option. The following examples

assume that MongoDB is configured to use TLS.

For more information on the reset script parameters, run the reset help script from the MongoDB command
line:

/opt/pingidentity/mongo/reset_mongo.sh –help

Reset ABS and machine learning data: The following example resets both ABS and machine learning
(ml) data:

/opt/pingidentity/mongo/reset_mongo.sh -u absuser -p abs123 --tls --data_db
 abs_data --mldata_db abs_mldata --auth_db admin --port 27017

Reset only machine learning (ml) data: The following example resets only the machine learning data:

/opt/pingidentity/mongo/reset_mongo.sh -u absuser -p abs123 --tls --
mldata_db abs_mldata --auth_db admin --port 27017

Reset only ABS data: The following example resets only the ABS data:

/opt/pingidentity/mongo/reset_mongo.sh -u absuser -p abs123 --tls --data_db
 abs_data --auth_db admin --port 27017

The following snippet shows the output when the reset MongoDB script is run:

./reset_mongo.sh -u absuser -p abs123 --port 27017 --data_db abs_data --
mldata_db abs_mldata --tls
Please make sure that there is no ABS process running before running the
 reset_mongo script.
Are you sure you want to continue... (yes/no): yes
This will delete all the documents in abs_data database
Are you sure? (yes/no): yes
Deleting the documents in abs_data database.
2019-10-11T05:46:43.726+0000 W CONTROL [main] Option: ssl is deprecated.
 Please use tls instead.
2019-10-11T05:46:43.727+0000 W CONTROL [main] Option:
 sslAllowInvalidCertificates is deprecated. Please use
 tlsAllowInvalidCertificates instead.
MongoDB shell version v4.2.0
connecting to: mongodb://127.0.0.1:27017/?
authSource=admin&compressors=disabled&gssapiServiceName=mongodb
2019-10-11T05:46:43.802+0000 W NETWORK [js] TLS peer certificate
 validation failed: self signed certificate
Implicit session: session { "id" : UUID("400fcaa5-57dd-4123-a5e6-
b54c1e0bdfda") }
MongoDB server version: 4.2.0
switched to db abs_data

Removing all documents of all collections in ABS_DATA
Removing all documents from [abs_data.api_attack_dos_anomaly]
Removing all documents from [abs_data.api_config.chunks]

Copyright ©2022

 | ABS AI Engine | 308

Removing all documents from [abs_data.api_config.files]
Removing all documents from [abs_data.api_json]
Removing all documents from [abs_data.api_key_metrics]
Removing all documents from [abs_data.attack_management]
Removing all documents from [abs_data.attack_management_audit]
Resetting the [abs_data.attack_ttl] to default values
Removing all documents from [abs_data.backend_errors]
Removing all documents from [abs_data.bc_summary]
Removing all documents from [abs_data.blocked_connections]
Removing all documents from [abs_data.discovered_apis]
Removing all documents from [abs_data.discovery_api_metadata]
Removing all documents from [abs_data.discovery_ir.chunks]
Removing all documents from [abs_data.discovery_ir.files]
Removing all documents from [abs_data.extended_ml_threshold]
Removing all documents from [abs_data.extended_trained_model]
Removing all documents from [abs_data.extended_training_model]
Removing all documents from [abs_data.external_ioc_type]
Removing all documents from [abs_data.internal_ioc]
Removing all documents from [abs_data.internal_ioc_audit]
Removing all documents from [abs_data.ioc]
Removing all documents from [abs_data.ioc_anomaly]
Removing all documents from [abs_data.ir.chunks]
Removing all documents from [abs_data.ir.files]
Removing all documents from [abs_data.log_nodes]
Removing all documents from [abs_data.ml_result]
Removing all documents from [abs_data.ml_threshold]
Removing all documents from [abs_data.notifications]
Removing all documents from [abs_data.oauth_metrics]

The reset script does not delete the following meta data:

▪ ABS cluster information
▪ ABS configuration
▪ Global configuration from abs_init.js file
▪ Scale configuration from abs_init.js file
▪ Dictionary generated by ABS AI engine

Verifying MongoDB reset script: To verify that the MongoDB reset script executed successfully, run the
ABS Admin REST API. The output should not show any ASE access log and API information. It should
only display ABS cluster information, MongoDB primary and secondary and client identifier TTL value reset
to zero. Following is a sample output of Admin API after MongoDB reset script is run:

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS
 clusters, and ASE logs",
 "across_api_prediction_mode": false,
 "api_discovery": {
 "subpath_length": "1",
 "status": true
 },
 "abs_cluster": {
 "abs_nodes": [
 {
 "node_ip": "172.16.40.19",
 "os": "Red Hat Enterprise Linux Server",
 "cpu": "16",
 "memory": "62G",
 "filesystem": "1%",
 "bootup_date": "Thu Oct 10 10:08:37 UTC 2019"
 }

Copyright ©2022

 | ABS AI Engine | 309

],
 "mongodb_nodes": [
 {
 "node_ip": "172.16.40.236:27017",
 "status": "secondary"
 },
 {
 "node_ip": "172.16.40.237:27017",
 "status": "secondary"
 },
 {
 "node_ip": "172.16.40.235:27017",
 "status": "primary"
 }
]
 },
 "percentage_diskusage_limit": "80%",
 "scale_config": {
 "scale_up": {
 "cpu_threshold": "70%",
 "cpu_monitor_interval": "30 minutes",
 "memory_threshold": "70%",
 "memory_monitor_interval": "30 minutes",
 "disk_threshold": "70%",
 "disk_monitor_interval": "30 minutes"
 },
 "scale_down": {
 "cpu_threshold": "10%",
 "cpu_monitor_interval": "300 minutes",
 "memory_threshold": "10%",
 "memory_monitor_interval": "300 minutes",
 "disk_threshold": "10%",
 "disk_monitor_interval": "300 minutes"
 }
 },
 "attack_ttl": {
 "ids": [
 {
 "id": "ip",
 "ttl": 0
 },
 {
 "id": "cookie",
 "ttl": 0
 },
 {
 "id": "access_token",
 "ttl": 0
 },
 {
 "id": "api_key",
 "ttl": 0
 },
 {
 "id": "username",
 "ttl": 0
 }
]
 }
}

Copyright ©2022

 | ABS AI Engine | 310

Add a member to an existing MongoDB replica set

This topic discusses the steps to add a new node to an existing MongoDB replica set.

Prerequisites:

▪ An active replica set.
▪ A new MongoDB system accessible by the replica set.
▪ To add a new member to the replica set, the MongoDB user must have clusterAdmin privileges.

i Note: absrs01 is the name of the replica set used in the following steps.

Complete the following steps to add a node to an existing replica set:

1. Create the MongoDB directory structure: create mongo, data, logs, and key directory on the new
MongoDB node.

mkdir -p /opt/pingidentity/mongo/data /opt/pingidentity/mongo/logs \ /
opt/pingidentity/mongo/key

2. Download MongoDB 4.2 on the node and extract to /opt/pingidentity/mongo.

cd /opt/pingidentity/ /opt/pingidentity# wget \ https://
fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.0.tgz \ -O
 mongodb.tgz && tar xzf mongodb.tgz -C /opt/pingidentity/mongo/ --strip-
components=1

3. Update shell path variable and reload the shell.

/opt/pingidentity# echo PATH=$PATH:/opt/pingidentity/mongo/bin >>
 ~/.bashrc; /opt/pingidentity# source ~/.bashrc

4. Copy the contents of the /opt/pingidentity/mongo/key directory from the primary node to the
new node into /opt/pingidentity/mongo/key.

5. Start the MongoDB database on the new node.

/opt/pingidentity# cd mongo /opt/pingidentity/mongo# mongod --auth --
dbpath ./data/ --logpath ./logs/mongo.log --port 27017 --replSet absrs01
 --fork --keyFile ./key/mongodb-keyfile -bind_ip 0.0.0.0

6. Connect to the mongo shell of the primary node and run the following command.

absrs01:PRIMARY> rs.add({"host": "<IP address of new node>:27017",
 "priority": 2})

i Note: On executing step-six, the state of the new node will change to STARTUP2. This indicates
that the synchronization between the replica set and the new node has started.

7. Verify if the new node is added as a Secondary node to the replica set using the following command.

absrs01:PRIMARY> rs.status()

Related links

▪ https://docs.mongodb.com/manual/tutorial/expand-replica-set/

Remove a member from a MongoDB replica set

This topic discusses the steps to remove a node from an existing MongoDB replica set.

Copyright ©2022

https://docs.mongodb.com/manual/tutorial/expand-replica-set/

 | ABS AI Engine | 311

Prerequisites:

▪ An active replica set.
▪ To remove a member, the MongoDB user must have clusterAdmin privileges.

To remove a node from an existing replica set:

1. Connect to the node that you wish to remove and shut down the MongoDB on it using the following
command.

absrs01:PRIMARY> db.shutdownServer()

2. Connect to the primary member of the replica set and run the following command to remove the node.

absrs01:PRIMARY> rs.remove("<IP Address or hostname of the node to be
 removed>:27017")

Related links

https://docs.mongodb.com/manual/tutorial/remove-replica-set-member/

Email alerts and reports

ABS sends e-mail notifications under two categories:

▪ Alerts – event-based updates to notify administrators of potential issues
▪ Reports – standard reports sent every 24 hours at 00:00:00 hours midnight

Email parameters in abs.properties correspond to your e-mail server. By default, e-mail notifications
are disabled. Enable notifications after configuring e-mail IDs and server.

i Note: If you want more than one person to be notified, use an email alias in sender_email field.

#Enable or Disable e-mail alerts
enable_emails=false
#Provide the details of sender and receiver of e-mail
#Sender's e-mail ID
sender_email=mail@yourdomain.com
#Sender's e-mail password
email_password=mypassword
#Receiver's e-mail ID
receiver_email=mail@yourdomain.com
#SMTP port
smtp_port=587
#SMTP host
smtp_host=smtp.smtphost.com

ABS alerts

Threshold values are configured in the /opt/pingidentity/mongo/abs_init.js file which is in the
mongo directory. An email alert is sent based on the following category of events. These events are also
logged in the abs.log file.

▪ Dynamic Rate Limit: alert sent when CPU, disk, or memory crosses the configured threshold value.
▪ ABS Node: alert sent when ABS cluster nodes are added or removed.
▪ MongoDB: alert sent when a MongoDB node is added or becomes inaccessible.
▪ Percentage Disk Usage Limit: alert sent when the disk usage reaches the configured

percentage_diskusage_limit value. When this limit is reached, ABS stops accepting any new
access log files from ASE. The alert is also logged in the abs.log file.

Copyright ©2022

https://docs.mongodb.com/manual/tutorial/remove-replica-set-member/

 | ABS AI Engine | 312

▪ License: The following license related alerts are sent:

▪ ABS license invalid: alert is sent if the ABS license is found to be invalid. In this case ABS shuts
down.

▪ ABS license expiration: alert sent when ABS license is expired.
▪ Transaction limit reached: alert sent when ABS reaches the licensed monthly transaction limit.

▪ Scale Up and Scale Down: alert sent when a system resource, such as CPU, memory, or disk
utilization, is above or below its threshold value for a specified interval of time. If the value is above
the threshold value, add ABS nodes to distribute the load. If the resource utilization is below the lower
threshold, you may remove an ABS node from the ABS cluster.

▪ DDoS attack alert: ABS sends alerts for multi-client Login Attacks and for API DDoS Attack Type 1.
The email alert provides a time period for the attack along with a URL to access information on all client
IPs participating in the attack.

Here is a snippet of an /opt/pingidentiy/mongo/abs_init.js file for email alerts on the MongoDB
node. You can configure any of these values as per your requirement. It is a good practice to set the
values of email alerts before configuring MongoDB and the abs_init.js file. scale_up is for the upper
threshold, while scale_down is for the lower threshold. If you want to change the threshold values after
the system is running, then you have to manually change the values in MongoDB and restart the ABS
node.

db.scale_config.insert({
 "scale_up": [{
 "resource": "memory",
 "threshold": "70%",
 "monitor_interval": "30minutes"
 }, {
 "resource": "cpu",
 "threshold": "70%",
 "monitor_interval": "30minutes"
 }, {
 "resource": "disk",
 "threshold": "70%",
 "monitor_interval": "30minutes"
 }],
 "scale_down": [{
 "resource": "memory",
 "threshold": "10%",
 "monitor_interval": "300minutes"
 }, {
 "resource": "cpu",
 "threshold": "10%",
 "monitor_interval": "300minutes"
 }, {
 "resource": "disk",
 "threshold": "10%",
 "monitor_interval": "300minutes"
 }]
});

Following is a template for alerts:

Event: <the type of event>
Value: <the specific trigger for the event>
When: <the date and time of the event>
Where: <the IP address of the server where the event occured>

For example,

Event: Scale Down ABS Node

Copyright ©2022

 | ABS AI Engine | 313

Value : 192.168.11.166
CPU scale down threshold reached.
When : 2019-Jun-05 18:02:33 UTC
Where: 192.168.11.166

The following table describes the various email alerts sent by ABS and their possible resolution. The
resolution provided is only a starting point to understand the cause of the alert. If ABS is reporting an alert
even after the following the resolution provided, contact PingIntelligence support.

Email alert Possible cause and resolution

File System Maxed Out - Rate Limit
Alert

Cause: A possible reason for this alert could be that historical
access log files from ASE have accumulated on the storage disk.

Resolution: Purge or archive the old access log files from storage
disk.

ABS node added to cluster ABS sends an email alert when a node joins an ABS cluster.

Confirm: ABS admin should verify whether the correct ABS node
joined the ABS cluster.

ABS node removed from cluster ABS sends an email alert when a node is removed from an ABS
cluster.

Confirm: ABS admin should check the reason for removal of ABS
node from the cluster. ABS node could disconnect from cluster
because of network issues, a manual stop of ABS, or change in IP
address of the ABS machine.

Memory scale up or scale down Cause: ABS sends an email alert when the ABS node reaches
the memory scale up or scale down limits in the configuration. The
reason for reaching scale up limit can be because of large number
of access log files coming from ASE. Scale down limit could be
reached because of low number of access logs coming from ASE.

Resolution: If ABS reaches scale up limit, add another ABS node
to the cluster. If the system utilization is low, you can remove an
ABS node from the cluster.

CPU scale up or scale down Cause: ABS sends an email alert when the ABS node reaches
the CPU scale up or scale down limits in the configuration. The
reason for reaching scale up limit can be because of large number
of access log files coming from ASE. Scale down limit could be
reached because of low number of access logs coming from ASE.

Resolution: If ABS reaches scale up limit, add another ABS node
to the cluster. If the system utilization is low, you can remove an
ABS node from the cluster.

Disk scale up or scale down Cause: ABS sends an email alert when the ABS node reaches
the disk scale up or scale down limits in the configuration. The
reason for reaching scale up limit can be because of large number
of access log files coming from ASE. Scale down limit could be
reached because of low number of access logs coming from ASE.

Resolution: If ABS reaches scale up limit, add another ABS node
to the cluster. If the system utilization is low, you can remove an
ABS node from the cluster.

Copyright ©2022

 | ABS AI Engine | 314

License <path> is invalid. ABS will
shut down now

Cause: ABS sends this email alert when ABS does not have
correct permissions to read the license file from the configured
path, or there is a typing error in the name of the license file.

Resolution: Validate current license file path. Also check for file
permissions of the license file.

ABS license at <path> has expired.
Please renew your license.

Cause: ABS sends this email alert when ABS license has expired.
The license expires at the end of the license period.

Resolution: Renew your ABS license.

Maximum transaction limit reached
for the current month

ABS sends this warning message when ABS crosses the licensed
monthly transaction limit.

API DDoS Attack Type 1 or Login
DoS detected between <timestamp>
and <timestamp> on node <value>

ABS sends this warning message when it detects an API DDoS
attack type 1 or a Login DoS attack.

MongoDB primary node is down Cause: ABS sends this email alert when MongoDB process is
unavailable due to a shortage in memory or CPU. This alert can
also trigger because of network issues for MongoDB node.

Resolution: Check MongoDB Primary node status to bring it back
online or add additional secondary node if needed.

ABS reports

ABS sends an e-mail report every 24 hours at midnight, 00:00:00 hours (local system time). Each report
includes values for the following parameters:

▪ ABS Node Status: resource utilization of CPU, file system, and operating system
▪ ASE Logs Processed: Compressed file size of ASE logs processed in 24-hours
▪ Total Requests: The number of requests in the processed log files in 24-hours
▪ Success: The total number of requests which got a 200-OK response
▪ Total Anomalies: Total number of anomalies detected across APIs in 24-hours
▪ Total IOC: Total number of attacks detected in 24-hours
▪ When: The time when the email report was sent
▪ Where: The ABS node that sent the email report
▪ MongoDB node IP address and status

Following is a sample ABS email template:

Dear DevOps,
 Please find the daily report generated by 192.168.11.166 at 2019-Jun-25
 00:02:00 UTC
===================Cluster Details=============
ASE Logs Processed: 93.78MB
Total Request: 678590
Success: 596199
Total Anomalies: 7
Total IOC: 2
When : 2019-Jun-25 00:02:00 UTC
Where: 192.168.11.166

==================Node1 ===================
Host : 192.168.11.166
OS : Red Hat Enterprise Linux Server release 7.5 (Maipo)
CPU : 24
Memory : 62G

Copyright ©2022

 | ABS AI Engine | 315

Filesystem : 39%
===

================Mongo1 ====================
Host : 192.168.11.162
Status : up
===

================Mongo2 ====================
Host : 192.168.11.164
Status : up
===

================Mongo3 ====================
Host : 192.168.11.1685
Status : up
===

===
Best,
API Behavioral Security.

ABS REST API format
ABS provides external REST APIs which are used to access JSON reports providing deep insight into the
following:

▪ Attack Forensics and Compliance Reporting – attacks and anomalous behavior on APIs
▪ API Metrics – API client and traffic details
▪ Administrative – ABS system information
▪ API Security Enforcer – decoy API, blocked connections, flow control, and backend error reporting

A REST client can securely query each ABS API and receive data back in JSON format. REST client
program options include using:

▪ Postman App for Google Chrome browser
▪ Java, Python, C Sharp, or similar languages.
▪ Java client program (for example, Jersey)
▪ C sharp client program (for example, RestSharp)

The diagram shows the process for a REST API client to connect to an ABS API.

ABS API query format

ABS API offers a common format with a consistent syntax for request parameters. Detailed information and
format of all ABS REST APIs are included in ABS external REST APIs.

Query parameters for most APIs include:

Field Description

api_name The API name to query for results.

Copyright ©2022

 | ABS AI Engine | 316

earlier_date The time to check for results going back in time.
For example, to check results from 10th April, 6 PM
to 14th April, 3 PM, the earlier_date would be
10th April, 6 PM.

later_date The time to check the results back in time. For
example, to check results from 10th April, 6 PM to
14th April, 3 PM, the later_date would be 14th
April, 6 PM.

The following access_key and secret_key are the keys that were defined in the abs_init.js file.
Note that ":" (colon) is a restricted character and cannot be used in access and secret key.

▪ x-abs-ak and x-abs-ak-ru: access_key
▪ x-abs-sk and x-abs-sk-ru: secret_key

i Note: The start and end time are based on the log file data, that is, the local time where data was
captured and not of the location where results are analyzed.

Admin REST API
The Admin REST API reports on ABS cluster node resources including IP address, operating system,
CPU, memory, and filesystem usage. It also reports MongoDB node information including IP address, node
type, and status. Finally, it provides status on attack detection and reporting on APIs.

The report can be accessed by calling the ABS system at the following URL:

https://<ip>:<port>/v4/abs/admin

The following is a sample JSON report.

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS clusters, and ASE logs",
 "license_info": {
 "tier": "Free",
 "expiry": "Sun Jan 10 00:00:00 UTC 2021",
 "max_transactions_per_month": 0,
 "current_month_transactions": 30,
 "max_transactions_exceeded": false,
 "expired": false
 },
 "across_api_prediction_mode": true,
 "poc": true,
 "api_discovery": {
 "subpath_length": "1",
 "status": true
 },
 "apis": [
 {
 "api_name": "atm_app_oauth",
 "host_name": "*",
 "url": "/atm_app_oauth",
 "api_type": "regular",
 "creation_date": "Thu Mar 05 08:54:01 UTC 2020",
 "servers": 1,
 "protocol": "https",

Copyright ©2022

 | ABS AI Engine | 317

 "cookie": "JSESSIONID",
 "token": false,
 "training_started_at": "Fri Feb 14 06:44:06 UTC 2020",
 "training_duration": "1 hour",
 "prediction_mode": true,
 "apikey_header": "X-API-KEY-2",
 "apikey_qs": "",
 "jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }
 },
 {
 "api_name": "root_api",
 "host_name": "*",
 "url": "/",
 "api_type": "regular",
 "creation_date": "Thu Mar 05 08:54:01 UTC 2020",
 "servers": 1,
 "protocol": "https",
 "cookie": "JSESSIONID",
 "token": false,
 "training_started_at": "n/a",
 "training_duration": "n/a",
 "prediction_mode": false,
 "apikey_header": "X-API-KEY-1",
 "apikey_qs": "",
 "jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }
 }
],
 "abs_cluster": {
 "abs_nodes": [
 {
 "node_ip": "127.0.0.1",
 "os": "Red Hat Enterprise Linux Server - VMware, Inc.",
 "cpu": "16",
 "memory": "31G",
 "filesystem": "3%",
 "bootup_date": "Fri Feb 28 08:13:19 UTC 2020"
 },
 {
 "node_ip": "127.0.0.1",
 "os": "Red Hat Enterprise Linux Server - VMware, Inc.",
 "cpu": "16",
 "memory": "31G",
 "filesystem": "4%",
 "bootup_date": "Tue Mar 24 06:35:47 UTC 2020"
 }
],
 "mongodb_nodes": [
 {
 "node_ip": "127.0.0.1:27017",
 "status": "primary"
 }
]
 },
 "ase_logs": [
 {
 "ase_node": "88968c39-b4ea-4481-a0b4-d0d651468ab5",

Copyright ©2022

 | ABS AI Engine | 318

 "last_connected": "Thu Mar 05 08:40:14 UTC 2020",
 "logs": {
 "start_time": "Thu Mar 05 08:40:14 UTC 2020",
 "end_time": "Thu Mar 05 08:40:14 UTC 2020",
 "gzip_size": "0.74KB"
 }
 },
 {
 "ase_node": "e6b82ce9-afb3-431a-8faa-66f7ce2148b9",
 "last_connected": "Thu Mar 05 08:54:06 UTC 2020",
 "logs": {
 "start_time": "Thu Mar 05 08:54:06 UTC 2020",
 "end_time": "Thu Mar 05 08:54:06 UTC 2020",
 "gzip_size": "2.82KB"
 }
 },
 {
 "ase_node": "4df50c47-407a-41f9-bda6-b72dc34dadad",
 "last_connected": "Fri Feb 28 07:20:03 UTC 2020",
 "logs": {
 "start_time": "Tue Feb 25 12:50:00 UTC 2020",
 "end_time": "Fri Feb 28 07:20:03 UTC 2020",
 "gzip_size": "76.01KB"
 }
 },
 {
 "ase_node": "1910051e-5bab-44e6-8816-5b5afffdd1cf",
 "last_connected": "Tue Feb 18 08:10:05 UTC 2020",
 "logs": {
 "start_time": "Fri Feb 14 06:42:38 UTC 2020",
 "end_time": "Tue Feb 18 08:10:05 UTC 2020",
 "gzip_size": "2.89MB"
 }
 }
],
 "percentage_diskusage_limit": "80%",
 "scale_config": {
 "scale_up": {
 "cpu_threshold": "70%",
 "cpu_monitor_interval": "30 minutes",
 "memory_threshold": "70%",
 "memory_monitor_interval": "30 minutes",
 "disk_threshold": "70%",
 "disk_monitor_interval": "30 minutes"
 },
 "scale_down": {
 "cpu_threshold": "10%",
 "cpu_monitor_interval": "300 minutes",
 "memory_threshold": "10%",
 "memory_monitor_interval": "300 minutes",
 "disk_threshold": "10%",
 "disk_monitor_interval": "300 minutes"
 }
 },
 "attack_ttl": {
 "ids": [
 {
 "id": "ip",
 "ttl": 120
 },
 {
 "id": "cookie",
 "ttl": 120
 },

Copyright ©2022

 | ABS AI Engine | 319

 {
 "id": "access_token",
 "ttl": 120
 },
 {
 "id": "api_key",
 "ttl": 240
 },
 {
 "id": "username",
 "ttl": 360
 }
]
 }
}

Percentage disk usage limit: The percentage disk usage limit is configured in the /pingidentity/
abs/mongo/abs.init.js file. It is a good practice to configure this value before initializing
MongoDB and ABS. ABS stops accepting access log files from ASE when the configured
percentage_diskusage_limit is reached. An email alert is sent to the configured email ID and also
logged in the abs.log file.

You can update the disk usage limit using the updates.sh script available in the /opt/pingidentity/
abs/util. Copy the script from the util directory to your MongoDB primary machine.

i Note: After executing the script, stop and start all ABS nodes for the updated values to take effect.

Access script help by logging into the MongoDB primary machine and running the following command:

/opt/pingidentity/mongo/update.sh help

Following is an example of the script:

./update.sh -u absuser -p abs123 --db abs_metadata --auth_db admin --port
 27017 --percentage_diskusage_limit 80
updating percentage_diskusage_limit to 80
WriteResult({ “nMatched” : 1, “nUpserted” : 0, “nModified” : 0 })
The current values of the variables are:
attack_initial_training=1
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=24
url_limit=100
response_size=100
window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

Configure TTL for client identifiers

Admin API with PUT method is used to configure the length of time to maintain blacklist entries for the
different client identifiers, for example, IP address, token, cookie, and API key. For more information on
configuring TTLs, see TTL for client identifiers

AI Engine training
The ABS AI Engine needs to be trained before it can detect attacks on API services. The AI engine
training is governed by global variables which are configured in the /opt/pingidentity/abs/mongo/

Copyright ©2022

 | ABS AI Engine | 320

abs_init.js file. The AI training runs for the minimum training time set in the abs_init.js file but a
minimum amount of data must also be received before the training period is complete for a given API. You
can check the training status by using the ABS Admin REST API..

The ABS AI engine must be trained on an API before it can be secured. Whenever a new API is added,
ABS automatically trains on the new API before looking for attacks.

Training the ABS model

ABS AI engine can be trained in a live environment by analyzing ASE access logs to build its model. When
ABS first receives traffic for a new API, the training period starts. After the defined training period (default is
24-hours) expires, ABS checks if sufficient training data has been collected and will continue training until
the models are ready for attack detection. ABS applies continuous learning and adapts its model over time
for increased accuracy.

For example, a new API ecosystem is added with four APIs, and ABS is configured with a 24-hour training
period. Two APIs have immediate API activity, so ABS begins the training period for both APIs. After 24-
hours, ABS will detect attacks only for the two trained APIs.

If the remaining two APIs start sending traffic three days later, then ABS will begin the 24-hour training
period for the remaining APIs and begin attack detection for those APIs at the end of the training period.

i Important: It is important to decide on the training and threshold update intervals prior to starting the
AI system. Although you can update the training and threshold periods, it is a good practice not to change
these variables frequently as this may lead to a change in the behavior of the AI model.

AI Engine training variables

PingIntelligence AI training depends on a set of parameters configured in the abs_init.js file. These
parameters should be configured before starting the system. It is recommended that you review the
variables and configure the best values for your environment. Frequent updates to the training variables
may lead to a change in behavior of the AI system. Following are the parameters that need to be
configured:

▪ attack_initial_training
▪ attack_update_interval
▪ continuous_learning
▪ window_length

The following table describes the various training variables:

Training variables

Variable Description

Copyright ©2022

 | ABS AI Engine | 321

attack_initial_training The number of hours that you want to train the AI
model before it moves to the prediction mode. The
default value is 24-hours. The minimum value is 1-
hour.

attack_update_interval The time interval in hours at which you would want
the model thresholds to be updated. The default
value is 24-hours. The minimum value is 1-hour.

The value in this variable takes effect only when
continuous_learning is set to true.

continuous_learning Setting this value to true configures the AI model
to learn continuously based on the live traffic. If it is
set to false,the AI model detects attack based on
the initial training.

window_length The maximum time period that the AI model uses
to detect attacks across APIs. The default and
maximum value for window_length is 24-hours.
The training period should be longer than the
window_length period.

root_api_attack Configure as true if you want AI engine to detect
attacks on the root API. Set it to false if you do
not wish the AI engine to detect attacks on the root
API. The default value is false.

session_inactivity_duration The time in minutes for an inactive user session
after which ABS decides that the session has
terminated. Default value is 30-minutes. You can
configure it to any value in minutes.

i Note: This variable only applies to account
take over attack.

Following is a snippet from the abs_init.jsfile showing the variables:

db.global_config.insert({
 "poc": false,
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": true,
 "discovery_initial_period" : "1",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

Copyright ©2022

 | ABS AI Engine | 322

Miscellaneous variables

Variable Description

response_size Maximum size in MB of the data fetched by external
calls to ABS REST APIs. The default value is 100
MB.

enable_ssl When true, SSL communication is enabled
between ASE and ABS, and for external systems
making rest API calls to ABS. See Configure SSL
on page 295on page 10 for more information.

Training period status

ABS training status is checked using the ABS Admin API which returns the training duration and prediction
mode. If the prediction variable is true, ABS has completed training and is discovering attacks. A false
value means that ABS is still in training mode. The API URL for Admin API is: https://<ip>:<port>/
v4/abs/admin. Here is a snippet of the Admin API output:

"message": "training started at Thu Jul 30 12:32:59 IST 2018",
"training_duration": "2 hours",
"prediction": true

i Note: ABS only detects attacks after the training period is over. During training, no attacks are
detected.

Update the training variables

ABS provides an update.sh script to update the training related variables in the global configuration of
abs_init.js file. Using the script, you can update the following variables:

▪ Continuous learning: continuous_learning
▪ Training period: attack_initial_learning
▪ Threshold update period: attack_update_interval
▪ Window length: window_length

You can update the training period when the system is already in a running state by using the update.sh
script available in the util directory. Review the following use cases before changing the training and
threshold period. In all the use cases, the default training period is assumed to be 24-hours. You can
update the default values before starting the system by editing and saving the values in the abs_init.js
file.

i CAUTION: If you want to extend the training period, it is a best practice to add new APIs after the
training period is adjusted to avoid APIs completing a shorter training period.

You can also use Global Configuration REST API to update the training variables. For more information
see, Global configuration update REST API on page 337

Update the training interval
Increase the training period

You can increase the training period by executing the update script.

Case 1 – The API model is under training, that is, the training period is not over.

System Behavior – In this case, if you increase the training period, for example, from 24-hours to 48-
hours, the AI model trains based on the updated training period.

Copyright ©2022

 | ABS AI Engine | 323

Case 2 – The API model has completed the training process.

System Behavior – Increasing the training period has no effect on trained APIs. Any new APIs will use the
new training period.

Decrease the training period

You can decrease the training period by executing the update script.

Case 1 – The API model is in the training process but has not reached the duration of the new training
period.

System Behavior – Decreasing the training period (for example, from 24 hours to 12 hours) shortens
the training period to 12 hours for the APIs that have not completed the training process. If the API has
completed 10 hours of training, then it will now complete its training period after 2 more hours.

Case 2 – The API model is in the training process and the new training duration is less than the current AI
model trained duration.

System Behavior – In this case the API model stops training itself at the current time and moves to the
prediction mode. For example, if the original training period was 24-hours and the AI model has been
trained for 18-hours; at this time if the training period is reduced to 12-hours, the AI model stops training
itself and moves to the prediction mode.

Case 3 – API model has completed the training process.

System Behavior – Decreasing the training period has no effect on trained APIs. Any new APIs will use
the new training period.

Execute the update.sh script

The update.sh script is available in the /opt/pingidentity/abs/util directory. Copy the script
from the util directory to your MongoDB primary node. The training period and threshold can be changed
simultaneously or individually.

i Note: After executing the script, stop and start all ABS nodes for the updated values to take effect.

Access script help by logging into the MongoDB primary machine and running the following command:

/opt/pingidentity/mongo/update.sh help

Example Change the training period to 48 hours

/opt/pingidentity/mongo/update.sh -u absuser -p abs123 --
attack_initial_training 48
updating training_period to 48
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
The current values of the variables are:
attack_initial_training=48
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=24
url_limit=100
response_size=100
window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

Global Config successfully updated

Copyright ©2022

 | ABS AI Engine | 324

Tune thresholds for false positives

ABS automatically generates attack thresholds which are used by the machine learning system to identify
attacks and anomalies. Initial attack thresholds are determined based on training and production traffic
in your API ecosystem. At the end of the training period, ABS calculates the first set of system-generated
threshold values and uses these values to detect attacks.

By default, system generated threshold values are updated every 24-hours. This frequency can be
changed at start-up by modifying attack_update_interval in the abs_init.js file or anytime by
using the update.sh script available in the util directory. The minimum value is 1-hour as sufficient
traffic is required to update the model.

Following is a snippet of abs_init.js file:

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": true,
 "discovery_initial_period" : "1",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

You can change the threshold period at anytime by running the update.sh script. The value of the
updated threshold period is applicable immediately. For example, if the current threshold update period is
10 hours and the new threshold period is 12 hours, then the AI model updates the threshold at the 12th
hour.

Access script help by logging into the MongoDB machine and running the following command:

/opt/pingidentity/mongo/update.sh help

Example: change the training period and threshold interval together

/opt/pingidentity/mongo/update.sh -u absuser -p abs123 --
attack_initial_training 24 --attack_update_interval 24
updating attack_initial_training to 24
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
updating attack_update_interval to 24
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
The current values of the variables are:
attack_initial_training=24
attack_update_interval=24
api_discovery=true
discovery_initial_interval=48

Check threshold values

Threshold values can be checked using the ABS Threshold API. For each attack type, one or more
variables (for example, Var A, B) is used by the machine learning process during attack detection. All

Copyright ©2022

 | ABS AI Engine | 325

variables have a Normal Threshold Value (tn), and some variables also have an Extreme Threshold Value
(tx). These values are used during the attack detection process and automatically update over time to
provide improved accuracy.

To view the current threshold settings, use the GET method with the following ABS threshold API:

https://<ip_address>:<port>/v4/abs/attack/threshold?api=<api_name>

The IP address and port corresponding to the host ABS machine. The API payload returned is a JSON file
which shows the threshold values for each attack type. See Get Threshold API for an example.

Change attack thresholds

Ping Identity recommends using the automatically generated system thresholds in your production
operations. However, if attacks are detected for legitimate traffic (i.e. false positives), then manual tuning
options are provided. An administrator has two choices:

▪ Change the system generated threshold value to a larger user-generated value.
▪ Disable the variable to stop detecting attacks (see Disabling Attacks)

To identify settings to change, generate an attack report which includes attacks known to be false
positives. For each identified attack, an Attack Code (for example, "varA (Tn), varB (Tn)") is listed with
the threshold variable(s) that triggered the attack. The Attack Code includes the responsible variables (for
example, A, B) and threshold types (for example, Tn, Tx); the threshold type can be manually adjusted.
Ping Identity recommends slowly increasing the triggered threshold value(s) using user-generated
thresholds. After each update, evaluate the new setting to see if false positives are reduced. The process
can be repeated until the issue is addressed.

The Threshold API PUT method is used to manually override the system generated setting with a user-
defined value. When configuring the threshold manually, the normal threshold (tn), the extreme threshold
(tx), or either threshold can be individually set.

You can also use Attack management on page 20 in Dashboard to tune threshold values for a specific
client identifier. For more information, see Tune thresholds.

i Note: Make sure that you are in user mode before changing the threshold manually.

Change threshold value Tn only

The Tn threshold value can be changed for each attack type for a specific API. The initial Tx value is
automatically calculated based on the gap between the values of Tn and Tx. This gap is determined at the
end of the training period . The minimum gap is 1, and the value of Tx always bigger than Tn. Here is an
example:

Values at end of training period:

▪ Tn = 12
▪ Tx = 16
▪ Gap = 4 (Tx-Tn)

Threshold API is used to set Tn=13 for an API variable.

▪ Tx = 17 (Gap value of 4 is automatically added to new Tnvalue)

This difference between the value of Tn and Tx is maintained when only Tn is moved. However, the
difference between the value of Tn and Tx can be changed when only Tx is changed.

i Note: The value of Tn can never be more than the value of Tx.

Copyright ©2022

 | ABS AI Engine | 326

Changing Threshold Value Tx only

Change the Tx value to adjust the gap between the normal and extreme threshold setting for an attack
type on a specific API. The value of Tx defines the gap which ranges from a minimum of 1 to the maximum
value defined in Threshold range for Tn and Tx . When Tx is moved, the system calculated gap calculated
at the end of the training period is no longer used. For the attack types where Tx is not applicable to the
variable, “ na ” is displayed in the threshold API.

i Note: If the value of only Tn is moved without modifying Tx, then the new gap between the value of
Tn and Tx is used until the value of Tx is changed again.

Change threshold value Tn and Tx together

Both Tn and Tx can be changed for an attack type on a specific API. When Tn and Tx are moved
simultaneously, the newly defined value of Tn and gap for Tx are changed. The ranges of Tn and Tx
values are detailed in Threshold range for Tn and Tx.

How to configure threshold value

To manually set a threshold, use the PUT method with the following ABS attack API:

https://<ip_address>:<port>/v4/abs/attack/threshold?api=<api_name>

The IP address and port correspond to the host ABS machine. The API input payload is a JSON file
which sets the threshold value for attack types. The parameters include attack type and Normal Threshold
(tn) value. When manually setting the threshold for a variable, ABS Threshold API displays both system
generated and user configured threshold values. ABS applies the user configured threshold values until it
is reconfigured to use system generated values (see below).

Manually set thresholds

The threshold API with PUT method sets the operation mode for the variable by configuring mode to
system or user. The following snippet of Threshold API with PUT method shows how to change the
threshold mode from system to user and change value of tn, tx, or both at the same time. If you do not
wish to change the value for tn or tx in user mode, leave the field blank by putting “” in the Threshold
API body. In the following snippet, the value of tn and tx both are changed.

{
 "api_name" : "atmapp",
 "mode": "user",
 "ioc_threshold": [
 {
 "type": "api_memory_attack_type_2",
 "variable": "A",
 "tn": "9",
 "tx": "12"
 },
 {
 "type": "data_exfiltration_attack",
 "variable": "A",
 "tn": "18",
 "tx": ""
 },
 {
 "type": "data_exfiltration_attack",
 "variable": "B",
 "tn": "18",
 "tx": ""
 },
 {

Copyright ©2022

 | ABS AI Engine | 327

 "type": "api_memory_attack_type_1",
 "variable": "A",
 "tn": "18",
 "tx": ""
 }
]
}
{
 "api_name" : "shop",
 "mode": "user",
 "ioc_threshold": [
 {
 "type": "api_memory_attack_type_2",
 "variable": "A",
 "tn": "13"
 },
 {
 "type": "api_memory_attack_type_2",
 "variable": "B",
 "tn": "10"
 }
}

The API response is displayed below:

{
 "message": success: "Thresholds set to user mode for given variables.",
 "date": "Mon Jan 08 15:36:05 IST 2018"
}

After a threshold value is manually set, ABS uses the updated user threshold values to detect attacks.

When threshold mode is changed back to system, the user-configured values are no longer used or
displayed in the threshold API output. The following snippet shows changing threshold to system mode
from user mode for two variables associated with an API memory attack:

{
 "api_name" : "shop",
 "mode": "system",
 "ioc_threshold": [
 {
 "type": "api_memory_attack_type_2",
 "variable": "A",
 },
 {
 "type": "api_memory_attack_type_2",
 "variable": "B",
 }
}

The API response is displayed below:

{
 "message": success: "Thresholds set to system mode for given variables.",
 "date": "Mon Jan 06 15:36:05 IST 2018"
}

Copyright ©2022

 | ABS AI Engine | 328

Resetting trained APIs
Reset trained APIs using Reset Trained API REST API of ABS.

Before you begin

▪ Make sure that ASE and ABS AI engine communication is disabled. The communication between ASE
and ABS is disabled so that no new access log files are sent to ABS AI engine for processing. The
training can be reset only when all the access logs available with ABS are processed.

▪ Wait for all the access logs available with ABS to be processed.

About this task
Use the API with DELETE method when you want to retrain the model with more inclusive API traffic or
the API JSON definition has changed in ASE. When an AI model training is reset, all the training data,
detected attacks for those APIs and the generated thresholds are lost. However, the metrics data is
retained even after the API is retrained. Using the Reset Trained API, you can retrain one or more
than one API at the same time. If ABS is deployed in a cluster setup, you can run the API on any of the
ABS cluster nodes.

Complete the following steps to retrain the APIs:

Steps

1. Disable access log upload from ASE to ABS by entering the following command on ASE command-line.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs

2. Update the API JSON definition in ASE if there are any changes in API.

3. Run the reset API in ABS.

The following is the URL for the reset API.

https://<ABS_host>:<ABS_port>/v4/abs/reset

▪ Method: DELETE
▪ Body:

{
“apis” :[“shop”,“electronics”]
}

i Note:

If you run the reset API when the ABS AI engine is processing access logs, you get an error message
with 409 status code.

{
 “error” : “AI engine is processing access logs; try later. To complete
 the process,
 make sure to disable access log upload from ASE. For more information,
 see the ABS admin guide.”
}

4. Wait for the ABS AI engine successfully to reset the APIs.
You receive the following success message.

{

Copyright ©2022

 | ABS AI Engine | 329

 “status” : “API training reset is successful”
“apis” : [“shop”, “electronics”]
}

Disable attack detection

If you want to disable attack detection for a specific API, tune the user threshold to a maximum value. This
follows the same process as changing the attack threshold and sets the user-generated normal threshold
value to the maximum for the attack type (refer to Threshold range for Tn and Tx on page 439 for a list
of maximum values). When the normal threshold is set to maximum, the machine learning system will not
generate attacks based on that variable. All other variables continue to operate in either system or user
mode.

You can also disable or enable an attack ID globally by using the attackstatus REST API. For more
information, see Enable or disable attack IDs on page 353.

API discovery and configuration
The ABS AI Engine works in tandem with ASE to automatically discover new and unknown APIs in your
ecosystem. You can view the discovered APIs by using the ABS discovery REST API. You can also add
the discovered APIs to ASE by using API Discovery in PingIntelligence for APIs Dashboard. For more
information, see Discovered APIs on page 496.

Following is the summary of the steps to configure API discovery in your environment:

1. Enable ABS in ASE
2. Define root API JSON in ASE. ABS discovers APIs only for a root API JSON in ASE.
3. Optionally, configure OAuth token and API Key parameters in root API JSON
4. Configure discovery related parameters in abs_init.js file.

When MongoDB is installed, the abs_init.js file is copied to MongoDB. Use the update.sh script
to edit the default values related to API discovery. For more information on update script, see Manage
discovery intervals on page 336.

Configuration in ASE for API discovery

▪ Enable ABS in ASE Enable ABS by running the enable_abs command in ASE:

./bin/cli.sh -u admin -p admin enable_abs
ABS is now enabled

To verify, run thestatus command in ASE:

./bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB
google pubsub : disabled

Copyright ©2022

 | ABS AI Engine | 330

▪ Configure root API in ASE: ABS discovers APIs in your environment only when root API is defined
in ASE. If you have configured other APIs in ASE along with the root API, ABS monitors traffic only on
the root API for the discovery process.

A root API in ASE is an API for which the API JSON file has url as “/” and hostname as “*”.
Following is a snippet of root API JSON:

{
 "api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",

 "cookie": "",
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": false,
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },

A sample root API ships with ASE in /pingidentity/ase/config/api directory.

i Note: If API discovery is enabled in ABS without root API in ASE and you run the discovery
REST API, it displays an error message: root API not configured in ASE. To discover
APIs configure root API in ASE.

▪ API JSON configuration (Optional): You can optionally configure the settings for cookie,
oauth2_access_token, apikey_qs, or apikey_header in the root API JSON file in ASE.

API discovery process discovers these parameters in an API only when you set these in the root API.
API discovery reports these attributes of an API only when it receives at least 50% of traffic having
these attributes. For example, if the root API receives 100 requests and 51 requests have OAuth token,
then the OAuth token is reported in the discovered API. Similarly, if the same traffic has less than 50%
traffic for API keys or cookies, then they are not reported in the discovered API.

ABS configuration for API discovery: Configure API discovery in ABS by setting the api_discovery
parameter to true in abs_init.js files.

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": true,
 "discovery_initial_period" : "1",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"

Copyright ©2022

 | ABS AI Engine | 331

});

The following table summarizes the variables related to API discovery that you need to configure in
abs_init.js file. If you want update the values on an already running system, use the update.sh
script. For more information on update script, see Manage discovery intervals on page 336:

API discovery variables

Variable Description

api_discovery Set this variable to true to switch on API discovery. To
switch off API discovery, set it to false. The default value is
true.

discovery_initial_period The initial time in hours during which APIs are discovered in
your API ecosystem. The default and minimum value is 1-
hour.

discovery_update_interval The time interval in hours at which any new discovered APIs
are reported. The default and minimum value is 1-hour.

discovery_subpath The number of subpaths that is discovered in an API. The
minimum value is 1 and maximum value is 6. For more
information, see Discovery Subpaths on page 333.

url_limit Defines the maximum number of URLs that are reported in a
discovered API.

API discovery process

ABS discovery process starts when ASE sends the access log files to ABS. The discovery process and
reporting interval are defined by the variables configured in abs_init.js file, as explained in the API
discovery and configuration on page 329 topic.

1. ABS processes the ASE log files and looks for new APIs. During the discovery period, ABS monitors
the traffic on the API JSON (root API) and requires only one valid request to report an API. ABS
considers only valid (200-OK response) requests for discovering APIs. At the end of the discovery
period, ABS publishes the discovered APIs. ABS specifically looks for the following four values in the
incoming traffic on the root API:

▪ Hostname
▪ Pathinfo
▪ Scheme or protocol
▪ Backend server. If ASE is deployed in a sideband mode, then backend server is not reported.

2. At the end of the initial discovery period, ABS does one of the following:

▪ If the API definition was learned, then ABS outputs the discovered APIs with the parameters as
detailed in the table below.

▪ If the API definition is incomplete, then ABS repeats the discovery process (Step 1) for a
discovery_update_interval (default is 1-hour).

Copyright ©2022

 | ABS AI Engine | 332

The following illustration shows an example of the API discovery

process:

The illustration shows three APIs, API 1, API 2, and API 3 are the undiscovered APIs in your environment.
The traffic for these APIs is coming through the root API configured in ASE. The following points explain
the discovery process:

▪ API 1 receives a request in the initial training period with a 200-OK response. This API is discovered at
the end of discovery_initial_period T1.

▪ API 2 receives one invalid request (404 response) during the initial discovery period. This API is not
reported at T1.

▪ API 3 did not receive any request in the initial discovery period. Hence it was not reported at T1.
However, API 3 got one valid request (200-OK response) in the time-period T1-T2, hence it was
reported at time T2. The time period T1-T2 is discovery_update_interval.

i Note: The initial discovery period applies only to fresh installation of PingIntelligence components. If
you are upgrading an existing deployment, the discovery_update_interval applies.

ABS API definition reports include the following information for each discovered API:

Information Description

host Hostname or IP address that is serving the API.

basePath The base path on which the API is served. The
base path is relative to the host. The value starts
with a leading / (slash).

schemes API protocol - value must be HTTP, HTTPS, WS, or
WSS.

consumes A list of MIME types that the APIs can consume.

produces A list of MIME types that the APIs can produce.

paths Relative paths to the individual endpoints.

responses Placeholder to hold responses.

backendHosts Backend servers for the API.

server_ssl Value is true if backend API server supports
encrypted connection. Set to false if the backend
API server does not support encrypted connection.

You can add the discovered APIs automatically to ASE using Discovered APIs on page 496 in
PingIntelligence for APIs Dashboard. Note that when the root API is configured with the token, cookie,

Copyright ©2022

 | ABS AI Engine | 333

or API key parameter, PingIntelligence will expect all discovered APIs to use the defined identifiers for
authentication. If this is not the case, then add the discovered APIs manually in ASE.

Discovery Subpaths

Before starting API discovery, it is important to configure the subpath depth which allows the AI Engine to
accurately detect the API environment. Subpath depth provides the number of sub-paths for a unique API
definition. Here are examples of discovery_subpath values:

▪ “1”, example: /atmapp is basepath for /atmapp/zipcode, /atmapp/update, etc.
▪ “2”, example: v1/atmapp is basepath for v1/atmapp/zipcode, v1/atmapp/update, etc.
▪ “3”, example: v1/cust1/atmapp is basepath for v1/cust1/atmapp/zipcode, etc.

The discovery_subpath parameter is configured in the abs_init.js file and defines the number
of sub-paths in the basepath of the API. The default value is set to 1 and the maximum value is 6. The
url_limit parameter defines the maximum number of subpaths in a discovered API. The default value is
100.

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": false,
 "discovery_initial_period" : "1",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

Updating url_limit and discovery_subpath: You can update the url_limit and discovery_subpath
by running the update.sh script. The update.sh script is available in the/opt/pingidentity/abs/
util directory. Copy the script from the util directory to your MongoDB primary machine.

i Note: After executing the script, stop and start all ABS nodes for the updated values to take effect.

Example: Change the url_limit to 50

/opt/pingidentity/mongo/update.sh -u absuser -p abs123 --url_limit 50
updating url_limit to 50
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
The current values of the variables are:
attack_initial_training=48
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=1
url_limit=50
response_size=100
window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

Copyright ©2022

 | ABS AI Engine | 334

You need to restart all the ABS node for your changes to take effect.

Update script help is available by logging into the MongoDB primary machine and running the following
command:

/opt/pingidentity/mongo/update.sh help

ABS Discovery API

The Discovery API uses the GET method to display the discovered API details and is reported only when
the host, basepath, schemes, paths, and responses information is populated. ABS provides the
following external REST API which uses the GET method to view the discovered APIs:

URL: /v4/abs/discovery

Following is a snippet of the summary output of discovery API:

{
 "company": "ping identity",
 "name": "api_discovery_summary",
 "description": "This report contains summary of discovered APIs",
 "summary": [
 {
 "api_name": "api_0",
 "host": "bothcookientoken.com",
 "basePath": "/path1",
 "created": "Fri Mar 06 09:29:51:591 2020",
 "updated": "Fri Mar 06 09:50:03:372 2020"
 },
 {
 "api_name": "api_1",
 "host": "path5",
 "basePath": "/path1/path2/path3",
 "created": "Fri Mar 06 10:59:38:975 2020",
 "updated": "Fri Mar 06 11:36:45:596 2020"
 },
 {
 "api_name": "api_14",
 "host": "path5",
 "basePath": "/path1/path2/path3/path4/path5",
 "created": "Fri Mar 06 11:59:14:804 2020",
 "updated": "Fri Mar 06 12:18:24:732 2020"
 },
 {
 "api_name": "api_15",
 "host": "pathx",
 "basePath": "/path1/path2/path3/path4",
 "created": "Fri Mar 06 11:59:16:092 2020",
 "updated": "Fri Mar 06 13:19:25:283 2020"
 },
 {
 "api_name": "api_16",
 "host": "pathx",
 "basePath": "/path1/path2/path3/path4/path5",
 "created": "Fri Mar 06 11:59:16:244 2020",
 "updated": "Fri Mar 06 12:18:26:227 2020"
 },
 {
 "api_name": "api_17",
 "host": "path6",
 "basePath": "/path1/path2/path3/path4/path5/path6",

Copyright ©2022

 | ABS AI Engine | 335

 "created": "Fri Mar 06 11:59:14:952 2020",
 "updated": "Fri Mar 06 12:18:24:876 2020"
 },
 {
 "api_name": "api_19",
 "host": "path7",
 "basePath": "/path1/path2/path3/path4/path5/path6",
 "created": "Fri Mar 06 11:59:15:096 2020",
 "updated": "Fri Mar 06 12:18:25:028 2020"
 },
 {
 "api_name": "api_9",
 "host": "path2",
 "basePath": "/path1/path2",
 "created": "Fri Mar 06 10:59:00:616 2020",
 "updated": "Fri Mar 06 13:19:23:003 2020"
 }
]
}
}

Each API name (for example, api_1) is auto-generated and starts from api_0. This API name can be
specified in the api_name query parameter to request more details as shown in the next example.

URL: /v4/abs/discovery?api_name=api_1

The following is a snippet of a discovered API:

{
 "company": "ping identity",
 "name": "api_discovery_details",
 "description": "This report contains details of discovered APIs",
 "info": {
 "title": "api_7"
 },
 "host": "127.0.0.1",
 "basePath": "/shop-books3",
 "cookie": "",
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "schemes": [
 "HTTP/1.1"
],
 "consumes": [],
 "produces": [
 "text/html"
],
 "server_ssl": true,
 "backendHosts": [
 "127.0.0.1:4001"
],
 "backendServers": [
 "127.0.0.1:4001"
],
 "jwt": {
 "username": "username",
 "clientid": "client_id",
 "location": "h:authorization:bearer"
 },
 "paths": {
 "/shop-books3": {
 "GET": {
 "produces": [

Copyright ©2022

 | ABS AI Engine | 336

 "text/html"
],
 "responses": {
 "200": {
 "description": "OK"
 }
 }
 }
 }
 }
}

i Note: If ASE is deployed in sideband mode, then backend host field in the output shows the IP
address as not available: 0. The backend server field shows the IP address as 0.0.0.0. For more
information on ASE sideband mode, see the ASE Admin Guide.

Manage discovery intervals

You can enable or disable discovery and also update the discovery interval by using the update.sh script
available in the util directory. If the training period is set to 1-hour, then discovered APIs are reported 1-
hour from the time when ASE sends access logs. You can update these default values using the update
script.

Execute the update.sh script

The update.sh script is available in the/opt/pingidentity/abs/util directory. Copy the script from
the util directory to your MongoDB primary machine. You can change the training period and threshold
simultaneously or individually.

You can access the script help by logging in to the MongoDB primary machine and running the following
command:

/opt/pingidentity/mongo/update.sh help

Example:

/opt/pingidentity/mongo/update.sh --api_discovery true --
discovery_update_interval 48
updating api_discovery to true
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 0 })
updating discovery_update_interval to 48
The current values of the variables are:
attack_initial_training=1
attack_update_interval=24
api_discovery=false
discovery_update_interval=1
continuous_learning=true
discovery_initial_period=1
url_limit=100
response_size=100
window_length=24
discovery_subpath=3
percentage_diskusage_limit=80

Global Config successfully updated

Copyright ©2022

 | ABS AI Engine | 337

Global configuration update REST API

ABS provides a REST API to update global configurations related to AI engine training and API discovery.
These global configurations are part of pingidentity/abs/mongo/abs_init.js file. The updated
global configuration values take effect immediately. Following is the list of six global configurations that you
can update using the globalconfig API:

▪ attack_initial_training
▪ attack_update_interval
▪ api_discovery
▪ discovery_initial_period
▪ discovery_subpath
▪ discovery_update_interval

i Note: If you want to update the other global configurations, see the update.sh script available in the
util directory. For more information on update.sh script see, Update the training variables on page 322
and Manage discovery intervals on page 336.

You can use the globalconfig API with GET and PUT methods. Following is the URL for
globalconfig API. Only the Admin user can use the PUT method to update the values. For more
information on different ABS users, see ABS users for API reports on page 293.

URL - https//<abs_host>:<abs_port>/v4/abs/globalconfig

Header Value

Access Key x-abs-ak <string>

For example, abs_ak or the
value of the access key that
you configured at the time of
installation.

Secret Key x-abs-sk <string>

For example, abs_sk or the
value of the secret key that
you configured at the time of
installation.

When you use the globalconfig API with GET method, it fetches the current value of the global
configuration.

{
 "company": "ping identity",
 "name": "api_globalconfig",
 "description": "This report contains status information of ABS global
 configurations",
 "global_config": {
 "attack_initial_training": 24,
 "attack_update_interval": 24,
 "api_discovery": true,
 "discovery_initial_period": 1,
 "discovery_subpath": 1,
 "discovery_update_interval": 1
 }
}

Copyright ©2022

 | ABS AI Engine | 338

You can update the global configuration values that the API fetched using the PUT method. Provide the
new values in the body as shown in the example below.

{
 "api_discovery": true,
 "discovery_initial_period": 1,
 "discovery_subpath": 1,
 "discovery_update_interval": 1
 }

{
 "success": "global config updated successfully"
}

You can update either one or more than one global configurations at once. Note that the values are
updated only when the body of the request is well-formed.

REST API attacks
For each API, the API JSON file (see API Security Enforcer Admin Guide for information) determines
whether the attacks and other reports are based on OAuth token, API Keys, username, cookie, or IP
address. An environment with multiple APIs can support a mixture of identifier types in a single ABS AI
Engine. Client identifier examples include. Client identifier examples include:

▪ API using OAuth2 tokens – When an API JSON file is configured with OAuth2 token parameter
= true, then attack information is associated with the OAuth2 access token used by the hacker.
Configuring the OAuth2 token parameter is recommended when access tokens are present as it is a
unique client identifier that eliminates issues identified below with IP addresses.

▪ APIs using API Keys:When API JSON file is configured with API Key either in the query string or the
header, ABS detects attacks on the value of the API Key. For example, if there are two API Keys in the
system, X-API-KEY-1 and X-API-Key-2 with values as api_key_1 and api_key_2, then a total of four
client identifiers are added to blacklist of ASE:

▪ X-API-KEY-1: api_key_1
▪ X-API-KEY-2: api_key_2
▪ X-API-KEY-1: api_key_2
▪ X-API-KEY-2: api_key_1

▪ APIs with cookie – When the cookie parameter is configured, most attacks are reported with cookie
identifiers, the exception being pre-authentication attacks (such as client login attacks). Configuring
the cookie parameter is recommended when cookies are present as it is a unique client identifier that
eliminates issues identified below with IP addresses.

▪ API JSON without a cookie or token parameter – When cookie and OAuth2 token parameters are
not configured, all attacks are reported with the client IP address which is determined based on the
following:

▪ XFF header present: The first IP address in the XFF list is used as the client identifier. When
forwarding traffic, load balancers and other proxy devices with XFF enabled add IP addresses to the
XFF header to provide application visibility of the client IP address. The first IP address in the list is
typically associated with the originating IP address.

i Note: XFF is not always a reliable source of the client IP address and can be spoofed by a
malicious proxy.

▪ No XFF header: When no XFF header is present, the source IP address of the incoming traffic is
used as the client identifier. In this configuration, make sure that the incoming traffic is using public

Copyright ©2022

 | ABS AI Engine | 339

or private IP addresses associated with the actual client devices, not a load balancer or proxy device
on your premise.

i Note: When a load balancer or other proxy without XFF enabled is the source of the inbound
traffic, then all client traffic will be associated with the load balancer IP addresses. This configuration
will not provide effective attack reporting unless cookies or tokens are used.

REST API attack based on username:

In some sideband deployments, for example, PingAccess with PingFederate, the username of the
accessing client is available via RFC 7662 token introspection or other techniques. ABS AI Engine detects
attacks based on the username. Unlike other client identifiers, username is not configured in the API JSON
file. The ABS AI engine detects the username from the metadata sent by ASE.

To change the client identifier for an existing API, save the API JSON with a new name and update the
configuration to include the new client identifier parameter. ABS then re-trains the model for this API and
starts detecting attacks.

REST API attack types

ABS AI Engine reports on REST API attacks by delivering reports on per API attacks, that is, client attack
targeted a single API. ABS AI engine also reports across API attacks, that is, client attack targeted multiple
APIs.

Per API attacks: These attacks are reported on a specific API and is based on activity from a client using
an OAuth token, cookie or an IP address. Each attack type is assigned a type ID and can be accessed
using the attack REST API of ABS. Entering type ID 0 reports on all attacks on the specified API except
for attack types which are analyzed across APIs.

Use the following ABS REST API to access different attack types: https://<ABS_IP:port>/
v4/abs/attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-
ddThh:mm&api=<api_name>&type=<type_id> .

For example, https://192.168.11.166:8080/v4/abs/attack?
later_date=2019-12-31T18:00&later_date=2019-10-25T13:30&api=shop&type=1

The following table lists the attack types for individual APIs:

Per API attacks

Attack Type Type ID

Data Exfiltration Attack Type 1 1

Single Client Login Attack Type 1 2

Multi-Client Login Attack 3

Stolen Token Attack Type 1 (Token) 4

Stolen Cookie Attack Type 1 (Cookie) 4

API Memory Attack Type 1 5

API Memory Attack Type 2 6

Cookie DoS Attack 7

API Probing Replay Attack Type 1 8

API DDoS Attack Type 1 9

Extreme Client Activity Attack 10

Copyright ©2022

 | ABS AI Engine | 340

Extreme App Activity Attack 11

API DoS Attack 12

API DDoS Attack Type 2 13

Data Deletion Attack 14

Data Poisoning Attack 15

Data Exfiltration Attack Type 2 21

Content Scraping Type 2 28

Unauthorized Client Attack 29

Header Manipulation Attack 37

User Data Exfiltration Type 2 39

User Data Injection 40

Across API attacks:

These attacks are detected across APIs and are based on activity from a client username or client using
an OAuth token, cookie or an IP address. For example, a hacker with a token may execute attacks which
span across multiple APIs.

Use the following ABS REST API to access different attack types: https://<ABS_IP:port>/v4/abs/
attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-ddThh:mm&type=<type_id> .

For example, https://192.168.11.166:8080>/v4/abs/attack?
later_date=2019-12-31T18:00&later_date=2019-10-25T13:30&type=18

The following table lists the attack types for individual APIs:

Across API attacks

Attack Type Type ID

Stolen Token Attack Type 2 16

Stolen Cookie Attack Type 2 17

API Probing Replay Attack Type 2 (Cookie) 18

API Probing Replay Attack Type 2 (Token) 19

API Probing Replay Attack Type 2 (IP) 20

Excessive Client Connections (Cookie)

i Note: Applicable only for Inline ASE
deployment. For more information, see Excessive
Client Connections section below.

22

Excessive Client Connections (Token)

i Note: Applicable only for Inline ASE
deployment. For more information, see Excessive
Client Connections section below.

23

Copyright ©2022

 | ABS AI Engine | 341

Excessive Client Connections (IP)

i Note: Applicable only for Inline ASE
deployment. For more information, see Excessive
Client Connections section below.

24

Content Scraping Type 1 (Cookie) 25

Content Scraping Type 1 (Token) 26

Content Scraping Type 1 (IP) 27

Single Client Login Attack Type 2 30

Stolen API Key Attack 31

API Probing Replay Attack Type 1 32

API Probing Replay Attack Type 2 33

API Probing Replay Attack Type 1 34

API Probing Replay Attack Type 2 35

Sequence Attack 36

Abnormal API Access 38

Excessive Client Connections

Excessive client connections attack has three attack IDs, 22, 23, and 24 for IP, cookie, and token.
These three attack IDs are disabled by default when you install PingIntelligence. However, you can
enable these attacks for PingIntelligence inline deployment by using the attackstatus REST API.
For more information, see Enable or disable attack IDs. Attack IDs 22,23, and 24 are not available for
PingIntelligence sideband deployment since ASE does not receive the API traffic directly from the client.

For more information on Inline and Sideband ASE deployment modes, see ASE deployment modes.

Attacks based on username activity

ABS AI Engine detects attacks based on behavior from the username accessing API services. To capture
the username information, PingIntelligence must be deployed in sideband mode with an API gateway that
supports capturing username information. User information can also be captured if the incoming request
has a JSON Web Token (JWT).

If the incoming request has JWT, then username attacks can be detected for both inline and sideband
deployment. For more information on ASE support for JWT, see Extract user information from JWT in inline
mode on page 213 and Extract user information from JWT in sideband mode on page 167. Following
is a list of PingIntelligence and API gateways integration that support capturing username information:

▪ Akana API gateway sideband integration on page 514
▪ Axway sideband integration on page 576
▪ PingIntelligence Apigee Integration on page 538
▪ Mulesoft sideband integration on page 643
▪ PingAccess sideband integration on page 700
▪ NGINX sideband integration on page 657
▪ NGINX Plus sideband integration on page 672
▪ PingIntelligence WSO2 integration on page 717

Note the following points for ABS AI engine to detect username based attacks:

Copyright ©2022

 | ABS AI Engine | 342

▪ OAuth token parameter, oauth2_access_token, must be configured in API JSON in ASE. For more
information on API JSON definition see, Defining an API – API JSON configuration file on page 159

▪ The incoming request must have an OAuth token in it for ABS AI engine to detect username based
attacks

Detected attacks based on username

Attack Type Description id Single or Across APIs

API Probing Replay
Attack Type 1

Probing or breach
attempts on an API
service – also called
fuzzing - Username

34 Across APIs

API Probing Replay
Attack Type 2

Probing an API service
over an extended time
period - Username

35 Across APIs

Sequence Attack Abnormal sequence of
API transactions

36 Across APIs

Abnormal API Access Abnormal user behavior
when accessing API
services

38 Across APIs

User Data Exfiltration
Type 2

A User is extracting
excessive data via an
API service

39 Single API

User Data Injection A User is injecting
excessive data into an
API service

40 Single API

i Important: While reporting an abnormal sequence, if username is available with the API ecosystem,
ABS reports username or else it reports OAuth token.

Attacks based on API Key activity

ABS AI Engine detects attacks based on client activity using an API Key. The following table lists the
attacks detected on a single API or across multiple APIs.

Detected attacks based on API Keys

Attack Type Description id Single or Across APIs

Stolen API Key Attack A stolen API Key is being
used to attack an API
service.

31 Across APIs

API Probing Replay
Attack Type 1

Probing or breach
attempts on an API
service – also called
fuzzing - API Key

32 Across APIs

API Probing Replay
Attack Type 2

Probing an API service
over an extended time
period - API Key

33 Across APIs

Copyright ©2022

 | ABS AI Engine | 343

Attacks based on cookie activity

ABS AI Engine detects attack based on client activity using a Cookie. The following table lists the attacks
detected on a single API or across multiple APIs.

Detected attacks based on cookie activity

Attack Type Description id Single or Across APIs

Data Exfiltration Attack
Type 1

Data is being extracted
via a REST API service.

1 Single API

Stolen Cookie Attack A stolen cookie is being
used to attack an API
service.

4 Single API

API Memory Attack Type
1

5 Single API

API Memory Attack Type
2

Flooding of an API
service with data or
code.

6 Single API

Cookie DoS Attack Client attacking session
management service
with a high volume of
cookies.

7 Single API

API Probing Replay
Attack

Probing or breach
attempts on an API
service – also called
fuzzing.

8 Single API

API DDoS Attack Type 1 A DDoS or distributed
attack is disrupting an
API service.

9 Single API

Extreme Client Activity
Attack

Extreme client request
activity on an API
service.

10 Single API

Extreme App Activity Extreme App Activity
may indicate an injection
or other CPU intensive
attack.

11 Single API

Data Deletion Excessive data deletion
activity on an API
service.

14 Single API

Data Poisoning Extreme create or
update activity received
on an API service.

15 Single API

Stolen Cookie Attack
Type 2

A stolen cookie is being
used to attack an API
service.

17 Across APIs

API Probing Replay
Attack Type 2

Probing an API service
over an extended time
period - Cookie

18 Across APIs

Copyright ©2022

 | ABS AI Engine | 344

Data Exfiltration Attack
Type 2

Data is being extracted
via a REST API service
over an extended time
period.

21 Single API

Excessive Client
Connections

i Note: The
Excessive Client
Connections attack type
is disabled by default.
For more information,
see REST API attack
types on page 339.

Client is establishing an
excessive number of
TCP connections.

22 Across APIs

Content Scraping Type 1 Client abnormally
accessing API content

25 Across APIs

Content Scraping Type 2 Client abnormally
accessing API content
over an extended time
period

28 Single API

Header Manipulation Probing an API using
malicious headers

37 Single API

.

Attacks based on token activity

ABS AI Engine detects attacks based on client activity using an OAuth Token. The following table lists the
detected attacks on a single API or across multiple APIs

Attack Type Description type_id Single or Across APIs

Data Exfiltration Attack
Type 1

Data is being extracted
via a REST API service.

1 Single API

Stolen Access Token
Attack

A stolen access token is
being used to attack an
API service.

4 Single API

API Memory Attack Type
1

5 Single API

API Memory Attack Type
2

Flooding of an API
service with data or
code.

6 Single API

API Probing Replay
Attack

Probing or breach
attempts on an API
service – also called
fuzzing.

8 Single API

API DDoS Attack Type 1 A DDoS or distributed
attack is disrupting an
API service.

9 Single API

Extreme Client Activity
Attack

Extreme client request
activity on an API
service.

10 Single API

Copyright ©2022

 | ABS AI Engine | 345

Extreme App Activity Extreme App Activity
may indicate an injection
or other CPU intensive
attack.

11 Single API

Data Deletion Excessive data deletion
activity on an API
service.

14 Single API

Data Poisoning Extreme create or
update activity received
on an API service.

15 Single API

Stolen Token Attack
Type 2

A stolen token is being
used to attack an API
service.

16 Across API

API Probing Replay
Type 2

robing an API service
over an extended time
period - Token

19 Across APIs

Data Exfiltration Attack
Type 2

Data is being extracted
via a REST API service
over an extended time
period.

21 Single API

Excessive Client
Connections

i Note: The
Excessive Client
Connections attack type
is disabled by default.
For more information,
see REST API attack
types on page 339.

Client is establishing an
excessive number of
TCP connections.

23 Across APIs

Content Scraping Type 1 Client abnormally
accessing API content

26 Across APIs

Content Scraping Type 2 Client abnormally
accessing API content
over an extended time
period

28 Single API

Sequence Attack Abnormal sequence of
transactions

36 Across APIs

Header Manipulation Probing an API using
malicious headers

37 Single API

i Important: ABS also reports Sequence attack on OAuth token. However, if a username is available, it
is first reported against username.

Attacks based on IP activity

The following table lists the REST API attacks detected using an IP address as the client identifier. The
attacks can be on a single API or across APIs

Copyright ©2022

 | ABS AI Engine | 346

Attack Type Description id Single or Across APIs

Data Exfiltration Attack Data is being extracted
via a REST API service.

1 Single API

Single Client Login
Attack Type 1

Login service attacked
by a bot or rogue client.

2 Single API

Multi-Client Login Attack Login service is under
DDoS attack by bots.

3 Single API

API Memory Attack Type
1

5 Single API

API Memory Attack Type
2

Flooding of an API
service with data or
code.

6 Single API

API Probing Replay
Attack

Probing or breach
attempts on an API
service – also called
fuzzing.

8 Single API

API DDoS Attack Type 1 A DDoS or distributed
attack is disrupting an
API service.

9 Single API

Extreme Client Activity
Attack

Extreme client request
activity on an API
service.

10 Single API

Extreme App Activity Extreme App Activity
may indicate an injection
or other CPU intensive
attack.

11 Single API

API DoS Attack Client (IP) sending high
volumes of requests
to overload application
services

12 Single API

API DDoS Attack Type 2 Multiple clients (IP
botnet) sending high
volume traffic to overload
the API service

13 Single API

Data Deletion Excessive data deletion
activity on an API
service.

14 Single API

Data Poisoning Extreme create or
update activity received
on an API service.

15 Single API

API Probing Replay
Type 2

Probing an API service
over an extended time
period - IP

20 Across APIs

Data Exfiltration Attack
Type 2

Data is being extracted
via a REST API service
over an extended time
period.

21 Single API

Copyright ©2022

 | ABS AI Engine | 347

Excessive Client
Connections

i Note: The
Excessive Client
Connections attack type
is disabled by default.
For more information,
see REST API attack
types on page 339.

Client is establishing an
excessive number of
TCP connections.

24 Across APIs

Content Scraping Type 1 Client abnormally
accessing API content.

27 Across APIs

Content Scraping Type 2 Client abnormally
accessing API content
over an extended time
period

28 Single API

Unauthorized client
attack

Client without a token or
cookie is probing an API
service.

29 Single API

Single Client Login
Attack Type 2

Login service attacked
by a bot or rogue client
over an extended time
period

30 Across APIs

Header Manipulation Probing an API using
malicious headers

37 Single API

WebSocket API attack detection

i Note: WebSocket API attack detection is only supported when ASE is running in Inline mode.

Client identifier determination – IP address or cookie

In each API, the presence of the cookie parameter in the API JSON file (see API Security Enforcer Admin
Guide for information) determines whether attacks are reported based on cookie identifier or IP address.
An environment with multiple APIs can support a mixture of identifier types in a single ABS system. Use
cases include the following:

▪ API JSON with cookie parameter – When the cookie parameter is configured, most attacks are
reported with cookie identifiers, the exception being pre-authentication attacks (for example, client login
attacks). Configuring the Cookie parameter is recommended when cookies are present as it is a unique
client identifier that eliminates the issues identified below with IP addresses.

▪ API JSON without cookie parameter – When the cookie parameter is not configured, all the attacks
are reported with the client IP address which is determined based on the following:

▪ XFF header present: The first IP address in the XFF list is used as the client identifier. When
forwarding traffic, load balancers and other proxy devices with XFF enabled add IP addresses to the
XFF header to provide application visibility of the client IP address. The first IP address in the list is
typically associated with the originating IP address.

Copyright ©2022

 | ABS AI Engine | 348

i Note: XFF is not always a reliable source of the client IP address and can be spoofed by a malicious
proxy.

▪ No XFF header: When no XFF header is present, the source IP address of the incoming traffic is used
as the client identifier. In this configuration, make sure that the incoming traffic is using public or private
IP addresses associated with the actual client devices, not a load balancer or proxy device on your
premise.

i Note: When a load balancer or other proxy without XFF enabled is the source of the inbound traffic,
then all client traffic will be associated with the load balancer IP addresses. This configuration will not
provide effective attack reporting.

To change from a cookie to an IP identifier for an existing API, save the API JSON with a new name.
ABS then re-trains the model for this API and starts detecting IP-based attacks. For more information on
configuring API JSON files, see API Security Enforcer Admin Guide.

i Note: OAuth2 token based attacks are not reported for WebSocket APIs.

The following tables list the attacks detected by ABS for WebSocket APIs for cookie and IP:

Cookie based detected attacks:

Attack Type Description id

Summary Attack Report Provides a summary of all attacks
detected.

0

WS Cookie Attack WebSocket session management
service receiving an abnormal
number of cookies.

50

WS DoS Attack Inbound streaming limits
exceeded on a WebSocket
service.

52

WS Data Exfiltration Attack Data is being extracted via a
WebSocket API service.

53

IP based detected attacks

Attack Type Description id

Summary Attack Report Provides a summary of all attacks
detected.

0

WS Identity Attack WebSocket identity service
receiving excessive upgrade
requests.

51

WS DoS Attack Inbound streaming limits
exceeded on a WebSocket
service.

52

WS Data Exfiltration Attack Data is being extracted via a
WebSocket API service.

53

Copyright ©2022

 | ABS AI Engine | 349

Attack detection on root API
A root API in ASE is defined by configuring / for url variable and * for hostname variable. Following is a
snippet of a truncated API JSON in ASE depicting the configuration of root API.

{
 "api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",

You can choose between enabling or disabling attack detection on global API by configuring
root_api_attack global variable in the abs_init.js and abs_init_ldap.js file. By default attack
detection is disabled on root API. Set it to true if you want to detect attacks on the root API. Configure this
variable either before starting ABS, or you can use the update.sh script to update the value. For more
information on update.sh script, see Update the training variables

db.global_config.insert({
 "attack_initial_training": "24",
 "attack_update_interval": "24",
 "url_limit": "100",
 "response_size": "100",
 "job_frequency" : "10",
 "window_length" : "24",
 "enable_ssl": true,
 "api_discovery": false,
 "discovery_initial_period" : "24",
 "discovery_subpath": "1",
 "continuous_learning": true,
 "discovery_update_interval": "1",
 "attack_list_count": "500000",
 "resource_monitor_interval" : "10",
 "percentage_diskusage_limit" : "80",
 "root_api_attack" : false,
 "session_inactivity_duration" : "30"
});

Training and attack detection: If the attack detection is disabled on the root API, then ABS Admin
REST API displays n/a (not applicable) for training_started_at and training_duration. The
prediction_mode is false.

{
 "api_name": "rest_api",
 "host_name": "*",
 "url": "/",
 "api_type": "regular",
 "creation_date": "Fri Apr 05 05:41:00 UTC 2019",
 "servers": 2,
 "protocol": "http",
 "cookie": "",
 "token": false,
 "training_started_at": "n/a",
 "training_duration": "n/a",
 "prediction_mode": false
}

Copyright ©2022

 | ABS AI Engine | 350

Manage attack blocking
ASE and ABS work in tandem to detect and block attacks. ASE detects attacks in real-time, blocks
the hacker, and reports attack information to ABS. ABS AI Engine uses behavioral analysis to look for
advanced attacks.

Attack management is done in both ABS and ASE.

In ABS, you can:

▪ List active, expired or a consolidated list of active and expired client identifiers for a specific time period.
For more information see, ABS blacklist reporting on page 350.

▪ Delete specific client identifiers from ABS blacklist or bulk delete a type of client identifier using ABS
REST API. For more information, see Delete individual client identifiers on page 351 and Bulk delete
client identifiers on page 352.

▪ Enable or disable a specific attack ID. When you disable an attack ID, ABS stops reporting attacks
across all client identifiers for that attack ID. For more information, see Enable or disable attack IDs on
page 353.

▪ Configure the time-to-live (TTL) for each client identifier type. The TTL time applies to all the detected
attacks for that client identifier. For more information, see TTL for client identifiers in ABS on page
355.

In ASE, you can:

▪ Manually add or delete entries from whitelist and blacklist
▪ Enable or disable automatic blocking of ABS detected attack types
▪ Enable or disable ASE detected real-time attacks. ASE detects real time attacks only in an inline

deployment.

For more information see, Attack management in ASE on page 358.

ABS blacklist reporting

ABS Provides attacklist REST API to complete the following two operations:

▪ List the various client identifiers (API Key, OAuth token, Username, Cookie, and IP address) which are
related to probable attack

▪ Delete the client identifiers which may be a cause of false positive

Reporting active and expired client identifiers

ABS provides an attacklist REST API with GET method to list of active attacks in the system, expired
attacks, and consolidated (active and expired) attacks together. The list of detected client identifiers
depends on the TTL set for the client identifiers. The attack list reports the detected client identifiers (active
or expired) for the queried period. The time-period is part of the API query parameter.

URL: /v4/abs/attacklist

Report the active detected attacks: Use the following REST API URL to report the active client
identifiers:

/v4/abs/attacklist?earlier_date=<>&later_date=<>&status=active : The API lists the
active client identifiers for a time-period between earlier_date and later_date. PingIntelligence ASE
fetches the active client identifiers list from ABS for blocking the clients.

Report the expired detected attacks: Use the following REST API URL to report the expired client
identifiers:

/v4/abs/attacklist?earlier_date=<>&later_date=<>&status=expired : The API lists
the expired client identifiers for a time-period between earlier_date and later_date. The expiry of
detected attacks in the system depends on the configured TTL.

Copyright ©2022

 | ABS AI Engine | 351

Report the consolidated (active and expired) detected attacks: Use the following REST API URL to
report the consolidated client identifiers attacks:

/v4/abs/attacklist?earlier_date=<>&later_date=<> : The API lists all the client identifiers for
a time-period between earlier_date and later_date.

Delete individual client identifiers

Using the attacklist API with PUT method, you can delete the active client identifiers. The API requires
only the body without any other headers. In the message body of the API, provide the client identifiers in
their respective sections. The API checks if the client identifier is present in the active list or not before
deleting. If you provide a client identifier which is not part of the active list, the API ignores such client
identifiers.

URL: /v4/abs/attacklist

Method: PUT

Following is a sample message body for attacklist API to delete client identifiers:

{
 "ips": [
 "192.168.4.10",
 "10.10.10.73",
 "10.1.1.4",
 "10.9.8.7"
],
 "cookies": {
 "PHPSESSIONID": [
 "Cookie1",
 "Cookie2"
],
 "JSESSIONID": [
 "Cookie3",
 "AnyCookie",
 "Cookie4"

 },
 "oauth_tokens": [
 "Token1",
 "Token2",
 "Token3"
],
 "api_keys": [
 "type2_api_key",
 "api_key_1",
 "api_key_2",
],
 "usernames": [
 "username1",
 "username2",
 "username3",
]
}

Following is the message showing the client identifiers that were deleted:

{
 "message": "Success: The following attacks have been removed:",
 "date": "Thu Jun 09 03:39:12 UTC 2019",
 "attacklist": {
 "ips": [
 "192.168.4.10",
 "10.10.10.73",

Copyright ©2022

 | ABS AI Engine | 352

 "10.1.1.4",
 "10.9.8.7"
],
 "cookies": {
 "PHPSESSIONID": [
 "Cookie1",
 "Cookie2"
],
 "JSESSIONID": [
 "Cookie3",
 "AnyCookie",
 "Cookie4"
]
 },
 "oauth_tokens": [
 "Token1",
 "Token2",
 "Token3"
],
 "api_keys": [
 "type2_api_key",
 "api_key_1",
 "api_key_2",
],
 "usernames": [
 "username1",
 "username2",
 "username3",
]
 }
}

You can provide only specific section of a client identifier in the message body. For example, if you only
want to delete specific usernames, then provide only the username section in the message body. Make
sure that the JSON file is well formed.

Bulk delete client identifiers

Use the bulk delete option when you believe that a large number of false positives have been identified.
You can also use the bulk delete option to clear the blacklist in case of a reset. To bulk delete client
identifiers, use the ABS attacklist REST API with DELETE method. Following is the URL for the API:

URL: /v4/abs/attacklist

Method: DELETE

To bulk delete all the entries of a client identifier or all client identifier, configure the body of the
attacklist API request as show below:

{
 delete_all: false,
 delete_all_ips: true,
 delete_all_cookies: true,
 delete_all_oauth_tokens: false,
 delete_all_api_keys: true,
 delete_all_usernames: false,
}

In the sample request body above, the attacklist API deletes all entries for IP, Cookie, and API Key. If,
in the next time interval, the AI engine flags the same client identifiers, the blacklist is populated again. To
permanently stop a false positive from being reported, tune the thresholds using the PingIntelligence Web
GUI for the specific client identifier.

Copyright ©2022

 | ABS AI Engine | 353

The following table describes the options:

Option Description

delete_all This option overrides all the other configured
options in the message body. If it is set to true, all
the client identifiers are deleted irrespective of what
their individual configuration is. Set it to false, if
you wan to exercise other options.

delete_all_ips Set it true to delete all the IP addresses across all
attack types from the blacklist.

delete_all_cookies Set it true to delete all the cookies across all attack
types from the blacklist.

delete_all_oauth_tokens Set it true to delete all the OAuth token across all
attack types from the blacklist.

delete_all_api_keys Set it true to delete all the API Keys across all
attack types from the blacklist.

delete_all_usernames Set it true to delete all the usernames across all
attack types from the blacklist.

Enable or disable attack IDs

You can enable or disable one or more than one attack type using ABS attackstatus REST API with
the PUT method. The AI engine keeps updating the thresholds in the background, even when you disable
an attack ID. Calculating the thresholds in the background allows ABS to report attacks if you enable an
attack ID in the future.

If you have disabled an attack while the AI engine is processing the log data, ABS may still report attacks
for a few minutes. The attack IDs would be disabled when the next batch of access log files are processed.
When you enable an attack from the disabled state, ABS takes a few minutes to report the API attacks.

URL: /v4/abs/attackstatus

Method: PUT

The following attack IDs cannot be disabled from ABS as these are real-time attacks reported by ASE:

▪ Attack ID 13: API DDoS Attack Type 2
▪ Attack ID 100: Decoy Attack. This attack ID can be disabled from ASE.
▪ Attack ID 101: Invalid API Activity. This attack ID can be disabled from ASE.

To enable or disable an attack ID, you should:

1. Use the attackstatus REST API with GET method to fetch the current status of an attack ID
2. Use the attackstatus REST API with PUT method to enable or disable the attack IDs.

Fetch the attack ID status: Run the attackstatus REST API with the GET method to fetch the current
state of all the attack IDs. The output is divided into two sections, enabled and disabled, along with the time
when an attack ID was enabled or disabled. Following is a snippet of response:

“attack_status”: {
 “enabled” : [
 {
 "attack_id" : 1,
 "attack_name" : "Data Exfiltration Attack Type 1",
 "enabled_time" : "Thu Aug 22 12:56:39:158 2019"
 },

Copyright ©2022

 | ABS AI Engine | 354

 {
 "attack_id" : 2,
 "attack_name" : "Single Client Login Attack Type 1",
 "enabled_time" : "Thu Aug 22 12:56:39:158 2019"
 },
 {
 "attack_id" : 4,
 "attack_name" : "Stolen Token Attack Type 1",
 "enabled_time" : "Thu Aug 22 12:56:39:158 2019"
 }
],
“disabled” : [
 {
 "attack_id" : 3,
 "attack_name" : "Data Exfiltration Attack Type 1",
 "disabled_time" : "Thu Aug 22 12:56:39:158 2019"
 },
 {
 "attack_id" : 5,
 "attack_name" : "Single Client Login Attack Type 1",
 "disabled_time" : "Thu Aug 22 12:56:39:158 2019"
 }
]
}

i Note: Attack IDs 13, 100, and 101 are always displayed as enabled in the response.

Disable or enable attack IDs: To disable or enable an attack ID, use the PUT method with the
attackstatus REST API. To disable or enable an attack ID, provide the attack_id and action. The
action can be enable or disable. Following is sample body of the PUT request:

{
 “attacks”:[
 {
 "attack_id": “1”,
 "action": “disable”
 },
 {
 "attack_id": “2”,
 "action": “enable”
 },
 {
 "attack_id": “13”,
 "action": “disable”
 },
{
 "attack_id": “100”,
 "action": “disable”
 },
 {
 "attack_id": “101”,
 "action": “disable”
 }
]
}

Following is a sample response:

{
 "attack_status": [
 {

Copyright ©2022

 | ABS AI Engine | 355

 "attack_id": "1",
 "attack_name": "Data Exfiltration Attack Type 1",
 "status": "Attack ID disabled successfully"
 },
 {
 "attack_id": "2",
 "attack_name": "Single Client Login Attack Type 1",
 "status": "Attack ID is already enabled"
 },
 {
 "attack_id": "13",
 "attack_name": "API DDoS Attack Type 2",
 "status": "Attack ID cannot be disabled. For more information,
 refer to PingIntelligence documentation."
 },
 {
 "attack_id": "100",
 "attack_name": "Decoy Attack",
 "status": "Attack ID cannot be disabled. For more information,
 refer to PingIntelligence documentation."
 },
 {
 "attack_id": "101",
 "attack_name": "Invalid API Activity",
 "status": "Attack ID cannot be disabled. For more information,
 refer to PingIntelligence documentation."
 }

]
}

TTL for client identifiers in ABS

The ABS AI Engine blacklist supports configuring the length of time that a client identifier type (username,
OAuth token, API Key, cookie, and IP address) remains on the blacklist. Each client identifier type can be
configured with a different value in minutes. The default value of zero minutes means that the AI engine will
not remove any client identifiers from the blacklist unless the TTL value is changed.

You can change the default value of TTL by using the admin ABS REST API which supports configuring a
different TTL in minutes for each client identifier. Following are the recommended steps to managing client
identifier TTL:

1. Use the ABS admin REST API to fetch the current TTL values.
2. Use the PUT method with the ABS admin REST API to configure the TTL.

When you update the TTL value, it applies to the client identifiers in the blacklist that the AI engine
identified from that time onwards. For example, you set initial TTL of 120-minutes at 6 AM for 100 client
identifiers in the blacklist, then the list will exist till 8 AM. Now, if you change the TTL at 7 AM to 30-
minutes, then the initial list of 100 client identifier will still exist till 8 AM. The new 30-minute TTL will apply
to the client identifiers reported from 7 AM onwards.

Fetch the current TTL value: Use the admin API to fetch the current TTL of the client identifiers:

https://<ip>:<port>/v4/abs/admin . Following is a sample output displaying the current TTL
values:

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS
 clusters,
 and ASE logs",
 "license_info": {

Copyright ©2022

 | ABS AI Engine | 356

 "tier": "Subscription",
 "expiry": "Wed Jan 15 00:00:00 UTC 2020",
 "max_transactions_per_month": 1000000000,
 "current_month_transactions": 98723545,
 "max_transactions_exceeded": false,
 "expired": false
 },
 "across_api_prediction_mode": true,
 "api_discovery": {
 "subpath_length": "1",
 "status": true
 "apis": [
 {
 "api_name": "app",
 "host_name": "*",
 "url": "/atm_app_oauth",
 "api_type": "decoy-incontext",
 "creation_date": "Thu Dec 26 09:51:10 UTC 2019",
 "servers": 0,
 "protocol": "http",
 "cookie": "",
 "token": true,
 "training_started_at": "Thu Dec 26 09:52:29 UTC 2019",
 "training_duration": "1 hour",
 "prediction_mode": true,
 "apikey_header": "",
 "apikey_qs": ""
 }
],
 "abs_cluster": {
 "abs_nodes": [
 {
 "node_ip": "172.17.0.1",
 "os": "DISTRIB_ID=Ubuntu - ",
 "cpu": "4",
 "memory": "7.8G",
 "filesystem": "19%",
 "bootup_date": "Wed Dec 25 15:01:06 UTC 2019"
 }
],
 "mongodb_nodes": [
 {
 "node_ip": "172.17.0.1",
 "status": "up"
 }
]
 },
 "ase_logs": [
 {
 "ase_node": "8f9d07c5-c5c4-43c3-97be-9672c7fd2986",
 "last_connected": "Thu Dec 26 10:51:13 UTC 2019",
 "logs": {
 "start_time": "Thu Dec 26 09:51:14 UTC 2019",
 "end_time": "Thu Dec 26 10:51:13 UTC 2019",
 "gzip_size": "429.96KB"
 }
 }
],
 "percentage_diskusage_limit": "80%",
 "scale_config": {
 "scale_up": {
 "cpu_threshold": "70%",
 "cpu_monitor_interval": "30 minutes",
 "memory_threshold": "70%",

Copyright ©2022

 | ABS AI Engine | 357

 "memory_monitor_interval": "30 minutes",
 "disk_threshold": "70%",
 "disk_monitor_interval": "30 minutes"
 },
 "scale_down": {
 "cpu_threshold": "10%",
 "cpu_monitor_interval": "300 minutes",
 "memory_threshold": "10%",
 "memory_monitor_interval": "300 minutes",
 "disk_threshold": "10%",
 "disk_monitor_interval": "300 minutes"
 }
 },
 "attack_ttl": {
 "ids": [
 {
 "id": "ip",
 "ttl": 0
 },
 {
 "id": "cookie",
 "ttl": 0
 },
 {
 "id": "access_token",
 "ttl": 0
 },
 {
 "id": "api_key",
 "ttl": 0
 },
 {
 "id": "username",
 "ttl": 0
 }
]
 }
}

Configure the TTL: Use the PUT method with admin REST API to configure the TTL in minutes:

URL: https://<ip>:<port>/v4/abs/admin

Method: PUT

Body:

{
 "ids" : [
 {
 "id" : "ip",
 "ttl" : 10
 },
 {
 "id" : "cookie",
 "ttl" : 10
 },
 {
 "id" : "access_token",
 "ttl" : 10
 },

Copyright ©2022

 | ABS AI Engine | 358

 {
 "id" : "api_key",
 "ttl" : 10
 },
 {
 "id" : "username",
 "ttl" : 10
 }
]
}

Response:

{
 "message": "TTL updated successfully",
 "date": "Thu Dec 26 10:59:40 UTC 2019"
}

To verify the new TTL values, rerun the ABS admin REST API with the GET method.

Automated ASE attack blocking

Automatic blocking of attacks with ASE

When the AI Engine detects an attack, it adds an entry to its blacklist which consists of usernames, tokens,
API Keys, cookies, and IP addresses of clients which were detected executing attacks. If blocking is
enabled for the API, the blacklist is automatically sent to ASE nodes which blocks the client's future access
using the identifiers on the list.

Activate log processing for ABS

To activate ABS log processing, execute the following ASE command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs

After log processing is enabled, ASE sends log data to ABS which processes the log data to look for
attacks and generate reports.

Automatically block ABS detected attacks

ABS generates a list of clients which are suspected of executing attacks. ABS can be configured to
automatically send the attack list to ASE which blocks client access. By default, automatic blocking is
inactive, execute the following ASE command to activate automatic client blocking.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin enable_abs_attack

Disable attack blocking

To disable automatic sending of ABS attack lists to ASE, execute the following ASE command:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin disable_abs_attack

Attack management in ASE

In ASE you manage detected attacks either through blacklist and whitelist. Client identifiers in blacklist are
blocked by ASE while those in the whitelist are never blocked. You can also choose to block or allow a
client identifier at API level by configuring the individual API JSON.

▪ Whitelist – List of “safe” IP addresses, cookies, OAuth2 Tokens, API keys, or Usernames that will not
be blocked by ASE. The list is manually created using ASE CLI commands.

Copyright ©2022

 | ABS AI Engine | 359

▪ Blacklist – List of “bad” IP addresses, cookies, OAuth2 Tokens, API keys, or Usernames that are
always blocked by ASE. The list consists of entries from one or more of the following sources:

▪ ABS detected clients suspected of executing attacks (for example, data exfiltration)
▪ ASE detected clients suspected of executing attacks (for example, invalid method, decoy API

accessed). These attacks are reported to ABS and become part of ABS blacklist also after further AI
processing.

▪ List of “bad” client identifiers manually added using ASE CLI

Manage ASE whitelist

Valid ASE operations for OAuth2 Tokens, Cookies, IP addresses, Username, and API Keys on a white list
include:

▪ Add an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist ip
 10.10.10.10
ip 10.10.10.10 added to whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist cookie
 JSESSIONID cookie_1.4
cookie JSESSIONID cookie_1.4 added to whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist token
 token1.4
token token1.4 added to whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist api_key
 X-API-KEY key_1.4
api_key X-API-KEY key_1.4 added to whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_whitelist username
 user1
username user1 added to whitelist

▪ View whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_whitelist
Whitelist
1) type : ip, value : 1.1.1.1
2) type : cookie, name : JSESSIONID, value : cookie_1.1
3) type : token, value : token1.3
4) type : api_key, name : X-API-KEY, value : key_1.4

▪ Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist ip
 4.4.4.4
ip 4.4.4.4 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist cookie
 JSESSIONID cookie_1.1

Copyright ©2022

 | ABS AI Engine | 360

cookie JSESSIONID cookie_1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist token
 token1.1
token token1.1 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist
 api_key X-API-KEY key_1.4
api_key X-API-KEY key_1.4 deleted from whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_whitelist
 username user1
username user1 deleted from whitelist

▪ Clear the whitelist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin clear_whitelist
This will delete all whitelist Attacks, Are you sure (y/n) : y
Whitelist cleared

Manage ASE blacklist

Valid ASE operations for IP addresses, Cookies, OAuth2 Tokens, Username, and API Keys on a black list
include:

▪ Add an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist ip
 1.1.1.1
ip 1.1.1.1 added to blacklist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist cookie
 JSESSIONID ad233edqsd1d23redwefew
cookie JSESSIONID ad233edqsd1d23redwefew added to blacklist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist token
 ad233edqsd1d23redwefew
token ad233edqsd1d23redwefew added to blacklist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist api_key
 AccessKey b31dfa4678b24aa5a2daa06aba1857d4
api_key AccessKey b31dfa4678b24aa5a2daa06aba1857d4 added to blacklist

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin add_blacklist username
 user1
username user1 added to blacklist

▪ View blacklist - entire Black list or based on the type of real time violation.

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist all
Manual Blacklist
1) type : ip, value : 10.10.10.10
2) type : cookie, name : JSESSIONID, value : cookie_1.4
3) type : token, value : token1.4
4) type : api_key, name : X-API-KEY, value : key_1.4
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4
Realtime Protocol Blacklist

Copyright ©2022

 | ABS AI Engine | 361

1) type : token, value : token1.1
2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1
Realtime Method Blacklist
1) type : token, value : token1.3
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

▪ Blacklist based on decoy IP addresses

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist decoy
Realtime Decoy Blacklist
1) type : ip, value : 4.4.4.4

▪ Blacklist based on protocol violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_protocol
Realtime Protocol Blacklist
1) type : token, value : token1.1
2) type : ip, value : 1.1.1.1
3) type : cookie, name : JSESSIONID, value : cookie_1.1

▪ Blacklist based on method violations

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_method
Realtime Method Blacklist
1) type : token, value : token1.3
2) type : ip, value : 3.3.3.3
3) type : cookie, name : JSESSIONID, value : cookie_1.3

▪ Blacklist based on content-type violation

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 invalid_content_type
Realtime Content-Type Blacklist
1) type : token, value : token1.2
2) type : ip, value : 2.2.2.2
3) type : cookie, name : JSESSIONID, value : cookie_1.2

▪ Automated blacklist (ABS detected attacks)

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin view_blacklist
 abs_detected
No Blacklist

▪ Delete an entry

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin delete_blacklist ip
 1.1.1.1
ip 1.1.1.1 deleted from blacklist

./bin/cli.sh -u admin -p admin delete_blacklist cookie JSESSIONID
 avbry47wdfgd

Copyright ©2022

 | ABS AI Engine | 362

cookie JSESSIONID avbry47wdfgd deleted from blacklist

./bin/cli.sh -u admin -p admin delete_blacklist token
 58fcb0cb97c54afbb88c07a4f2d73c35
token 58fcb0cb97c54afbb88c07a4f2d73c35 deleted from blacklist

▪ Clearing the blacklist

./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :y
Blacklist cleared
./bin/cli.sh -u admin -p admin clear_blacklist
This will delete all blacklist Attacks, Are you sure (y/n) :n
Action canceled

When clearing the Blacklist, make sure that real-time ASE detected attacks and ABS detected attacks
are disabled. If not disabled, the blacklist gets populated again as both ASE and ABS are continuously
detecting attacks.

Per API blocking in ASE

ASE can be configured to selectively block on a per API basis by configuring an API JSON file parameter.
To enable per API blocking for each API, set the enable_blocking parameter to true in the API JSON.
For example:

api_metadata": {
 "protocol": "http",
 "url": "/",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "200m",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },

If per API blocking is disabled, ABS still detects the suspected attacks for that specific API, however,
ASE does not block them. ASE will continue to block the suspected attacks on other APIs with the
enable_blocking set to true.

ASE CLI commands are also supported to enable blocking for the specified API

▪ ./cli.sh –u admin -p admin enable_blocking {api_id}

Disable blocking for the specified API

▪ ./cli.sh –u admin -p admin disable_blocking {api_id}

Attack reporting
Attack reports provide information about the suspected attacks on each API. The ABS Attack API provides
reports by specifying the type_id (see descriptions in Attack Types) and receiving attack details
including time frame, client identifier, and an attack code (see Changing Attack Thresholds for an
explanation of attack codes). The format of the ABS attack API is:

Copyright ©2022

 | ABS AI Engine | 363

https://<hostname>:<port>/v4/abs/
later_date<>&earlier_date<>&api=<api_name>type=type_id

The hostname and port correspond to the host ABS machine.

Understanding the API report parameters

Here is a brief description of the information available in the attack reports. Not all items are included in
each of the reports. Please refer to ABS external REST APIs for detailed information in each report.

▪ attack_type: Name of the attack type (for example, data exfiltration, stolen cookie)
▪ description: Description of the attack.
▪ earlier_date: A date which is past in time. For example, if the query range is between March 12 and

March 14, then the earlier date would be March 12.
▪ later_date: A date which is more recent in time. For example, if the query range is between March 12

and March 14, then the later date would be March 14.
▪ api_name: The name of the API for which report is displayed.
▪ access_time: The time that the hacker accessed the API
▪ attack_code: Code for the variables and thresholds used to detect attacks. For example,

attack_code": "varA(Tx, 25) signifies that the attack was triggered because variable A with a value of 25
exceeded the Tx threshold. Current threshold values can be checked using the Threshold API .

▪ ddos_info: The ddos_info field provides a pointer to detailed information in the MongoDB system –
for example, a list of IPs that were active during a DDoS attack (note: only included in DDoS reports).
The data is accessible in the login_dos collection in abs_data database. To access the data, enter
the following in your MongoDB command line:

>use abs_data
>db.login_dos.find({end_time:'Tue Mar 21 22:25:36:144 2017'},
{'ips':1}).pretty()

Use the end_time in the query to see the participating IPs.

The following pages provide examples of API JSON attack reports for Data Exfiltration, Stolen Cookie, and
Multi-Client Login Attack.

i Note: You can use the Admin user or the restricted user to access the API reports. For the
Admin user, the cookie, token or the API key is not obfuscated.

Consolidated result of attack types

To view all attack types on a given API in a single, consolidated report, use the ABS Attack API. Attack ID
0 gives all the attacks on a single API or across APIs based on the REST API query parameters.

Consolidated attack report for an API:

The following attack API URL with attack ID as 0 gives all the attacks for a specific API: https://
<ABS_IP:port>/v4/abs/attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-
ddThh:mm&api=<api_name>&type=<type_id>

Example: https://192.168.11.166:8080/v4/abs/attack?
later_date=2018-12-31T18:00&later_date=2018-10-25T13:30&api=shop&type=0

You can further select a client identifier (IP, cookie, or a token) and carry out IP, cookie, or token forensics
using the Forensic API.

{
 "company": "ping identity",
 "attack_type": "Data Exfiltration Attack",
 "cookie": "JSESSIONID",

Copyright ©2022

 | ABS AI Engine | 364

 "description": "Client (IP or Cookie) extracting an abnormal amount of data
 for given API",
 "earlier_date": "Tue Jan 02 16:00:00:000 2018",
 "later_date": "Mon Jan 01 18:00:00:000 2018",
 "api_name": "shop",
 "cookies": [
 {
 "cookie": "extreme_client_activity_500_request",
 "details": [
 {
 "access_time": "Fri Jan 12 08:44:39:086 2018",
 "attack_code": "varA(Tx, 26)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Fri Jan 12 09:18:34:087 2018",
 "attack_code": "varA(Tx, 25)",
 "attack_deviation": "varA(700%)"
 }
]
 },

 {
 "company": "ping identity",
 "attack_type": "API Probing Replay Attack",
 "cookie": "JSESSIONID",
 "description": "Client (IP or Cookie) probing or trying different parameter
 values to breach
 the API service for given API",
 "earlier_date": "Tue Jan 02 16:00:00:000 2018",
 "later_date": "Mon Jan 01 18:00:00:000 2018",
 "api_name": "shop",
 "cookies": [
 {
 "cookie": "api_dos_attack_type_1_shop_50_percent_error",
 "details": [
 {
 "access_time": "Fri Jan 12 08:39:56:896 2018",
 "attack_code": "varA(Tx, 47)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Fri Jan 12 09:18:34:087 2018",
 "attack_code": "varA(Tx, 47)",
 "attack_deviation": "varA(700%)"
 }
 },
 },
}

Consolidated attack report across API:

Use the following ABS REST API to access all the attack types: https://<ABS_IP:port>/v4/abs/
attack?later_date=yyyy-mm-ddThh:mm&later_date=yyyy-mm-ddThh:mm&type=<type_id> .

Example: https://192.168.11.166:8080/v4/abs/attack?
later_date=2018-12-31T18:00&later_date=2018-10-25T13:30&type=0

You can further select a client identifier (IP, cookie, or a token) and carry out IP, cookie, or token forensics
using the Forensic API.

[
 {
 "company": "ping identity",

Copyright ©2022

 | ABS AI Engine | 365

 "attack_type": "Stolen Token Attack Type 2",
 "name": "api_attack_type",
 "description": "Client (Token) reusing cookies to deceive
 application services.",
 "earlier_date": "Thu Oct 25 13:30:00:000 2018",
 "later_date": "Mon Dec 31 18:00:00:000 2018",
 "api_name": "all",
 "access_tokens": [
 {
 "access_token": "SYU4R2ZZN1IDYI0L",
 "details": [
 {
 "access_time": "Tue Nov 27 11:10:00:000 2018",
 "attack_code": "varA(Tn, 3)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Tue Nov 27 11:40:00:000 2018",
 "attack_code": "varA(Tn, 3)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Tue Nov 27 16:10:00:000 2018",
 "attack_code": "varA(Tn, 2)",
 "attack_deviation": "varA(700%)"
 }
]
 },
 {
 "access_token": "CT27QTP01K6ZW2AK",
 "details": [
 {
 "access_time": "Tue Nov 27 10:50:00:000 2018",
 "attack_code": "varA(Tn, 2)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Tue Nov 27 11:10:00:000 2018",
 "attack_code": "varA(Tn, 4)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Tue Nov 27 11:40:00:000 2018",
 "attack_code": "varA(Tn, 5)",
 "attack_deviation": "varA(700%)"
 }
]
 },

 {
 "ip": "100.64.7.124",
 "details": [
 {
 "access_time": "Tue Nov 27 11:20:00:000 2018",
 "attack_code": "varA(Tn, 3), varA(Tn, 3)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Tue Nov 27 11:30:00:000 2018",
 "attack_code": "varA(Tn, 3), varA(Tn, 3)",
 "attack_deviation": "varA(700%)"
 }
]
 },

Copyright ©2022

 | ABS AI Engine | 366

 {
 "ip": "100.64.10.18",
 "details": [
 {
 "access_time": "Tue Nov 27 11:10:00:000 2018",
 "attack_code": "varA(Tn, 3), varA(Tn, 3)",
 "attack_deviation": "varA(700%)"
 },
 {
 "access_time": "Tue Nov 27 11:40:00:000 2018",
 "attack_code": "varA(Tn, 3), varA(Tn, 3)",
 "attack_deviation": "varA(700%)"
 }
]
 }
]
 }
]

Real-time Detected attacks for inline ASE

API Security Enforcer supports real time attack detection and blocking for:

▪ API Pattern Enforcement – validate traffic to ensure it is consistent with the API definition
▪ API Deception – blocks hackers probing a Decoy API

Enable ASE detected attacks

Enable real-time ASE detected attacks by running the following command on the ASE command line:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin
 enable_ase_detected_attack
ASE Detected Attack is now enabled

Disable ASE detected attacks

Disable real-time ASE detected attacks by running the following command on the ASE command line:

/opt/pingidentity/ase/bin/cli.sh -u admin -p admin
 disable_ase_detected_attack
ASE Detected Attack is now disabled

i Note: When you disable ASE detected attacks, the attacks are deleted from the blacklist.

In real-time, ASE blocks hackers which violate pattern enforcement or probe decoy APIs. Hacker
information is reported to ABS which generates ASE detected attack reports (type ID 101). Use the
following ABS REST API to view the report:

https://192.168.11.138:8080/v4/abs/attack?
later_date=2018-07-16&earlier_date=2018-07-16&api=atmapp&type=101

Real-time ASE detected attack based on OAuth2 token activity

{
 "company": "ping identity",
 "attack_type": "Invalid API Activity",
 "name": "api_attack_type",
 "description": "Clients using invalid method/protocol/content-type",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",

Copyright ©2022

 | ABS AI Engine | 367

 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_oauth",
 "ips": [],
 "cookies": [],
 "access_tokens": [
 {
 "access_token": "token_protocol",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:770 2018",
 "attack_code": "protocol"
 },
 {
 "access_time": "Fri Jan 26 21:16:17:851 2018",
 "attack_code": "protocol"
 }
]
 },
 {
 "access_token": "token_method",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:819 2018",
 "attack_code": "method"
 },
 {
 "access_time": "Fri Jan 26 21:16:17:903 2018",
 "attack_code": "method"
 }
]
 },
 {
 "access_token": "token_contenttype",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:819 2018",
 "attack_code": "content_type"
 },
 {
 "access_time": "Fri Jan 26 21:16:17:903 2018",
 "attack_code": "content_type"
 }
]
 }
]
}

Real-time ASE detected attack based on pattern enforcement violation

{
 "company": "ping identity",
 "attack_type": "Invalid API Activity",
 "cookie": "JSESSIONID",
 "name": "api_attack_type",
 "description": "Clients using invalid method/protocol/content-type",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",
 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_public",
 "ips": [],
 "cookies": [
 {
 "cookie": "session_contenttype1",
 "details": [

Copyright ©2022

 | ABS AI Engine | 368

 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "content_type"
 }
]
 },
 {
 "cookie": "session_method",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:06:656 2018",
 "attack_code": "method"
 },
 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "method"
 }
]
 },
 {
 "cookie": "session_contenttype",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:06:656 2018",
 "attack_code": "content_type"
 },
 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "content_type"
 }
]
 },
 {
 "cookie": "session_protocol",
 "details": [
 {
 "access_time": "Fri Jan 26 20:58:04:873 2018",
 "attack_code": "protocol"
 },
 {
 "access_time": "Fri Jan 26 21:16:47:314 2018",
 "attack_code": "protocol"
 }
]
 },
 {
 "cookie": "session_method1",
 "details": [
 {
 "access_time": "Fri Jan 26 21:17:10:662 2018",
 "attack_code": "method"
 }
]
 },
 {
 "cookie": "session_protocol1",
 "details": [
 {
 "access_time": "Fri Jan 26 21:16:47:314 2018",
 "attack_code": "protocol"
 }
]
 }
],

Copyright ©2022

 | ABS AI Engine | 369

 "access_tokens": []
}

Anomalous activity reporting

The Anomaly API provides detailed reporting on anomalous activity associated with a specified API. The
types of anomalies detected include:

▪ Anomalies for each ABS attack type – activity which has the characteristics of one of the attack types
(for example, API Memory Attack) but does not meet the threshold of an attack.

▪ Irregular URLs – suspicious URL traffic
▪ Anomalous request activity including injection attacks, overflow attacks, and system commands

This report detects leading indicators of attacks on API services and is reviewed to observe trends.

Here is an snippet from an Anomaly API JSON report for a cookie-based API:

{
 "company": "ping identity",
 "name": "api_anomalies",
 "description": " This report contains information on anomalous activity on
 the specified
 API",
 "later_date": "Tue Jan 14 18:00:00:000 2018",
 "earlier_date": "Sun Jan 12 18:00:00:000 2018",
 "api_name": "shop",
 "anomalies_summary": {
 "api_url": "shopapi",
 "total_anomalies": 14,
 "most_suspicious_ips": [],
 "most_suspicious_anomalies_urls": []
 },
 "anomalies_details": {
 "url_anomalies": {
 "suspicious_sessions": [],
 "suspicious_requests": []
 },
 "ioc_anomalies": [
 {
 "anomaly_type": "API Memory Attack Type 2",
 "cookies": [
 {
 "cookie": "AMAT_2_H",
 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
]
 },
 {
 "cookie": "AMAT_2_H",
 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
]
 }
]
 },

Copyright ©2022

 | ABS AI Engine | 370

Deception and decoy API

API Deception

ASE supports configuration of decoy APIs, either the for in-context or out-of-context mode. If a client
accesses an ASE decoy API and later tries to access a legitimate API, ASE drops the connection and
blocks the client from accessing any non-decoy APIs. ASE Admin Guide provides more information on API
Deception Environments.

Report ASE real-time decoy attack detection

ASE sends information about clients accessing decoy APIs to ABS which does further analysis and
generates an API Deception report with type ID 100. Here is an example ABS REST API to generate an
API Deception report:

https://192.168.11.138:8080/v4/abs/attack?
later_date=2018-07-16&earlier_date=2018-07-16&api=atmapp&type=100

{
 "company": "ping identity",
 "attack_type": "Decoy Attack",
 "name": "api_attack_type",
 "description": "Clients accessing decoy APIs",
 "earlier_date": "Mon Jan 01 12:00:00:000 2018",
 "later_date": "Mon Dec 31 02:28:00:000 2018",
 "api_name": "atmapp",
 "ips": [
 {
 "ip": "100.64.38.140",
 "details": [
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 }
]
 },
 {
 "ip": "100.64.38.144",
 "details": [
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",

Copyright ©2022

 | ABS AI Engine | 371

 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 19:59:29:395 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 },
 {
 "access_time": "Sun Jan 28 21:18:01:501 2018",
 "attack_code": "decoy"
 }
]
 }
],
 "cookies": [],
 "access_tokens": []
}

Decoy API

When decoy APIs are configured in ASE, then ABS generates decoy API reports with detailed information
on all client access to decoy APIs including ASE detected violations. Here is a decoy API URL:
<ABS_IP>:port/v4/abs/decoy?earlier_date<>& later_date<>

{
 "company": "ping identity",
 "name": "decoy_api_metrics",
 "description": "This report contains detailed information on client access
 to each decoy API
 ",
 "later_date": "Tue Jan 11 18:00:00:000 2018",
 "earlier_date": "Tue Jan 11 17:50:00:000 2018",
 "api_name": "atmapp",
 "api_type": "decoy-incontext",
 "decoy_url": [
 "/atmapp/decoy"
],
 "summary": [
 {
 "decoy_url": "/atmapp/decoy",
 "unique_ip_count": 122,
 "total_requests": 240,
 "most_used_methods": {
 "GET": 88,
 "DELETE": 32,
 "ABDU": 32,
 "POST": 30,
 "PUT": 26
 },
 "most_used_ips": {
 "100.64.9.37": 4,

Copyright ©2022

 | ABS AI Engine | 372

 "100.64.10.79": 4,
 },
 "most_used_devices": {
 "UBUNTU": 76,
 "MAC_OS_X": 69,
 },
 "most_used_content_types": {
 "UNKNOWN": 184,
 "multipart/form-data": 56
 }
 }
],
 "details": [
 {
 "decoy_url": "/atmapp/decoy",
 "source_ip": [
 {
 "ip": "100.64.31.183",
 "total_requests": 2,
 "method_count": {
 "GET": {
 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2

See ABS external REST APIs for a full report.

Blocked connection reporting
ABS Blocked Connection REST API reports all connections that are blocked by ASE. Two types of reports
are provided:

▪ Blocked Connection Summary Report
▪ Blocked Connection Detail Report

The blocked connections are reported for the following categories:

▪ API routing
▪ DDoS flow control
▪ ABS detected attacks
▪ Custom blacklist
▪ Decoy attacks
▪ ASE detected attacks

Use the following ABS REST API for viewing the blocked connections report:

Blocked connection summary

URL: <ABS_IP>:port/v4/abs/bc?earlier_date=<>T<hh:mm>&later_date=<>T<hh:mm>

Following is a snippet of blocked connection summary report:

{
 "company": "ping identity",
 "name": "api_blockedconnections",
 "description": " This report contains a summary of all API traffic blocked
 by ASE for the following types: api_not_found, host_header_not_found,
 backend_not_found, client_spike, server_spike, bytes_in_threshold,
 bytes_out_threshold, quota_threshold, customer_blacklist,
 abs_detected_attacks, ase_detected_attacks, decoy_detected_attacks",

Copyright ©2022

 | ABS AI Engine | 373

 "earlier_date": "Thu Jan 18 13:00:00:000 2018",
 "later_date": "Thu Feb 22 18:00:00:000 2018",
 "api_name": "global",
 "total_blocked_connections": 21222,
 "api_not_found": 0,
 "host_header_not_found": 0,
 "backend_not_found": 3501,
 "client_spike": 237,
 "server_spike": 6179,
 "bytes_in_threshold": 5938,
 "bytes_out_threshold": 18,
 "quota_threshold": 0,
 "customer_blacklist": 0,
 "abs_detected_attacks": 4576,
 "ase_detected_attacks": 773,
 "decoy_detected_attacks": 0

Blocked Connection Details

URL: <ABS_IP>:port/v4/abs/bc?later_date=<>T<hh:mm>&earlier_date=<>
T<hh:mm>&details=true

Following is a snippet of Blocked Connection details report:

{
 "company": "ping identity",
 "name": "api_blockedconnections",
 "description": "This report contains details of all API traffic blocked by
 ASE for the following types: api_not_found, host_header_not_found,
 backend_not_found, client_spike, server_spike, bytes_in_threshold,
 bytes_out_threshold, quota_threshold, customer_blacklist,
 abs_detected_attacks, ase_detected_attacks, decoy_detected_attacks,
 "earlier_date": "Thu Jan 18 13:00:00:000 2018",
 "later_date": "Thu Feb 22 18:00:00:000 2018",
 "api_blocked_connections": [
 {
 "category": "api_routing",
 "details": [
 {
 "source": "192.168.11.161",
 "type": "backend_not_found",
 "destination_api": "/v2/pet/55"
 },
 {
 "source": "192.168.11.161",
 "type": "backend_not_found",
 "destination_api": "/v2/store/inventory"
 }
]
 },
 {
 "category": "ddos_flowcontrol",
 "details": [
 {
 "source": "100.64.1.24",
 "type": "bytes_in_threshold",
 "destination_api": "/app/ws"
 },
 {
 "source": "100.64.3.213",
 "type": "protocol_violation",
 "destination_api": ""
 }
]

Copyright ©2022

 | ABS AI Engine | 374

 },
 {
 "category": "abs_detected_attacks",
 "details": [
 {
 "source": "100.64.38.180",
 "type": "ioc_abs_ip_port",
 "destination_api": "/atmapp/zipcode"
 },
 {
 "source": "100.64.38.180",
 "type": "ioc_abs_ip_port",
 "destination_api": "/atmapp/zipcode"
 }
]
 },
 {
 "category": "customer_blacklist",
 "details": []
 },
 {
 "category": "decoy_detected_attacks",
 "details": []
 },
 {
 "category": "ase_detected_attacks",
 "details": [
 {
 "source": "100.64.8.252",
 "type": "protocol_violation",
 "destination_api": ""
 },
 {
 "source": "100.64.36.93",
 "type": "protocol_violation",
 "destination_api": ""
 }
]
 },
]
 }
]
}

API forensics reporting
ABS AI Engine provides in-depth information on the activities performed by a client including accessed
URLs, methods, attacks, etc. The forensic report provides detailed information on the activity from an
individual Token, IP address, Cookie, API key, or Username.

i Note: If ASE is deployed in sideband mode, then server field in the output shows the IP address as
0.0.0.0. For ASE deployed in inline mode, the server field shows the IP address of the backend API
server. For more information on ASE sideband mode, see the ASE Admin Guide.

Copyright ©2022

 | ABS AI Engine | 375

Forensics on OAuth2 token

The OAuth2 token forensics report shows all activity associated with the specified token over a time period.
Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",
 "name": "api_abs_token",
 "description": "This report contains a summary and detailed information on
 metrics,
 attacks and anomalies for the specified token across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 6556,
 "total_attacks": 2,
 "total_anomalies": 0
 },
 "details": {
 "metrics": {
 "token": "token1",
 "total_requests": 6556,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 6556,
 "devices": {
 "UNKNOWN": 6556
 },
 "methods": {
 "DELETE": 472,
 "POST": 140,
 "GET": 1944,
 "PUT": 4000
 },
 "urls": {
 "/atm_app_oauth/delete200": 218,
 "/atm_app_oauth/get200": 850,
 "/atm_app_oauth/post400": 8,
 "/atm_app_oauth/post200": 62,
 "/atm_app_oauth/put400": 62,
 "/atm_app_oauth/get400": 122,
 "/atm_app_oauth/put200": 1938,
 "/atm_app_oauth/delete400": 18,
 "/2_atm_app_oauth/put200": 1938,
 "/2_atm_app_oauth/post200": 62,
 "/2_atm_app_oauth/delete200": 218,
 "/2_atm_app_oauth/delete400": 18,
 "/2_atm_app_oauth/put400": 62,
 "/2_atm_app_oauth/post400": 8,
 "/2_atm_app_oauth/get400": 122,
 "/2_atm_app_oauth/get200": 850
 },
 "apis": {
 "atm_app_oauth": 3278,
 "2_atm_app_oauth": 3278
 }
 }
]
 },
 "attack_types": {
 "API Memory Attack Type 1": [
 "atm_app_oauth",

Copyright ©2022

 | ABS AI Engine | 376

 "2_atm_app_oauth"
],
 "Data Poisoning Attack": [
 "atm_app_oauth",
 "2_atm_app_oauth"
]
 },
 "anomaly_types": {}
 }
}

Forensics on an IP address

The IP Forensics report shows all activity associated with the specified IP address over a time period.
Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",
 "name": "api_abs_ip",
 "description": "This report contains a summary and detailed information on
 metrics, attacks and anomalies for the specified ip across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 8192,
 "total_attacks": 2,
 "total_anomalies": 1
 },
 "details": {
 "metrics": {
 "no_session": [
 {
 "start_time": "Thu Feb 15 14:04:17:959 2018",
 "end_time": "Thu Feb 15 14:05:59:263 2018",
 "total_requests": 4096,
 "source_ip": "4.1.1.1",
 "path": "/atm_app_private/get200",
 "methods": [
 "GET"
]
 },
 {
 "start_time": "Thu Feb 15 14:14:00:724 2018",
 "end_time": "Thu Feb 15 14:14:47:999 2018",
 "total_requests": 4096,
 "source_ip": "4.1.1.1",
 "path": "/2_atm_app_private/get200",
 "methods": [
 "GET"
]
 }
],
 "session": []
 },
 "attack_types": {
 "Data Exfiltration Attack": [
 "2_atm_app_private",
 "atm_app_private"
],
 "Extreme App Activity Attack": [
 "2_atm_app_private",
 "atm_app_private"

Copyright ©2022

 | ABS AI Engine | 377

]
 },
 "anomaly_types": {
 "Extreme Client Activity Anomaly": [
 "2_atm_app_private"
]
 }
 }
}

Forensics on a cookie

The Cookie Forensics reports includes all activity associated with the specified Cookie over a time period.
Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",
 "name": "api_abs_cookie",
 "description": "This report contains a summary and detailed information on
 all
 attacks, metrics, and anomalies for the specified cookie on the defined
 API.",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",
 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_public",
 "summary": {
 "total_anomalies": 0,
 "total_requests": 1,
 "total_ioc": 2
 },
 "details": {
 "ioc_types": [
 "data_poisoning_attack",
 "api_memory_attack_type_1"
],
 "metrics": [
 {
 "session_id": "session_datapoisoining",
 "start_time": "Mon Jan 29 15:51:23:408 2018",
 "end_time": "Mon Jan 29 15:51:23:408 2018",
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 1,
 "method": [
 "PUT"
]
 }
],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
],
 "path_info": [
 {
 "path": "/atm_app_public/put200",
 "count": 1
 }
],

Copyright ©2022

 | ABS AI Engine | 378

 "device": [
 {
 "device": "UNKNOWN",
 "count": 1
 }
],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 1
 }
]
 }
],
 "anomalies": []
 }
}

Forensics on API Key

The API Key Forensics reports includes all activity associated with the specified API Key over a time
period. Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",
 "name": "api_abs_api_key",
 "description": "This report contains a summary and detailed information
 on metrics, attacks and anomalies for the specified api key across all
 APIs.",
 "earlier_date": "Sat Jan 12 13:30:00:000 2019",
 "later_date": "Tue Dec 31 18:00:00:000 2019",
 "summary": {
 "total_requests": 2621,
 "total_attacks": 1,
 "total_anomalies": 1
 },
 "details": {
 "metrics": {
 "api_key": "finite_api_key",
 "total_requests": 2621,
 "ip_list": [
 {
 "ip": "192.168.2.2",
 "total_requests": 457,
 "devices": {
 "UNKNOWN": 457
 },
 "methods": {
 "GET": 457
 },
 "urls": {
 "/atm_app/getzipcode": 457
 },
 "apis": {
 "atm_app": 457
 }
 },
 "attack_types": {
 "Stolen API Key Attack- Per API Key": [
 "all"
]
 },

Copyright ©2022

 | ABS AI Engine | 379

 "anomaly_types": {
 "Stolen API Key Attack- Per API Key": [
 "all"
]
 }
 }
}

Username Forensics

The username Forensics reports includes all activity associated with the specified username over a time
period. Report information includes a detailed activity trail of accessed URLs, methods, and attacks.

{
 "company": "ping identity",
 "name": "api_abs_username",
 "description": "This report contains a summary and detailed information
 on metrics, attacks and anomalies for the specified user name across all
 APIs.",
 "earlier_date": "Sat Jan 12 13:30:00:000 2019",
 "later_date": "Tue Dec 31 18:00:00:000 2019",
 "summary": {
 "total_requests": 109965,
 "total_attacks": 0,
 "total_anomalies": 0
 },
 "details": {
 "metrics": {
 "username": "t4",
 "tokens": [
 "t4MFBkEe",
 "t4GpEkUS",
 "t4ZxUOjb",
 "t4QEvJKT"
],
 "total_requests": 109965,
 "ip_list": [
 {
 "ip": "127.0.0.28",
 "total_requests": 54983,
 "devices": {
 "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/57.0.2987.110 Safari/537.36": 54983
 },
 "methods": {
 "POST": 54983
 },
 "urls": {
 "/atm_app_oauth": 54983
 },
 "apis": {
 "atm_app_oauth": 54983
 }
 }
]
 },
 "attack_types": {},
 "anomaly_types": {}
 }
}

Copyright ©2022

 | ABS AI Engine | 380

API metrics reporting
The API Metrics report provides information on client request/response activity to the requested API. It
includes a summary report and detailed reporting including API access by method.

i Note: If ASE is deployed in sideband mode, then server field in the output shows the IP address as
0.0.0.0. For ASE deployed in inline mode, the server field shows the IP address of the backend API
server. For more information on ASE sideband mode, see the ASE Admin Guide.

{
 "company": "ping identity",
 "name": "api_metrics",
 "description": "This report contains metrics for request/response traffic
 for the specified API",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "api_name": "atm_app_public",
 "req_resp_summary": {
 "api_url": "/atm_app_public",
 "total_requests": 2508,
 "success": 2246,
 "sessions": 2,
 "no_sessions": 1,
 "most_popular_method": "POST",
 "most_popular_device": "UNKNOWN",
 "most_popular_ips": [
 "127.0.0.1",
 "3.1.1.4"
],
 "servers": [
 {
 "server": "127.0.0.1:3000",
 "count": 2507
 }
]
 },
 "req_resp_details": {
 "api_url": "/atm_app_public",
 "session_details": [
 {
 "session_id": "session_protocol",
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 1,
 "method": [
 "GET"
]
 }
],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
],
 "path_info": [
 {
 "path": "/atm_app_public/get400",

Copyright ©2022

 | ABS AI Engine | 381

 "count": 1
 }
],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 1
 }
],
 "server": []
 },
 {
 "session_id": "session11",
 "total_requests": 2506,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 2506,
 "method": [
 "DELETE",
 "POST",
 "PUT",
 "GET"
]
 }
],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 2506
 }
],
 "path_info": [
 {
 "path": "/atm_app_public/post400",
 "count": 218
 },
 {
 "path": "/atm_app_public/put400",
 "count": 18
 },
 {
 "path": "/atm_app_public/delete200",
 "count": 208
 },
 {
 "path": "/atm_app_public/get400",
 "count": 14
 },
 {
 "path": "/atm_app_public/put200",
 "count": 152
 },
 {
 "path": "/atm_app_public/delete400",
 "count": 10
 },
 {
 "path": "/atm_app_public/get200",
 "count": 104
 },
 {
 "path": "/atm_app_public/post200",
 "count": 1782

Copyright ©2022

 | ABS AI Engine | 382

 }
],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 2506
 }
],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 2506
 }
]
 }
],
 "no_session": {
 "request_details": [
 {
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "3.1.1.4",
 "count": 1,
 "method": [
 "GET"
]
 }
],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 1
 }
],
 "path": "/atm_app_public/get400",
 "device": [
 {
 "device": "UNKNOWN",
 "count": 1
 }
],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 1
 }
]
 }
]
 }
 }
}

Username based metrics

The username metrics report provides a summary with the total number of usernames, number of
requests, tokens and IP address associated with the username. All the tokens used by the username along
with the number of requests for each token is detailed.

{
 "company": "ping identity",

Copyright ©2022

 | ABS AI Engine | 383

 "name": "username_metrics",
 "description": "This report contains a summary and detailed username
 metrics across all APIs",
 "earlier_date": "Tue Oct 08 06:00:00:000 2019",
 "later_date": "Tue Oct 08 06:10:00:000 2019",
 "summary": {
 "usernames": 36697,
 "total_requests": 398776
 },
 "details": [
 {
 "username": "93YgxYHg7B2a9967aZCVRHfc9GEdBBS79tXNWEym",
 "token_list": [
 {
 “token” :
 "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiIsImtpZCI6IjAwMDEiLCJpc3MiOiJC”,
 “total_requests” : 4
 },
 “token” : "iZ4Eev2Tutah2pou8uev4kohyiesexai0rool5les8Eilae4aejair”,
 “total_requests” : 2
 }

]
“total_requests": 6,
 "ip_list": [
 {
 "ip": "2.63.6.57",
 "total_requests": 6,
 "devices": {
 "UNKNOWN": 6
 },
 "methods": {
 "GET": 6
 },
 "urls": {
 "/accounts/statement": 6
 },
 "apis": {
 "app16": 6
 }
 }
]
 }
]
}

API Key based metrics

ABS provides API key metrics including the total number of API keys and requests across all API keys.
The report also lists the IP address, requesting device information, methods used, URLs accessed, and
API affected. API key based metrics reporting spans all APIs.

{
 "company": "ping identity",
 "name": "api_key_metrics",
 "description": "This report contains a summary and detailed api key
 metrics across all APIs",
 "earlier_date": "Mon May 27 13:00:00:000 2019",
 "later_date": "Sun Jun 30 18:00:00:000 2019",
 "summary": {
 "api_keys": 2,
 "total_requests": 3828

Copyright ©2022

 | ABS AI Engine | 384

 },
 "details": [
 {
 "api_key": "game_api_key",
 "total_requests": 6,
 "ip_list": [
 {
 "ip": "192.168.2.148",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "GET": 2
 },
 "urls": {
 "/atm_app/getzipcode": 2
 },
 "apis": {
 "atm_app": 2
 }
 },
 {
 "ip": "192.168.2.149",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "GET": 2
 },
 "urls": {
 "/atm_app/getzipcode": 2
 },
 "apis": {
 "atm_app": 2
 }
 },
 {
 "ip": "192.168.2.146",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "GET": 2
 },
 "urls": {
 "/atm_app/getzipcode": 2
 },
 "apis": {
 "atm_app": 2
 }
 }
]
 },
 {
 "api_key": "uber_api_key",
 "total_requests": 3822,
 "ip_list": [
 {
 "ip": "192.168.2.2",
 "total_requests": 457,
 "devices": {

Copyright ©2022

 | ABS AI Engine | 385

 "UNKNOWN": 457
 },
 "methods": {
 "GET": 457
 },
 "urls": {
 "/atm_app/getzipcode": 457
 },
 "apis": {
 "atm_app": 457
 }
 },
 {
 "ip": "192.168.2.1",
 "total_requests": 561,
 "devices": {
 "UNKNOWN": 561
 },
 "methods": {
 "GET": 561
 },
 "urls": {
 "/atm_app/getzipcode": 561
 },
 "apis": {
 "atm_app": 561
 }
 },
 {
 "ip": "192.168.2.3",
 "total_requests": 404,
 "devices": {
 "UNKNOWN": 404
 },
 "methods": {
 "GET": 404
 },
 "urls": {
 "/atm_app/getzipcode": 404
 },
 "apis": {
 "atm_app": 404
 }
 },
 {
 "ip": "192.168.2.5",
 "total_requests": 2400,
 "devices": {
 "UNKNOWN": 2400
 },
 "methods": {
 "GET": 2400
 },
 "urls": {
 "/atm_app/getzipcode": 2400
 },
 "apis": {
 "atm_app": 2400
 }
 }
]
 }
]

Copyright ©2022

 | ABS AI Engine | 386

}

OAuth token based metrics

The OAuth2 token metrics report provides a summary with the total number of tokens and requests. For
each token, detailed information on all activity is provided for the time period.

{
 "company": "ping identity",
 "name": "oauth_token_metrics",
 "description": "This report contains a summary and detailed oauth token
 metrics across all APIs",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "tokens": 30,
 "total_requests": 163250
 },
 "details": [
 {
 "token": "token_highresptime",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "GET": 2
 },
 "urls": {
 "/2_atm_app_oauth/longresponse": 1,
 "/atm_app_oauth/longresponse": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
]
 },
 {
 "token": "token13",
 "total_requests": 7452,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 7452,
 "devices": {
 "UNKNOWN": 7452
 },
 "methods": {
 "DELETE": 564,
 "POST": 352,
 "GET": 4000,
 "PUT": 2536
 },
 "urls": {
 "/2_atm_app_oauth/put200": 1248,
 "/atm_app_oauth/delete200": 246,
 "/2_atm_app_oauth/put400": 20,

Copyright ©2022

 | ABS AI Engine | 387

 "/2_atm_app_oauth/get400": 118,
 "/2_atm_app_oauth/get200": 1882,
 "/2_atm_app_oauth/post200": 162,
 "/2_atm_app_oauth/delete200": 246,
 "/2_atm_app_oauth/delete400": 36,
 "/atm_app_oauth/get200": 1882,
 "/atm_app_oauth/post400": 14,
 "/2_atm_app_oauth/post400": 14,
 "/atm_app_oauth/post200": 162,
 "/atm_app_oauth/put400": 20,
 "/atm_app_oauth/get400": 118,
 "/atm_app_oauth/put200": 1248,
 "/atm_app_oauth/delete400": 36
 },
 "apis": {
 "atm_app_oauth": 3726,
 "2_atm_app_oauth": 3726
 }
 }
]
 },
 {
 "token": "token_probing",
 "total_requests": 64,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 64,
 "devices": {
 "UNKNOWN": 64
 },
 "methods": {
 "GET": 64
 },
 "urls": {
 "/2_atm_app_oauth/get400": 32,
 "/atm_app_oauth/get400": 32
 },
 "apis": {
 "atm_app_oauth": 32,
 "2_atm_app_oauth": 32
 }
 }
]
 },
 {
 "token": "token_type1memory",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "PUT": 2
 },
 "urls": {
 "/2_atm_app_oauth/put200": 1,
 "/atm_app_oauth/put200": 1
 },
 "apis": {
 "atm_app_oauth": 1,

Copyright ©2022

 | ABS AI Engine | 388

 "2_atm_app_oauth": 1
 }
 }
]
 },
 {
 "token": "token_contenttype",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "PUT": 2
 },
 "urls": {
 "/2_atm_app_oauth/put400": 1,
 "/atm_app_oauth/put400": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
]
 },
 {
 "token": "token_method",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "HEAD": 2
 },
 "urls": {
 "/2_atm_app_oauth/get400": 1,
 "/atm_app_oauth/get400": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
]
 }
]
}

Copyright ©2022

 | ABS AI Engine | 389

List valid URL
The List Valid URLs report includes all URLs, access count, and allowed methods for a specified API. The
report provides insight into the activity on each API URL.

{
 "company": "ping identity",
 "name": "api_url_list",
 "description": "This report contains list of valid URL for the specified
 API",
 "api_name": "shop",
 "host_name": "app",
 "api_url": "shopapi",
 "allowed_methods": [
 "GET",
 "PUT",
 "POST",
 "DELETE",
 "HEAD"
],
 "url_list": [
 {
 "protocol": "HTTP/1.1",
 "urls": [
 {
 "url": "/shopapi/post",
 "total_count": 2009,
 "methods": [
 {
 "method": "POST",
 "count": 2009
 }
]
 },
 {
 "url": "/shopapi/login",
 "total_count": 2956,
 "methods": [
 {
 "method": "POST",
 "count": 2956
 }
]
 },
 {
 "url": "/shopapi/login?username=v1&password=v2",
 "total_count": 87,
 "methods": [
 {
 "method": "POST",
 "count": 87
 }
]
 },
 {
 "url": "/shopapi/put",
 "total_count": 2159,
 "methods": [
 {
 "method": "PUT",
 "count": 2159

Copyright ©2022

 | ABS AI Engine | 390

 }

Hacker's URL
The List Invalid URLs or hacker's URL report provide information on the four types of invalid URLs:
irregular URLs, system commands, buffer overflow, and SQL injection.

{
 "company": "ping identity",
 "name": "api_abs_cookie",
 "description": "This report contains a summary and detailed information on
 metrics,
 attacks and anomalies for the specified cookie across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 32768,
 "total_attacks": 3,
 "total_anomalies": 1
 },
 "details": {
 "metrics": [
 {
 "session_id": "session_extremeactivity",
 "start_time": "Thu Feb 15 14:04:46:001 2018",
 "end_time": "Thu Feb 15 14:05:02:994 2018",
 "total_requests": 16384,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 16384,
 "method": [
 "GET"
]
 }
],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 16384
 }
],
 "path_info": [
 {
 "path": "/atm_app_public/get200",
 "count": 16384
 }
],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 16384
 }
],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 16384
 }
]
 },

Copyright ©2022

 | ABS AI Engine | 391

 {
 "session_id": "session_extremeactivity",
 "start_time": "Thu Feb 15 14:13:45:795 2018",
 "end_time": "Thu Feb 15 14:14:35:268 2018",
 "total_requests": 16384,
 "source_ip": [
 {
 "ip": "127.0.0.1",
 "count": 16384,
 "method": [
 "GET"
]
 }
],
 "user_agent": [
 {
 "user_agent": "DOWNLOAD",
 "count": 16384
 }
],
 "path_info": [
 {
 "path": "/2_atm_app_public/get200",
 "count": 16384
 }
],
 "device": [
 {
 "device": "UNKNOWN",
 "count": 16384
 }
],
 "server": [
 {
 "server": "127.0.0.1:3000",
 "count": 16384
 }
]
 }
],
 "attack_types": {
 "Data Exfiltration Attack": [
 "2_atm_app_public",
 "atm_app_public"
],
 "Extreme Client Activity Attack": [
 "2_atm_app_public",
 "atm_app_public"
],
 "Extreme App Activity Attack": [
 "2_atm_app_public",
 "atm_app_public"
]
 },
 "anomaly_types": {
 "Stolen Cookie Anomaly": [
 "2_atm_app_public",
 "atm_app_public"
]
 }
 }
}

Copyright ©2022

 | ABS AI Engine | 392

Backend error reporting
The Backend Error Response Codes report provides information for each error code including client IP,
server IP, and requested URL. ABS reports on a per API basis for the following error codes:

▪ 403: Forbidden
▪ 404: Not Found
▪ 500: Internal Server Error
▪ 503: Service Unavailable
▪ 504: Gateway Timeout

{
 "company": "ping identity",
 "name": "api_backend_errors",
 "description": "This report contains details of backend error codes for
 the specified API",
 "later_date": "Sun Feb 05 13:20:00:000 2017",
 "earlier_date": "Wed Feb 01 08:20:00:000 2017",
 "api_name": "atmapp",
 "backend_error_summary": [
 {
 "error_code": "403",
 "error": "Forbidden",
 "count": 0
 },
 {
 "error_code": "404",
 "error": "Not Found",
 "count": 0
 },
truncated
],
 "backend_error_details": [
 {
 "error_code": "500",
 "details": [
 {
 "server": "192.168.11.164:3001",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.183:24078",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.19.136:61494",
 "request_cookie": "JSESSIONID=5GMNKOGNGP6FCKF9"
 },

API DoS and DDoS threshold
API DoS and DDoS threshold 11

API Flow Control reports on API Security Enforcer configured flow control thresholds that are exceeded.
The reporting is done on the following parameters:

▪ Client Spike – inbound client traffic rate
▪ Server Spike – aggregate traffic to an API service
▪ Connection Queued – connection requests queued due to server at concurrent connection limit

Copyright ©2022

 | ABS AI Engine | 393

▪ Bytes-in Spike – WebSocket aggregate inbound traffic exceeds limit
▪ Bytes-out Spike - WebSocket aggregate outbound traffic exceeds limit

i Note: API DoS and DDoS threshold and reporting is only available when ASE is deployed in inline
mode.

For a specified API, the flow control API provides a summary of thresholds exceeded and detailed
reporting on each flow control threshold exceeded:

{
 "company": "ping identity",
 "name": "api_flowcontrol",
 "description": "This report contains flow control information for the
 specified API",
 "earlier_date": "Thu Jan 25 18:00:00:000 2018",
 "later_date": "Fri Dec 28 18:00:00:000 2018",
 "api_name": "atm_app_private",
 "server_spike_ip_count": 0,
 "summary": {
 "client_spike": 990,
 "server_spike": 0,
 "connection_queued": 0,
 "connection_quota_exceeded": 0
 },
 "details": {
 "client_spike": [
 {
 "request_time": "Mon Jan 29 13:43:20:227 2018",
 "connection_id": "2081496566",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1902346354",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1999376747",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "2009947644",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "934081844",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:227 2018",
 "connection_id": "2081496566",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },

Copyright ©2022

 | ABS AI Engine | 394

 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1902346354",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "1999376747",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "2009947644",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 },
 {
 "request_time": "Mon Jan 29 13:43:20:228 2018",
 "connection_id": "934081844",
 "source_ip": "3.1.1.2",
 "destination_api": "/atm_app_private/get400"
 }
],
 "server_spike": [],
 "connections_queued": [],
 "connection_quota_exceeded": []
 }
}

API reports using Postman
Multiple options are available for accessing the ABS REST API reporting including:

▪ Postman App
▪ Java, Python, C Sharp, or similar languages.
▪ Java client program (such as Jersey)
▪ C sharp client program (such as RestSharp)

For the Postman application, Ping Identity provides configuration files which are used by Postman to
access the ABS REST API JSON information reports. Make sure to install Postman 6.2.5 or higher.

ABS self-signed certificate with Postman

ABS ships with a self-signed certificate. If you want to use Postman with the self-signed certificate of ABS,
then from Postman’s settings, disable the certificate verification option. Complete the following steps to
disable Postman from certificate verification:

1.

Click on the spanner on the top-right corner of Postman client. A drop-down window is
displayed.

Copyright ©2022

 | ABS AI Engine | 395

2. Select Settings from the drop-down window:

3. In the Settings window, switch-off certificate verification by clicking on the SSL certificate verification
button:

View ABS reports in Postman

To view the reports, complete the following steps:

1. Download ABS_4.3_Environment and ABS_4.3_Reports JSON files from API Reports Using
Postman folder on Ping Identity Download site. These configuration files will be used by Postman.

2. Download and install the Postman application 6.2.5 or higher.
3. In Postman, import the two Ping Identity files downloaded in step 1 by clicking the Import button.

4.
After importing the files, click the gear button in the upper right corner.

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html
https://www.getpostman.com

 | ABS AI Engine | 396

5. In the MANAGE ENVIRONMENTS pop-up window, click ABS_4.1_Environment
6. In the pop-up window, configure the following values and then click Update

▪ Server: IP address of the ABS node for which the dashboard_node was set to true in the
abs.properties file.

▪ Port: Port number of the ABS node.
▪ Access_Key_Header and Secret_Key_Header: Use the Admin user or Restricted user header. A

Restricted user sees obfuscated value of OAuth token, cookie and API keys. For more information of
different types of user, see ABS users for API reports

▪ Access_Key and Secret_Key: The Access Key and Secret Key configured in the opt/
pingidentity/mongo/abs_init.js for either admin or restricted user. Make sure that access
key and secret key corresponds to the admin or restricted user header configured.

▪ API_Name: The name of the API for which you want to generate the reports.
▪ Later_Date: A date which is more recent in time. For example, if the query range is between March

12 and March 14, then the later date would be March 14.
▪ Earlier_Date: A date which is past in time. For example, if the query range is between March 12 and

March 14, then the earlier date would be March 12.

i Note: Do not edit any fields that start with the word System.

7. In the main Postman window, select the report to display on the left column and then click Send.
ABS external REST APIs section provides detailed information on each API call and the JSON report
response.

ABS CLI
ABS and AAD CLI provides the commands listed in the following table.

Basic commands

▪ Start ABS
▪ Stop ABS
▪ Help
▪ Update password

Obfuscation commands

▪ Generate obfuscation key
▪ Obfuscate password

Start ABS

Description

Starts ABS. Run the command from /opt/pingidentity/abs/bin directory

Syntax

./start.sh

Stop ABS

Description

Stops ABS. Run the command from/opt/pingidentity/abs/bin directory

./stop.sh

Help

Description

Displays cli.sh help

Copyright ©2022

 | ABS AI Engine | 397

Syntax

./cli.sh help

Update Password

Description

Change ABS admin password

Syntax

./cli.sh update_password {-u admin}

Generate Master Key

Description

Generate the master obfuscation key abs_master.key

Syntax

./cli.sh -u admin -p admin generate_obfkey

Obfuscate Password

Description

Obfuscate the passwords configured in various configuration files

Syntax

./cli.sh -u admin -p admin obfuscate_keys

ABS external REST APIs
ABS external REST APIs

Following is a list of Ping Identity ABS APIs. The sample outputs produced are for the Admin user. You can
generate the output for the restricted user as well where the cookie, token, and API keys are obfuscated.
For more information on different type of users for the ABS External REST APIs, see ABS Users for API
Reports and Dashboard.

i Note: Note that ":" (colon) is a restricted character and cannot be used in access and secret key
headers in ABS external REST APIs

▪ Admin API
▪ Discovery API
▪ Decoy API
▪ GET Threshold API
▪ PUT Threshold
▪ Metrics API
▪ API Key Based Metrics API
▪ OAuth2 Token Based Metrics
▪ Username Metrics
▪ Anomalies API
▪ OAuth2 Token Forensics
▪ IP Forensics API
▪ Cookie Forensics API
▪ API Key Forensics API
▪ Username Forensics API
▪ Attack Type API
▪ Flow Control API

Copyright ©2022

 | ABS AI Engine | 398

▪ Blocked Connection API
▪ Backend Error API
▪ List Valid URLs API
▪ List Hacker’s URLs API
▪ Reset trained APIs

Admin REST API

Description: Admin API is used to fetch the list of nodes in the ABS cluster, Mongo DB Nodes, the status
of each node (CPU, memory, file System etc) and logs processed that are sent by all API Security Enforcer
nodes.

Method: GET

URL: /v4/abs/admin

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_admin",
 "description": "This report contains status information on all APIs, ABS clusters, and ASE logs",
 "license_info": {
 "tier": "Free",
 "expiry": "Sun Jan 10 00:00:00 UTC 2021",
 "max_transactions_per_month": 0,
 "current_month_transactions": 30,
 "max_transactions_exceeded": false,
 "expired": false
 },
 "across_api_prediction_mode": true,
 "poc": true,
 "api_discovery": {
 "subpath_length": "1",
 "status": true
 },
 "apis": [
 {
 "api_name": "atm_app_oauth",
 "host_name": "*",
 "url": "/atm_app_oauth",
 "api_type": "regular",
 "creation_date": "Thu Mar 05 08:54:01 UTC 2020",
 "servers": 1,
 "protocol": "https",
 "cookie": "JSESSIONID",
 "token": false,
 "training_started_at": "Fri Feb 14 06:44:06 UTC 2020",
 "training_duration": "1 hour",
 "prediction_mode": true,
 "apikey_header": "X-API-KEY-2",
 "apikey_qs": "",
 "jwt": {
 "username": "",
 "clientid": "",
 "location": ""

Copyright ©2022

 | ABS AI Engine | 399

 }
 },
 {
 "api_name": "root_api",
 "host_name": "*",
 "url": "/",
 "api_type": "regular",
 "creation_date": "Thu Mar 05 08:54:01 UTC 2020",
 "servers": 1,
 "protocol": "https",
 "cookie": "JSESSIONID",
 "token": false,
 "training_started_at": "n/a",
 "training_duration": "n/a",
 "prediction_mode": false,
 "apikey_header": "X-API-KEY-1",
 "apikey_qs": "",
 "jwt": {
 "username": "",
 "clientid": "",
 "location": ""
 }
 }
],
 "abs_cluster": {
 "abs_nodes": [
 {
 "node_ip": "127.0.0.1",
 "os": "Red Hat Enterprise Linux Server - VMware, Inc.",
 "cpu": "16",
 "memory": "31G",
 "filesystem": "3%",
 "bootup_date": "Fri Feb 28 08:13:19 UTC 2020"
 },
 {
 "node_ip": "127.0.0.1",
 "os": "Red Hat Enterprise Linux Server - VMware, Inc.",
 "cpu": "16",
 "memory": "31G",
 "filesystem": "4%",
 "bootup_date": "Tue Mar 24 06:35:47 UTC 2020"
 }
],
 "mongodb_nodes": [
 {
 "node_ip": "127.0.0.1:27017",
 "status": "primary"
 }
]
 },
 "ase_logs": [
 {
 "ase_node": "88968c39-b4ea-4481-a0b4-d0d651468ab5",
 "last_connected": "Thu Mar 05 08:40:14 UTC 2020",
 "logs": {
 "start_time": "Thu Mar 05 08:40:14 UTC 2020",
 "end_time": "Thu Mar 05 08:40:14 UTC 2020",
 "gzip_size": "0.74KB"
 }
 },
 {
 "ase_node": "e6b82ce9-afb3-431a-8faa-66f7ce2148b9",
 "last_connected": "Thu Mar 05 08:54:06 UTC 2020",
 "logs": {

Copyright ©2022

 | ABS AI Engine | 400

 "start_time": "Thu Mar 05 08:54:06 UTC 2020",
 "end_time": "Thu Mar 05 08:54:06 UTC 2020",
 "gzip_size": "2.82KB"
 }
 },
 {
 "ase_node": "4df50c47-407a-41f9-bda6-b72dc34dadad",
 "last_connected": "Fri Feb 28 07:20:03 UTC 2020",
 "logs": {
 "start_time": "Tue Feb 25 12:50:00 UTC 2020",
 "end_time": "Fri Feb 28 07:20:03 UTC 2020",
 "gzip_size": "76.01KB"
 }
 },
 {
 "ase_node": "1910051e-5bab-44e6-8816-5b5afffdd1cf",
 "last_connected": "Tue Feb 18 08:10:05 UTC 2020",
 "logs": {
 "start_time": "Fri Feb 14 06:42:38 UTC 2020",
 "end_time": "Tue Feb 18 08:10:05 UTC 2020",
 "gzip_size": "2.89MB"
 }
 }
],
 "percentage_diskusage_limit": "80%",
 "scale_config": {
 "scale_up": {
 "cpu_threshold": "70%",
 "cpu_monitor_interval": "30 minutes",
 "memory_threshold": "70%",
 "memory_monitor_interval": "30 minutes",
 "disk_threshold": "70%",
 "disk_monitor_interval": "30 minutes"
 },
 "scale_down": {
 "cpu_threshold": "10%",
 "cpu_monitor_interval": "300 minutes",
 "memory_threshold": "10%",
 "memory_monitor_interval": "300 minutes",
 "disk_threshold": "10%",
 "disk_monitor_interval": "300 minutes"
 }
 },
 "attack_ttl": {
 "ids": [
 {
 "id": "ip",
 "ttl": 120
 },
 {
 "id": "cookie",
 "ttl": 120
 },
 {
 "id": "access_token",
 "ttl": 120
 },
 {
 "id": "api_key",
 "ttl": 240
 },
 {
 "id": "username",
 "ttl": 360

Copyright ©2022

 | ABS AI Engine | 401

 }
]
 }
}

Discovery REST API

Description: The Discovery API discovers all the APIs that are available in your API ecosystem.

Method: GET

URL: /v4/abs/discovery

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_discovery_summary",
 "description": "This report contains summary of discovered APIs",
 "summary": [
 {
 "api_name": "api_0",
 "host": "bothcookientoken.com",
 "basePath": "/path1",
 "created": "Fri Mar 06 09:29:51:591 2020",
 "updated": "Fri Mar 06 09:50:03:372 2020"
 },
 {
 "api_name": "api_1",
 "host": "path5",
 "basePath": "/path1/path2/path3",
 "created": "Fri Mar 06 10:59:38:975 2020",
 "updated": "Fri Mar 06 11:36:45:596 2020"
 },
 {
 "api_name": "api_10",
 "host": "pathx",
 "basePath": "/path1/path2/path3",
 "created": "Fri Mar 06 10:59:57:320 2020",
 "updated": "Fri Mar 06 13:19:24:680 2020"
 },
 {
 "api_name": "api_11",
 "host": "path8",
 "basePath": "/path1",
 "created": "Fri Mar 06 10:59:39:392 2020",
 "updated": "Fri Mar 06 13:19:23:951 2020"
 },
 {
 "api_name": "api_12",
 "host": "path3",
 "basePath": "/path1/path2/path3",
 "created": "Fri Mar 06 10:59:38:672 2020",
 "updated": "Fri Mar 06 13:19:23:152 2020"
 },
 {
 "api_name": "api_13",

Copyright ©2022

 | ABS AI Engine | 402

 "host": "path4",
 "basePath": "/path1/path2/path3",
 "created": "Fri Mar 06 10:59:38:824 2020",
 "updated": "Fri Mar 06 11:36:45:452 2020"
 },
 {
 "api_name": "api_14",
 "host": "path5",
 "basePath": "/path1/path2/path3/path4/path5",
 "created": "Fri Mar 06 11:59:14:804 2020",
 "updated": "Fri Mar 06 12:18:24:732 2020"
 },
 {
 "api_name": "api_15",
 "host": "pathx",
 "basePath": "/path1/path2/path3/path4",
 "created": "Fri Mar 06 11:59:16:092 2020",
 "updated": "Fri Mar 06 13:19:25:283 2020"
 },
 {
 "api_name": "api_16",
 "host": "pathx",
 "basePath": "/path1/path2/path3/path4/path5",
 "created": "Fri Mar 06 11:59:16:244 2020",
 "updated": "Fri Mar 06 12:18:26:227 2020"
 },
 {
 "api_name": "api_17",
 "host": "path6",
 "basePath": "/path1/path2/path3/path4/path5/path6",
 "created": "Fri Mar 06 11:59:14:952 2020",
 "updated": "Fri Mar 06 12:18:24:876 2020"
 },
 {
 "api_name": "api_18",
 "host": "pathx",
 "basePath": "/path1/path2/path3/path4/path5/path6",
 "created": "Fri Mar 06 11:59:16:396 2020",
 "updated": "Fri Mar 06 12:18:26:532 2020"
 },
 {
 "api_name": "api_19",
 "host": "path7",
 "basePath": "/path1/path2/path3/path4/path5/path6",
 "created": "Fri Mar 06 11:59:15:096 2020",
 "updated": "Fri Mar 06 12:18:25:028 2020"
 },
 {
 "api_name": "api_9",
 "host": "path2",
 "basePath": "/path1/path2",
 "created": "Fri Mar 06 10:59:00:616 2020",
 "updated": "Fri Mar 06 13:19:23:003 2020"
 }
]
}

Decoy REST API

Description: Decoy API provides information about the IP address that accessed the decoy URL along
with the method used to access the decoy URL. It also reports about the type of device that was used to
access the decoy URL.

Copyright ©2022

 | ABS AI Engine | 403

Method: GET

URL: /v4/abs/decoy?later_date<>&earlier_date<>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "decoy_api_metrics",
 "description": "This report contains detailed information on client access
 to each decoy API",
 "earlier_date": "Tue Jan 11 17:50:00:000 2018",
 "later_date": "Tue Jan 11 18:00:00:000 2018",
 "api_name": "atmapp",
 "api_type": "decoy-incontext",
 "decoy_url": [
 "/atmapp/decoy"
],
 "summary": [
 {
 "decoy_url": "/atmapp/decoy",
 "unique_ip_count": 122,
 "total_requests": 240,
 "most_used_methods": {
 "GET": 88,
 "DELETE": 32,
 "ABDU": 32,
 "POST": 30,
 "PUT": 26
 },
 "most_used_ips": {
 "100.64.9.37": 4,
 "100.64.10.79": 4,
 "100.64.31.183": 2,
 "100.64.20.213": 2,
 "100.64.34.239": 2
 },
 "most_used_devices": {
 "UBUNTU": 76,
 "MAC_OS_X": 69,
 "WINDOWS_7": 61,
 "WINDOWS_XP": 34
 },
 "most_used_content_types": {
 "UNKNOWN": 184,
 "multipart/form-data": 56
 }
 }
],
 "details": [
 {
 "decoy_url": "/atmapp/decoy",
 "source_ip": [
 {
 "ip": "100.64.31.183",
 "total_requests": 2,
 "method_count": {

Copyright ©2022

 | ABS AI Engine | 404

 "GET": {
 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 },
 {
 "ip": "100.64.14.28",
 "total_requests": 2,
 "method_count": {
 "POST": {
 "count": 2,
 "payload_characteristics": {
 "multipart/form-data": [
 "354 bytes"
]
 }
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 },
 {
 "ip": "100.64.0.55",
 "total_requests": 2,
 "method_count": {
 "GET": {
 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 },
 {
 "ip": "100.64.20.152",
 "total_requests": 2,
 "method_count": {
 "DELETE": {
 "count": 2
 }
 },
 "url_count": {
 "/atmapp/decoy": 2
 }
 }
]
 }
]
}

Threshold REST API

ABS provides Threshold REST API for checking and updating attack thresholds. It helps to identify and
tune thresholds false positives. For more information see, Tune thresholds for false positives on page
324.

The following are the methods of Threshold REST APIs:

▪ GET Threshold on page 405

Copyright ©2022

 | ABS AI Engine | 405

▪ PUT Threshold on page 406

GET Threshold

Description: The GET method in Threshold API fetches the threshold values for attack types.

Method: GET

URL for an API: /v4/abs/attack/threshold?api=<api_name>

URL for across API: /v4/abs/attack/threshold?id=<type_id> . The API name is not specified in
the URL for fetching the threshold value. Type ID is the attack ID

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response for an API

{
 "company": "ping identity",
 "name": "api_threshold",
 "description": "This report contains threshold settings for all the
 across API Attack IDs",
 "thresholds": [
 {
 "id": 1,
 "type": "data_exfiltration_attack",
 "user": {
 "A": {
 "tn": "18",
 "tx": "20"
 },
 "B": {
 "tn": "18",
 "tx": "20"
 }
 },
 "system": {
 "A": {
 "tn": "22",
 "tx": "24"
 },
 "B": {
 "tn": "4",
 "tx": "6"
 },
 "C": {
 "tn": "2",
 "tx": "4"
 }
 }
 },
 {
 "id": 2,
 "type": "single_client_login_attack",
 "system": {
 "A": {
 "tn": "5",
 "tx": "7"
 },

Copyright ©2022

 | ABS AI Engine | 406

 "B": {
 "tn": "5",
 "tx": "7"
 }
 }
 },
}

Sample Response for across API

{
 "company": "ping identity",
 "name": "api_threshold",
 "description": "This report contains threshold settings for the
 specified API",
 "api_name": "access_token",
 "threshold": [
 {
 "type": "extended_stolen_access_token",
 "system": {
 "A": {
 "tn": "2",
 "tx": "na"
 },
 "B": {
 "tn": "1",
 "tx": "na"
 },
 "C": {
 "tn": "1",
 "tx": "na"
 }
 }
 }
]
}

PUT Threshold

Description: The PUT method in Threshold API is used to set the threshold values for attack types. If you
set the mode to system, the user set values are dropped. If you move the mode back to user, you would
need to configure the threshold values again. For more information on manually setting threshold values,
see Manually set thresholds.

Method: PUT

URL:: /v4/abs/attack/threshold

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Input for an API

{
 "api_name" : "atmapp",
 "mode": "system",
 "ioc_threshold": [
 {
 "type": "api_memory_post",

Copyright ©2022

 | ABS AI Engine | 407

 "variable": "A",

 },
 {
 "type": "api_memory_put",
 "variable": "B"
 }
]
}

The following is the response when the threshold values are set:

{
 "status_code": "SUCCESS",
 "message": "attack threshold updated"
}

Sample Input for across API:

{
 "id":"18",
 "mode": "user",
 "ioc_threshold": [
{
 "type": "extended_probing_replay_cookie",
 "variable": "A",
 "tn": "25",
 "tx": "28"
 },{
 "type": "extended_probing_replay_cookie",
 "variable": "B",
 "tn": "3",
 "tx": "4"
 }
]
}

The following is the response when the threshold values are set:

{
 "status_code": "SUCCESS",
 "message": "attack threshold updated"
}

Metrics REST API

DescriptionThe Metrics API is used to fetch API Traffic metrics. The response contains request count for
each API, bad request count, request success, failure count, and so on.

i Note: If ASE is deployed in sideband mode, then server field in the output shows the IP address as
0.0.0.0. For ASE deployed in inline mode, the server field shows the IP address of the backend API
server. For more information on ASE sideband mode, see the ASE Admin Guide.

Method: GET

URL: /v4/abs/metrics?later_date=<>&earlier_date=<>api=<api_name>

Header Value

Access Key x-abs-ak <string>

Copyright ©2022

 | ABS AI Engine | 408

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_metrics",
 "description": " This report contains metrics for request/response traffic
 for the specified API",
 "earlier_date": "Mon Jan 13 18:00:00:000 2018",
 "later_date": "Wed Jan 15 18:00:00:000 2018",
 "api_name": "shop",
 "req_resp_summary": {
 "api_url": "shopapi",
 "total_requests": 342102,
 "success": 279360,
 "sessions": 0,
 "no_sessions": 342102,
 "most_popular_method": "GET",
 "most_popular_device": "MAC_OS_X",
 "most_popular_ips": [
 "10.10.1.38",
 "10.10.1.39",
 "10.10.1.37"
]
 "servers": [
 {
 "server": "192.168.11.164:3001",
 "count": 5357
 },
 {
 "server": "192.168.11.164:3002",
 "count": 5354
 },
 {
 "server": "192.168.11.164:3003",
 "count": 5358
 },
 {
 "server": "192.168.11.164:3004",
 "count": 1667
 }
]
 },
 "req_resp_details": {
 "api_url": "shopapi",
 "session_details": [],
 "no_session": {
 "request_details": [
 {
 "total_requests": 14865,
 "source_ip": [
 {
 "ip": "10.10.1.24",
 "count": 152,
 "method": [
 "POST"
]
 },
 {
 "ip": "10.10.1.71",
 "count": 482,

Copyright ©2022

 | ABS AI Engine | 409

 "method": [
 "PUT"
]
 }
],
 "user_agent": [
 {
 "user_agent": "SAFARI",
 "count": 7187
 },
 {
 "user_agent": "FIREFOX",
 "count": 12536
 },
 {
 "user_agent": "MOZILLA",
 "count": 5509
 },
 {
 "user_agent": "CHROME",
 "count": 29241
 }
],
 "server": [
 {
 "server": "192.168.11.164:3001",
 "count": 723
 },
 {
 "server": "192.168.11.164:3002",
 "count": 689
 },
 {
 "server": "192.168.11.164:3003",
 "count": 749
 },
 {
 "server": "192.168.11.164:3004",
 "count": 237
 }
]
 "path": "/shopapi/put",
 "device": [
 {
 "device": "WINDOWS_8",
 "count": 8338
 },
 {
 "device": "MAC_OS_X",
 "count": 14276
 },
 {
 "device": "WINDOWS_XP",
 "count": 5990
 },
 {
 "device": "UBUNTU",
 "count": 6546
 }
]
 },
 {
 "total_requests": 2,
 "source_ip": [

Copyright ©2022

 | ABS AI Engine | 410

 {
 "ip": "10.10.1.69",
 "count": 2,
 "method": [
 "GET"
]
 }
],
 "user_agent": [
 {
 "user_agent": "CHROME",
 "count": 2
 }
],
 "path": "/shopapi/get/etc",
 "device": [
 {
 "device": "MAC_OS_X",
 "count": 3
 }
]
 }
]
 }
 }
}

API Key Metrics REST API

Description: The API Key-based Metrics API is used to fetch the metrics for API Keys across all APIs.

Method: GET

URL: /v4/abs/apikeys?later_date=<yy-mm-dd>T<hh:mm>&earlier_date==<yy-mm-
dd>T<hh:mm>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_key_metrics",
 "description": "This report contains a summary and detailed api key
 metrics across all APIs",
 "earlier_date": "Fri Jan 19 13:00:00:000 2018",
 "later_date": "Sat Jan 20 18:00:00:000 2018",
 "summary": {
 "api_keys": 325,
 "total_requests": 329
 },
 "details": [
 {
 "api_key": "87FYNG7Q8KP1V03O",
 "total_requests": 1,
 "ip_list": [
 {
 "ip": "100.64.5.79",
 "total_requests": 1,

Copyright ©2022

 | ABS AI Engine | 411

 "devices": {
 "MAC_OS_X": 1
 },
 "methods": {
 "DELETE": 1
 },
 "urls": {
 "/apikeyheader/zipcode": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
]
 },
 {
 "api_key": "NW0ODLM68PFQ3XTL",
 "total_requests": 1,
 "ip_list": [
 {
 "ip": "100.64.20.62",
 "total_requests": 1,
 "devices": {
 "WINDOWS_XP": 1
 },
 "methods": {
 "DELETE": 1
 },
 "urls": {
 "/apikeyheader/zipcode": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
]
 },
 {
 "api_key": "86ELLUSN6RAHEPF7",
 "total_requests": 1,
 "ip_list": [
 {
 "ip": "100.64.17.79",
 "total_requests": 1,
 "devices": {
 "MAC_OS_X": 1
 },
 "methods": {
 "GET": 1
 },
 "urls": {
 "/apikeyheader/zipcode": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
]
 },
 {
 "api_key": "5JSKZZ53TGBQZ8V2",
 "total_requests": 1,
 "ip_list": [
 {

Copyright ©2022

 | ABS AI Engine | 412

 "ip": "100.64.33.183",
 "total_requests": 1,
 "devices": {
 "WINDOWS_7": 1
 },
 "methods": {
 "POST": 1
 },
 "urls": {
 "/apikeyheader/login": 1
 },
 "apis": {
 "apikeyheader": 1
 }
 }
]
 }
]
}

OAuth2 Token Metrics REST API

Description: The OAuth2 token-based API is used to fetch the metrics for OAuth2 token across all APIs.

Method: GET

URL: /v4/abs/oauthtokens?later_date=<yy-mm-dd>T<hh:mm>&earlier_date==<yy-mm-
dd>T<hh:mm>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "oauth_token_metrics",
 "description": "This report contains a summary and detailed oauth token
 metrics across all APIs",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "tokens": 30,
 "total_requests": 163250
 },
 "details": [
 {
 "token": "token_highresptime",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "GET": 2
 },
 "urls": {

Copyright ©2022

 | ABS AI Engine | 413

 "/2_atm_app_oauth/longresponse": 1,
 "/atm_app_oauth/longresponse": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
]
 },
 {
 "token": "token10",
 "total_requests": 4596,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 4596,
 "devices": {
 "UNKNOWN": 4596
 },
 "methods": {
 "DELETE": 148,
 "POST": 1036,
 "GET": 1796,
 "PUT": 1616
 },
 "urls": {
 "/2_atm_app_oauth/put200": 656,
 "/atm_app_oauth/delete200": 68,
 "/2_atm_app_oauth/put400": 152,
 "/atm_app_oauth/delete400": 6
 },
 "apis": {
 "atm_app_oauth": 2298,
 "2_atm_app_oauth": 2298
 }
 }
]
 },
 {
 "token": "token14",
 "total_requests": 7604,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 7604,
 "devices": {
 "UNKNOWN": 7604
 },
 "methods": {
 "DELETE": 1596,
 "POST": 160,
 "GET": 4000,
 "PUT": 1848
 },
 "urls": {
 "/2_atm_app_oauth/put200": 846,
 "/atm_app_oauth/delete200": 742,
 "/2_atm_app_oauth/put400": 78,
 "/2_atm_app_oauth/get400": 264
 },
 "apis": {
 "atm_app_oauth": 3802,
 "2_atm_app_oauth": 3802

Copyright ©2022

 | ABS AI Engine | 414

 }
 }
]
 },
 {
 "token": "token_type2memory",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "POST": 2
 },
 "urls": {
 "/2_atm_app_oauth/post200": 1,
 "/atm_app_oauth/post200": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
]
 },
 {
 "token": "token_method",
 "total_requests": 2,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 2,
 "devices": {
 "UNKNOWN": 2
 },
 "methods": {
 "HEAD": 2
 },
 "urls": {
 "/2_atm_app_oauth/get400": 1,
 "/atm_app_oauth/get400": 1
 },
 "apis": {
 "atm_app_oauth": 1,
 "2_atm_app_oauth": 1
 }
 }
]
 }
]
}

Username Metrics REST API

Description: The Username base Metrics API is used to fetch the metrics for username across all APIs.

Method: GET

URL: /v4/abs/username?later_date=<yy-mm-dd>T<hh:mm>&earlier_date==<yy-mm-
dd>T<hh:mm>

Copyright ©2022

 | ABS AI Engine | 415

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "username_metrics",
 "description": "This report contains a summary and detailed username
 metrics across all APIs",
 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "summary": {
 "usernames": 4,
 "total_requests": 700
 },
 "details": [
 {
 "username": "t4",
 "tokens": [
 "t4VjqtSC",
 "t4XjDKtD",
 "t4JGkNZO",
 "t4gTqCqM",
 "t4UTgLaK",
 "t4mhTDNj",
 "t4srzDrl"
],
 "total_requests": 70,
 "ip_list": [
 {
 "ip": "127.0.0.28",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {
 "atm_app_oauth": 35
 }
 },
 {
 "ip": "127.0.0.1",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {

Copyright ©2022

 | ABS AI Engine | 416

 "atm_app_oauth": 35
 }
 }
]
 },
 {
 "username": "t7",
 "tokens": [
 "t7cnVFBi",
 "t7wGQSnc",
 "t7XnAlRa",
 "t7MYwQan",
 "t7jzNFVF",
 "t7nsdecG",
 "t7Datxrw"
],
 "total_requests": 70,
 "ip_list": [
 {
 "ip": "127.0.0.28",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {
 "atm_app_oauth": 35
 }
 },
 {
 "ip": "127.0.0.1",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {
 "atm_app_oauth": 35
 }
 }
]
 },
 {
 "username": "t0",
 "tokens": [
 "t0iPoYEc",
 "t0wkCuYC",
 "t0YXowow",
 "t0NSwIjU",
 "t0PRwPik",
 "t0tEtlzI",
 "t0XBLmcE"
],
 "total_requests": 70,

Copyright ©2022

 | ABS AI Engine | 417

 "ip_list": [
 {
 "ip": "127.0.0.28",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {
 "atm_app_oauth": 35
 }
 },
 {
 "ip": "127.0.0.1",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {
 "atm_app_oauth": 35
 }
 }
]
 },
 {
 "username": "t3",
 "tokens": [
 "t3GUUfmD",
 "t3tRVhdk",
 "t3nkCZIR",
 "t3EFpRTc",
 "t3PuDsBr",
 "t3xGzXXB",
 "t3pZoWgX"
],
 "total_requests": 70,
 "ip_list": [
 {
 "ip": "127.0.0.28",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {
 "atm_app_oauth": 35
 }
 },

Copyright ©2022

 | ABS AI Engine | 418

 {
 "ip": "127.0.0.1",
 "total_requests": 35,
 "devices": {
 "LINUX": 35
 },
 "methods": {
 "POST": 35
 },
 "urls": {
 "/atm_app_oauth": 35
 },
 "apis": {
 "atm_app_oauth": 35
 }
 }
]
 }
]
}

Anomalies REST API

Description: The Anomalies API is used to fetch the list of anomalies. The response contains anomalies
count for the API, request success or failure count, and so on.

Method: GET

URL: /v4/abs/anomalies?later_date=<>earlier_date=<>&api=<api_name>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_anomalies",
 "description": "This report contains information on anomalous activity
 on the specified API.",
 "earlier_date": "Sun Jan 12 18:00:00:000 2018",
 "later_date": "Tue Jan 14 18:00:00:000 2018",
 "api_name": "shop",
 "anomalies_summary": {
 "api_url": "shopapi",
 "total_anomalies": 14,
 "most_suspicious_ips": [],
 "most_suspicious_anomalies_urls": []
 },
 "anomalies_details": {
 "url_anomalies": {
 "suspicious_sessions": [],
 "suspicious_requests": []
 },
 "ioc_anomalies": [
 {
 "anomaly_type": "API Memory Attack Type 2",
 "cookies": [
 {
 "cookie": "AMAT_2_H",

Copyright ©2022

 | ABS AI Engine | 419

 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
]
 },
 {
 "cookie": "AMAT_2_H",
 "access_time": [
 "Mon Jan 13 01:01:33:589 2018"
]
 }
]
 },
 {
 "anomaly_type": "Data Exfiltration Attack",
 "cookies": [
 {
 "cookie": "data_exfilteration_VH",
 "access_time": [
 "Mon Jan 13 04:54:49:222 2018"
]
 },
 {
 "cookie": "data_exfilteration_H",
 "access_time": [
 "Mon Jan 13 05:26:53:981 2018"
]
 }
]
 },
 {
 "anomaly_type": "Cookie DoS Attack",
 "cookies": [
 {
 "cookie": "data_exfilteration_VH",
 "access_time": [
 "Mon Jan 13 04:54:49:222 2018"
]
 },
 {
 "cookie": "AMAT_1_freq_VH",
 "access_time": [
 "Sun Jan 12 23:17:55:931 2018"
]
 },
 {
 "cookie": "data_exfilteration__H__H",
 "access_time": [
 "Mon Jan 13 05:39:18:515 2018"
]
 },
 {
 "cookie": "AMAT_2_VH",
 "access_time": [
 "Sun Jan 12 23:59:39:483 2018"
]
 }
]
 },
 {
 "anomaly_type": "Extreme Client Activity Attack",
 "cookies": [
 {
 "cookie": "data_exfilteration_VH",
 "access_time": [

Copyright ©2022

 | ABS AI Engine | 420

 "Mon Jan 13 04:54:49:222 2018"
]
 },
 {
 "cookie": "AMAT_1_VH",
 "access_time": [
 "Sun Jan 12 23:17:55:931 2018"
]
 },
 {
 "cookie": "data_exfilteration_H_H",
 "access_time": [
 "Mon Jan 13 05:39:18:515 2018"
]
 },
 {
 "cookie": "AMAT_2_VH",
 "access_time": [
 "Sun Jan 12 23:59:39:483 2018"
]
 }
]
 }
]
 }
}

Anomalies across APIs

Description: The across APIs Anomalies REST API is used to fetch the list of anomalies. The response
contains the type of anomalies, the type ID and the date range when the anomaly was detected.

Method: GET

URL: /v4/abs/anomalies?later_date=<>earlier_date=<>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

[
 {
 "company": "ping identity",
 "anomaly_type": "Stolen API Key Attack - Per API Key",
 "type": 31,
 "name": "api_anomaly_type",
 "description": "Client (API Key) reusing API Keys to deceive
 application services",
 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "api_name": "all"
 },
 {
 "company": "ping identity",
 "anomaly_type": "Probing Replay Attack - API Key",
 "type": 32,
 "name": "api_anomaly_type",
 "description": "Probing or breach attempts on an API service – also
 called fuzzing",

Copyright ©2022

 | ABS AI Engine | 421

 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "api_name": "all"
 },
 {
 "company": "ping identity",
 "anomaly_type": "Extended Probing Replay Attack - API key",
 "type": 33,
 "name": "api_anomaly_type",
 "description": "Probing or breach attempts on an API service – also
 called fuzzing",
 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "api_name": "all"
 },
 {
 "company": "ping identity",
 "anomaly_type": "Account Takeover Attack Type 1 - Username",
 "type": 34,
 "name": "api_anomaly_type",
 "description": "Abnormal activity by user indicating his/her
 credentials are compromised",
 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "api_name": "all"
 },
 {
 "company": "ping identity",
 "anomaly_type": "Account Takeover Attack Type 2 - Username",
 "type": 35,
 "name": "api_anomaly_type",
 "description": "Abnormal activity by user indicating his/her
 credentials are compromised",
 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "api_name": "all"
 },
 {
 "company": "ping identity",
 "anomaly_type": "Sequence Attack",
 "type": 36,
 "name": "api_anomaly_type",
 "description": "Abnormal sequence of transactions",
 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "api_name": "all"
 }
]

OAuth2 Token Forensics REST API

Description: The OAuth2 token forensics provides information like total number of requests for a token
and the number of attacks identified using the token.

Method: GET

URL: /v4/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>&token=<oauth2_token>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Copyright ©2022

 | ABS AI Engine | 422

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_token",
 "description": "This report contains a summary and detailed information on
 metrics, attacks and anomalies for the specified token across all APIs.",
 "earlier_date": "Tue Feb 13 18:00:00:000 2018",
 "later_date": "Sun Feb 18 18:00:00:000 2018",
 "summary": {
 "total_requests": 6556,
 "total_attacks": 2,
 "total_anomalies": 0
 },
 "details": {
 "metrics": {
 "token": "token1",
 "total_requests": 6556,
 "ip_list": [
 {
 "ip": "127.0.0.1",
 "total_requests": 6556,
 "devices": {
 "UNKNOWN": 6556
 },
 "methods": {
 "DELETE": 472,
 "POST": 140,
 "GET": 1944,
 "PUT": 4000
 },
 "urls": {
 "/atm_app_oauth/delete200": 218,
 "/atm_app_oauth/get200": 850,
 "/atm_app_oauth/post400": 8,
 "/atm_app_oauth/post200": 62,
 "/atm_app_oauth/put400": 62,
 "/atm_app_oauth/get400": 122,
 "/atm_app_oauth/put200": 1938,
 "/atm_app_oauth/delete400": 18,
 "/2_atm_app_oauth/put200": 1938,
 "/2_atm_app_oauth/post200": 62,
 "/2_atm_app_oauth/delete200": 218,
 "/2_atm_app_oauth/delete400": 18,
 "/2_atm_app_oauth/put400": 62,
 "/2_atm_app_oauth/post400": 8,
 "/2_atm_app_oauth/get400": 122,
 "/2_atm_app_oauth/get200": 850
 },
 "apis": {
 "atm_app_oauth": 3278,
 "2_atm_app_oauth": 3278
 }
 }
]
 },
 "attack_types": {
 "API Memory Attack Type 1": [
 "atm_app_oauth",
 "2_atm_app_oauth"
],
 "Data Poisoning Attack": [
 "atm_app_oauth",

Copyright ©2022

 | ABS AI Engine | 423

 "2_atm_app_oauth"
]
 },
 "anomaly_types": {}
 }
}

IP Forensics REST API

Description: The IP forensics API provides forensics information for an IP address during a specified
period. Information delivered includes attack types, metrics, and anomaly details.

Method: GET

URL: /v4/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>&IP=<IP_address>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_ip",
 "description": " This report contains a summary and detailed information
 on all attacks, metrics, and anomalies for the specified IP address on
 the defined API.",
 "summary": {
 "total_requests": 18222,
 "total_ioctypes": 0,
 "total_anomalies": 0
 },
 "details": {
 "ioc_types": [],
 "metrics": {
 "no_session": [
 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 2749,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/login"
 "methods": [
 "GET"
]
 },
 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 2952,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/upload"
 },
 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 9547,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/zipcode"
 },

Copyright ©2022

 | ABS AI Engine | 424

 {
 "start_time": "Sat Jan 04 15:30:00:000 2018",
 "end_time": "Sat Jan 04 15:39:59:952 2018",
 "total_requests": 2964,
 "source_ip": "100.64.10.203",
 "path": "/atmapp/update"
 }
],
 "session": [
 {
 "session_id": "ZP7FE32357SPVT5X",
 "start_time": "Sat Jan 04 15:35:14:241 2018",
 "end_time": "Sat Jan 04 15:35:14:241 2018",
 "total_requests": 1,
 "source_ip": [
 {
 "ip": "100.64.10.203",
 "count": 1,
 "method": [
 "POST"
]
 }
],
 "user_agent": [
 {
 "user_agent": "IE11",
 "count": 1
 }
],
 "path_info": [
 {
 "path": "/atmapp/upload",
 "count": 1
 }
],
 "device": [
 {
 "device": "WINDOWS_7",
 "count": 1
 }
]
 },

 "device": [
 {
 "device": "MAC_OS_X",
 "count": 1
 }
]
 },

 "start_time": "Sat Jan 04 15:40:00:000 2018",
 "end_time": "Sat Jan 04 15:30:00:000 2018",
 "api_name": "atmapp"
}

Cookie Forensics REST API

Description: Cookie forensics API provides forensics information for a cookie during a specified period.
Information provided includes attack types, metrics, and anomaly details.

Method: GET

Copyright ©2022

 | ABS AI Engine | 425

URL: /v4/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>
&cookie=<cookie_value>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_cookie",
 "description": "This report contains a summary and detailed information
 on all attacks, metrics, and anomalies for the specified cookie on
 the defined API",
 "earlier_date": "Mon Jan 17 06:40:00:000 2018",
 "later_date": "Mon Jan 17 07:00:00:000 2018",
 "api_name": "shop",
 "summary": {
 "total_requests": 501,
 "total_anomalies": 0,
 "total_ioc": 3
 },
 "details": {
 "ioc_types": [
 "data_exfiltration_attack",
 "cookie_dos_attack",
 "extreme_client_activity_attack"
],
 "metrics": [
 {
 "session_id": "extreme_client_activity_500_request",
 "start_time": "Mon Jan 17 06:47:19:687 2018",
 "end_time": "Mon Jan 17 06:47:20:505 2018",
 "total_requests": 501,
 "source_ip": [
 {
 "ip": "100.100.10.12",
 "count": 501,
 "method": [
 "POST",
 "GET"
]
 }
],
 "user_agent": [
 {
 "user_agent": "CHROME",
 "count": 501
 }
],
 "path_info": [
 {
 "path": "/shopapi/get",
 "count": 500
 },
 {
 "path": "/shopapi/login",
 "count": 1
 }
],

Copyright ©2022

 | ABS AI Engine | 426

 "device": [
 {
 "device": "LINUX",
 "count": 501
 }
]
 }
],
 "anomalies": []
 }
}

Token Forensics REST API

Description: Token forensics API provides forensics information for a token during a specified period.
Information provided includes attack types, metrics, and anomaly details.

Method: GET

URL: /v4/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>
&token=<oauth2_token>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_token",
 "description": "This report contains a summary and detailed information
 on metrics, attacks and anomalies for the specified token across all
 APIs.",
 "earlier_date": "Wed May 22 12:00:00:000 2019",
 "later_date": "Fri Jun 28 12:00:00:000 2019",
 "summary": {
 "total_requests": 10,
 "total_attacks": 0,
 "total_anomalies": 0
 },
 "details": {
 "metrics": {
 "token": "t3nkCZIR",
 "total_requests": 10,
 "ip_list": [
 {
 "ip": "127.0.0.28",
 "total_requests": 5,
 "devices": {
 "LINUX": 5
 },
 "methods": {
 "POST": 5
 },
 "urls": {
 "/atm_app_oauth": 5
 },
 "apis": {
 "atm_app_oauth": 5

Copyright ©2022

 | ABS AI Engine | 427

 }
 },
 {
 "ip": "127.0.0.1",
 "total_requests": 5,
 "devices": {
 "LINUX": 5
 },
 "methods": {
 "POST": 5
 },
 "urls": {
 "/atm_app_oauth": 5
 },
 "apis": {
 "atm_app_oauth": 5
 }
 }
]
 },
 "attack_types": {},
 "anomaly_types": {}
 }
}

API Key Forensics REST API

API Key forensics API provides forensics information for a API Key during a specified period. Information
provided includes attack types, metrics, and anomaly details.

Method: GET

URL: /v4/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm> &api_key=<api_key>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_api_key",
 "description": "This report contains a summary and detailed information
 on metrics, attacks and anomalies for the specified api key across all
 APIs.",
 "earlier_date": "Sat Jan 12 13:30:00:000 2019",
 "later_date": "Tue Dec 31 18:00:00:000 2019",
 "summary": {
 "total_requests": 2621,
 "total_attacks": 1,
 "total_anomalies": 1
 },
 "details": {
 "metrics": {
 "api_key": "finite_api_key",
 "total_requests": 2621,
 "ip_list": [
 {
 "ip": "192.168.2.2",
 "total_requests": 457,

Copyright ©2022

 | ABS AI Engine | 428

 "devices": {
 "UNKNOWN": 457
 },
 "methods": {
 "GET": 457
 },
 "urls": {
 "/atm_app/getzipcode": 457
 },
 "apis": {
 "atm_app": 457
 }
 },
 {
 "ip": "192.168.2.1",
 "total_requests": 560,
 "devices": {
 "UNKNOWN": 560
 },
 "methods": {
 "GET": 560
 },
 "urls": {
 "/atm_app/getzipcode": 560
 },
 "apis": {
 "atm_app": 560
 }
 },
 {
 "ip": "192.168.2.3",
 "total_requests": 404,
 "devices": {
 "UNKNOWN": 404
 },
 "methods": {
 "GET": 404
 },
 "urls": {
 "/atm_app/getzipcode": 404
 },
 "apis": {
 "atm_app": 404
 }
 },
 {
 "ip": "192.168.2.5",
 "total_requests": 1200,
 "devices": {
 "UNKNOWN": 1200
 },
 "methods": {
 "GET": 1200
 },
 "urls": {
 "/atm_app/getzipcode": 1200
 },
 "apis": {
 "atm_app": 1200
 }
 }
]
 },
 "attack_types": {

Copyright ©2022

 | ABS AI Engine | 429

 "Stolen API Key Attack- Per API Key": [
 "all"
]
 },
 "anomaly_types": {
 "Stolen API Key Attack- Per API Key": [
 "all"
]
 }
 }
}

Username Forensics REST API

Username forensics API provides forensics information for a username during a specified period.
Information provided includes attack types, metrics, and anomaly details.

Method: GET

URL: /v4/abs?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm> &username=<username>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_abs_username",
 "description": "This report contains a summary and detailed information
 on metrics, attacks and anomalies for the specified user name across all
 APIs.",
 "earlier_date": "Sat Jan 12 13:30:00:000 2019",
 "later_date": "Tue Dec 31 18:00:00:000 2019",
 "summary": {
 "total_requests": 109965,
 "total_attacks": 0,
 "total_anomalies": 0
 },
 "details": {
 "metrics": {
 "username": "t4",
 "tokens": [
 "t4MFBkEe",
 "t4GpEkUS",
 "t4ZxUOjb",
 "t4QEvJKT"
],
 "total_requests": 109965,
 "ip_list": [
 {
 "ip": "127.0.0.28",
 "total_requests": 54983,
 "devices": {
 "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/57.0.2987.110 Safari/537.36": 54983
 },
 "methods": {
 "POST": 54983
 },

Copyright ©2022

 | ABS AI Engine | 430

 "urls": {
 "/atm_app_oauth": 54983
 },
 "apis": {
 "atm_app_oauth": 54983
 }
 },
 {
 "ip": "127.0.0.1",
 "total_requests": 54982,
 "devices": {
 "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/57.0.2987.110 Safari/537.36": 54982
 },
 "methods": {
 "POST": 54982
 },
 "urls": {
 "/atm_app_oauth": 54982
 },
 "apis": {
 "atm_app_oauth": 54982
 }
 }
]
 },
 "attack_types": {},
 "anomaly_types": {}
 }
}

Attack Types REST and WebSocket APIs

Description: The Attack Type API lists attack details based on the attack ID provided in the API query
parameter. The attack type ID ranges from 1-37 for REST APIs and 50-53 for WebSocket APIs. The REST
API attacks can be per API or across APIs. For more information see, REST API attacks and WebSocket
API attacks

Method: GET

URL for per API attacks (REST and WebSocket): /v4/abs/attack?
later_date<>&earlier_date<>&api=<api_name>&type=<type_id>

URL for across API attacks: /v4/abs/attack?
later_date<>&earlier_date<>&type=<type_id>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "description": " Client (IP or Cookie) extracting an abnormal amount of
 data for given API",
 "earlier_date": "Sat Jun 01 08:20:00:000 2019",
 "later_date": "Wed Jun 05 13:20:00:000 2019",
 "api_name": "atmapp",
 "ioc_type": "Data Exfiltration",

Copyright ©2022

 | ABS AI Engine | 431

 "ips": [
 {
 "ip": "100.64.6.50",
 "access_time": [
 "Tue Jun 04 16:09:59:935 2019"
]
 },
 {
 "ip": "100.64.6.51",
 "access_time": [
 "Tue Jun 04 16:09:59:935 2019",
 "Tue Jun 04 16:39:59:996 2019"
]
 }
]
}

Flow Control REST API

Description: The Flow Control API is used to fetch details of all connections that exceeded the threshold
value for client spike, server spike, connection queued, connection rejected, bytes-in spike, and bytes-out
spike.

i Note: The flow control report is only available when ASE is deployed in inline mode.

Method: GET

URL: /v4/abs/flowcontrol?later_date=<>&earlier_date=<>&api=<api_name>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_flowcontrol",
 "description": "This report contains flow control information for the
 specified API.",
 "earlier_date": "Wed Jan 01 08:20:00:000 2018",
 "later_date": "Sun Jan 05 13:20:00:000 2018",
 "api_name": "websocket",
 "summary": {
 "client_spike": 610,
 "connection_queued": 0,
 "connection_quota_exceeded": 0,
 "bytes_in_spike": 2743,
 "bytes_out_spike": 287
 },
 "details": {
 "client_spike": [],
 "server_spike": [
 {
 "request_time": "Fri Jan 09 17:19:55:977 2016",
 "connection_id": "147378243",
 "source_ip": "100.64.26.163",
 "destination_api": "/atmapp/login"
 },

Copyright ©2022

 | ABS AI Engine | 432

 {
 "request_time": "Fri Jan 09 17:19:55:991 2016",
 "connection_id": "1919058221",
 "source_ip": "100.64.20.230",
 "destination_api": "/atmapp/zipcode"
 }
],
 "connections_queued": [],
 "connections_rejected": [],
 "bytes_in_spike": [],
 "bytes_out_spike": []
 }
}

Blocked Connection REST API

Description: The Blocked Connection API is used to fetch the list of blocked or dropped connections. The
response includes anomalies count for the given API, such as request success or failure count.

Method: GET

URL /v4/abs/bc?later_date=<>T<hh:mm>&earlier_date=<>T<hh:mm>&details=true

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "earlier_date": "Wed Jan 01 08:20:00:000 2018",
 "later_date": "Sun Jan 05 13:20:00:000 2018",
 "api_blocked_connections": [
 {
 "date": "05September2016",
 "blocked_connections": [
 {
 "apiproxy_node":"204101a4-8b70-489d-98e9-
 aa3f6e67a93f",
 "blocked_connections": [
 {
 "category": "ioc",
 "details": []
 },
 {
 "category": "api",
 "details": [
 {
 "source": "100.64.31.235",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"
 },
 {
 "source": "100.64.25.184",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"
 },
 {
 "source": "100.64.6.137",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"

Copyright ©2022

 | ABS AI Engine | 433

 },
 {
 "source": "100.64.1.251",
 "type": "no_backend_available",
 "destination_api": "/atmapp/zipcode"
 }
]
 }
]
 }
]
 }
]
}

Backend Error REST API

Description: The Backend Error API displays errors reported by the backend servers.

Method: GET

URL: /v4/abs/be?ealier_date=<>T<hh:mm>&later_date=<>T<hh:mm>&api=<api_name>

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_backend_errors",
 "description": "This report contains details of backend error
 codes for the specified API",
 "earlier_date": "Wed Jan 01 08:20:00:000 2018",
 "later_date": "Sun Jan 05 13:20:00:000 2018",
 "api_name": "atmapp",
 "backend_error_summary": [
 {
 "error_code": "403",
 "error": "Forbidden",
 "count": 0
 },
 {
 "error_code": "404",
 "error": "Not Found",
 "count": 0
 },
 {
 "error_code": "500",
 "error": "Internal Server Error",
 "count": 16
 },
 {
 "error_code": "503",
 "error": "Service Unavailable",
 "count": 0
 },
 {
 "error_code": "504",
 "error": "Gateway Timeout",

Copyright ©2022

 | ABS AI Engine | 434

 "count": 0
 }
],
 "backend_error_details": [
 {
 "error_code": "403",
 "details": []
 },
 {
 "error_code": "404",
 "details": []
 },
 {
 "error_code": "500",
 "details": [
 {
 "server": "192.168.11.164:3001",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.183:24078",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3002",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.18.126:61932",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3004",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.27.176:2908",
 "request_cookie": "JSESSIONID=6UQANJWB42U4A4PF"
 },
 {
 "server": "192.168.11.164:3004",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.14.237:21973",
 "request_cookie": "JSESSIONID=LJ66P3NQW5SDVW8Q"
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.101:5523",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.23.132:14473",
 "request_cookie": "JSESSIONID=NCTZ4RSOZP2IT2OU"
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.5.197:50811",
 "request_cookie": ""
 },
 {
 "server": "192.168.11.164:3003",
 "request_url": "/atmapp/zipcode",
 "request_ip": "100.64.26.70:49425",
 "request_cookie": ""
 }
]

Copyright ©2022

 | ABS AI Engine | 435

 },
 {
 "error_code": "503",
 "details": []
 },
 {
 "error_code": "504",
 "details": []
 }
]
}

List Valid URLs REST API

Description: The List Valid URL API provides information on all the URLs for the API. The API reports the
allowed methods and the count of number of times each URL has been accessed.

Method: GET

URL: /v4/abs/validurl?api=<api_name

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "name": "api_url_list",
 "description": "This report provides information on access to each
 unique URL for the specified API",
 "api_name": "shop",
 "host_name": "app",
 "api_url": "shopapi",
 "allowed_methods": [
 "GET",
 "PUT",
 "POST",
 "DELETE",
 "HEAD"
],
 "url_list": [
 {
 "protocol": "HTTP/1.1",
 "urls": [
 {
 "url": "/shopapi/get_delay",
 "total_count": 11,
 "methods": [
 {
 "method": "GET",
 "count": 11
 }
]
 },
 {
 "url": "/shopapi/post",
 "total_count": 62109,
 "methods": [
 {

Copyright ©2022

 | ABS AI Engine | 436

 "method": "POST",
 "count": 62109
 }
]
 },
 {
 "url": "/shopapi/get_mb",
 "total_count": 2,
 "methods": [
 {
 "method": "GET",
 "count": 2
 }
]
 },
 {
 "url": "/shopapi/login",
 "total_count": 2686,
 "methods": [
 {
 "method": "POST",
 "count": 2686
 }
]
 },
 {
 "url": "/shopapi/get?dyanmic_cookie",
 "total_count": 378,
 "methods": [
 {
 "method": "GET",
 "count": 378
 }
]
 },
 {
 "url": "/shopapi/logout",
 "total_count": 16964,
 "methods": [
 {
 "method": "POST",
 "count": 16964
 }
]
 },
 {
 "url": "/shopapi/get?passwd",
 "total_count": 1,
 "methods": [
 {
 "method": "GET",
 "count": 1
 }
]
 },
 {
 "url": "/shopapi/put",
 "total_count": 62060,
 "methods": [
 {
 "method": "PUT",
 "count": 62060
 }
]

Copyright ©2022

 | ABS AI Engine | 437

 }
]
 }] }

List Hacker's URL REST API

Description: The List Invalid URL API provides information on all invalid URLs accessed for an API. The
four types of invalid URLs are:

▪ Irregular URL
▪ System Commands
▪ SQL Injection, and
▪ Buffer Overflow

Method: GET

URL: /v4/abs/hackersurl?api=<api_name>&earlier_date=””&later_date=””

Header Value

Access Key x-abs-ak <string>

Secret Key x-abs-sk <string>

Sample Response

{
 "company": "ping identity",
 "description": "This report contains list of hackers URL for given API",
 "name": "api_hackers_url",
 "api_name": "universal_api",
 "invalid_urls": [
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL,NULL,NULL,NULL,-- ",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=(SELECT 46 FROM(SELECT COUNT(*),CONCAT(0x717a71,))",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc UNION ALL SELECT NULL,NULL,NULL,NULL,NULL,#",
 "ips": [
 "127.0.0.1"
]
 },

Copyright ©2022

 | ABS AI Engine | 438

 {
 "url": "/index.php?id=abc' UNION ALL SELECT NULL,NULL,NULL,NULL,,NULL#",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc UNION ALL SELECT NULL,NULL,NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc' UNION ALL SELECT NULL,NULL,NULL,NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc') UNION ALL SELECT NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc UNION ALL SELECT NULL,NULL,NULL,NULL,NULL#",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc%' UNION ALL SELECT NULL-- ",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc) UNION ALL SELECT NULL,NULL,NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
]
 },
 {
 "url": "/index.php?id=abc' UNION ALL SELECT NULL,NULL,NULL-- ",
 "ips": [
 "127.0.0.1"
]
 }
]
}

Delete Blacklist REST API

Description: The Delete Blacklist REST API deletes active blacklists in ABS. The API checks if the client
identifier is present in the active list or not before deleting.

Method: PUT

URL for the API: /v4/abs/attacklist/

Header Value

Access Key x-abs-ak <string>

Copyright ©2022

 | ABS AI Engine | 439

Secret Key x-abs-sk <string>

Sample Request to the API

{
 "ips": [],
 "cookies": {},
 "oauth_tokens": [],
 "api_keys": [],
 "usernames": [“user_70”]
}

Sample response from the API when the client identifiers from active blacklists are deleted

{
 "message": "The following attacks have been removed:",
 "attacklist": {
 "ips": [],
 "cookies": {},
 "oauth_tokens": [
 "SYU4R2ZZN1IDYI0L"
],
 "api_keys": [],
 "usernames": []
 },
 "status_code": "SUCCESS"
}

Sample response from the API when the deletion fails

{
 "status_code": "INVALID_JSON",
 "message": "Invalid json. Please ensure all input fields are present and
 have valid values"
}

Threshold range for Tn and Tx
Threshold range for Tn and Tx

The following table details the range of Tn and Tx for each attack type. When manually adjusting the
threshold values, the values must fall within the specified ranges.

Attack Type type_id Variable A
(Range)

Variable B
(Range)

Variable C
(Range)

Variable D (Range)

REST API

Data Exfiltration 1 Tn = [1-32] Tx
= [2-33]

Tn = [1-19] Tx
= [2-20]

Tn = [1-99] Tx =
[2-100]

NA

Single Client
Login

2 Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx
= [2-20]

NA NA

Multi Client Login 3 Tn = [1-100] Tx
= “na”

NA NA NA

Copyright ©2022

 | ABS AI Engine | 440

Stolen Cookie /
Access Token

4 Tn = [2-10] Tn = [1-19],
Tx = [2-20]

NA NA

API Memory
Attack Type 1

5 Tn = [1-32] Tx
= [2-33]

Tn = [1-19] Tx
= [2-20]

Tn = [1-99] Tx =
[2-100]

NA

API Memory
Attack Type 2

6 Tn = [1-32] Tx
= [2-33]

Tn = [1-19] Tx
= [2-20]

Tn = [1-99] Tx =
[2-100]

NA

Cookie DoS 7 Tn = [1-9] Tx =
[2-10]

Tn = [1-19] Tx
= [2-20]

NA NA

API Probing
Replay

8 Tn = [1-99] Tx
= [2-100]

NA NA NA

API DoS Attack
Type 1

9 Tn = [1-100] Tx
= “[2-100]”

NA NA NA

Extreme Client
Activity

10 Tn = [1-19] Tx
= [2-20]

NA NA NA

Extreme App
Activity

11 Tn = [1-19] Tx
= [2-20]

NA NA NA

API DoS Attack 12 Tn = [1- 100]
Tx = “na”

NA NA NA

API DDoS Attack
Type 2

13 NA NA NA NA

Data Deletion 14 Tn = [1- 19] Tx
= [2-20]

Tn = [1-99] Tx
= [2-100]

NA NA

Data Poisoning 15 Tn = [1- 19] Tx
= [2-20]

Tn = [1-99] Tx
= [2-100]

Tn = [1-32] Tx =
[2-33]

NA

Stolen Token
Attack Type 2

16 Tn = [2-10] Tx
= “na”

Tn = [1-100] Tn = [1-100] NA

Stolen Cookie
Attack Type 2

17 Tn = [2-10] Tx
= “na”

Tn = [1-100] Tn = [1-100] NA

API Probing
Replay Attack 2
(client identifier:
cookie)

18 Tn = [1-99] Tx
= [2-100]

Tn = [1-19] Tx
= [2-20]

NA NA

API Probing
Replay Attack 2
(client identifier:
token)

19 Tn = [1-99] Tx
= [2-100]

Tn = [1-19] Tx
= [2-20]

NA NA

API Probing
Replay Attack 2
(client identifier: IP
address)

20 Tn = [1-99] Tx
= [2-100]

Tn = [1-19] Tx
= [2-20]

NA NA

Data Exfiltration
Attack Type 2

21 Tn = [1-42] Tx
= [2-43]

Tn = [0-30] Tn = [1-100] NA

Excessive Client
Connections
(client identifier :
cookie)

22 Tn = [1-19], Tx
=[2-20]

NA NA NA

Copyright ©2022

 | ABS AI Engine | 441

Excessive Client
Connections
(client identifier :
token)

23 Tn = [1-19], Tx
=[2-20]

NA NA NA

Excessive Client
Connections
(client identifier :
IP address)

24 Tn = [1-19], Tx
=[2-20]

NA NA NA

Content Scraping
Type 1 (client
identifier : cookie)

25 Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx =
[2-20]

Tn = [1-19] Tx =
[2-20]

Content Scraping
Type 1 (client
identifier : token)

26 Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx =
[2-20]

Tn = [1-19] Tx =
[2-20]

Content Scraping
Type 1 (client
identifier : IP
address)

27 Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx =
[2-20]

Tn = [1-19] Tx =
[2-20]

Content Scraping
Type 2

28 Tn = [1-29] Tx
= [2-30]

Tn = [1-100] NA NA

Unauthorized
client attack
(client identifier: IP
address)

29 Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx
= [2-20]

NA NA

Single Client
Login Attack Type
2 (client identifier:
IP address)

30 Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx
= [2-20]

NA NA

Stolen API Key
Attack- API Key

31 Tn = [1-100] Tx
= NA

Tn = [1-100]
Tx = NA

Tn = [1-100] Tx =
NA

Tn = [1-100] Tx =
NA

Probing Replay
Attack - API Key

32 Tn = [1-100] Tx
= NA

Tn = [1-100]
Tx = NA

NA NA

Extended Probing
Replay Attack -
API Key

33 Tn = [1-100] Tx
= NA

Tn = [1-100]
Tx = NA

NA NA

User Probing
Type 1

34 Tn = [1-99] Tx
= [2-100]

Tn = [1-99] Tx
= [2-100]

Tn = [1-9] Tx =
[2-10]

Tn = [1-9] Tx =
[2-20]

User Probing
Type 2

35 Tn = [1-99] Tx
= [2-100]

Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx =
[2-20]

Tn = [1-29] Tx =
[2-30]

Sequence attack 36 Tn = [1-19] Tx
= [2-20]

NA NA NA

Header
Manipulation

37 Tn = [1-99] Tx
= [2-100]

Tn = [1-20] Tx
= NA

Tn = [1-29] Tx =
[2-30]

Tn = [1-100] Tx =
NA

Account Takeover
-UBA

38 Tn = [1-100] Tx
= NA

Tn = [1-99] Tx
= [2-100]

NA NA

User Data
Exfiltration Type 2

39 Tn = [1-32] Tx
= [2-33]

Tn = [1-32] Tx
= [2-33]

Tn = [1-19] Tx =
[2-20]

NA

Copyright ©2022

 | ABS AI Engine | 442

User Data
Injection

40 Tn = [1-32] Tx
= [2-33]

Tn = [1-19] Tx
= [2-20]

NA NA

WebSocket API

WS Cookie Attack 50 Tn = [1-99] Tx
= [2-100]

Tn = [1-19]
Tx= [2-20]

NA NA

WS Identity Attack 51 Tn = [1-19] Tx
= [2-20]

Tn = [1-19] Tx
= [2-20]

NA NA

WS DoS Attack 53 Tn = [1- 100]
Tx = “na”

NA NA NA

WS Data
Exfiltration Attack

54 Tn = [1- 100]
Tx = “na”

NA NA NA

Splunk for PingIntelligence
Splunk for PingIntelligence provides a pictorial view of various attacks in an API environment with granular
event details. The Splunk Dashboard monitors attack.log file in PingIntelligence for APIs Dashboard
engine. Dashboard engine through attack.log returns a JSON report that contains attack details.
Following is a snippet of the attack.log with attack details:

{
 "timestamp": "1575965866132",
 "protocol": "HTTP",
 "attack_id": "11",
 "description": "Extreme App Activity",
 "attack_bucket": "API",
 "attack_scope": "SINGLE_API",
 "attacked_api": "shop-electronics",
 "attack_identifier_type": "TOKEN",
 "attack_key": "",
 "attack_value":
 "343077883101e1c8f2b3ec0fbf6a32ab2327e4c2e7ebe525a27a125225fa136d"
}

Copyright ©2022

 | ABS AI Engine | 443

The following illustration summarizes the data flow between Dashboard engine and Splunk server:

i Note: PingIntelligence for APIs is qualified for Splunk 8.0.0.

Installing and configuring Splunk for PingIntelligence

About this task

Prerequisites

To complete the configuration of Splunk for PingIntelligence, you need to create a source type. Creating a
source type helps Splunk to understand the event format.

Create Source type

The source type is one of the default fields that Splunk assigns to all the incoming data. Configuring the
source type informs Splunk about the type of data ABS provides. This helps Splunk in formatting data
intelligently during indexing.

To create a source type, complete the following steps:

Steps

1. Configure a new source type by navigating to Splunk Enterprise# Settings# Source Types# New
Source type. The source type events page is displayed.

2. Configure the New Source type. The fields are defined in the following table:

Name Value

Source type name pi_events_source_type

Destination app Search and Reporting (Can change for your apps)

Category Structures

Indexed Extractions json

BREAK_ONLY_BEFORE (\{)

MUST_BREAK_AFTER (\})

Copyright ©2022

 | ABS AI Engine | 444

SEDCMD-alter s/pi-attack-info-//

Copyright ©2022

 | ABS AI Engine | 445

3. Create a new index pi_events by navigating to Enterprise # Settings # Indexes # New Index.

Types of data captured

Splunk for PingIntelligence captures attack data. The attack event captures the components listed in the
following table:

Field Description

timestamp epoch timestamp

protocol HTTP(s) /Websocket (ws)

attack_id PingIntelligence Attack ID

description Description of the attack

attack_bucket Attack on an API or a DDoS attack

attack_scope Single or multiple APIs

attacked_api Name of the API. In case of multiple API, MULTI_API is reported

attack_identifier_type Username, API Key, OAuth token, Cookie, or IP address

attack_key Details of APIKEY or Cookie

attack_value Value of the client identifier.

Copyright ©2022

 | ABS AI Engine | 446

Installing and configuring the Splunk Universal Forwarder method

About this task

The installation and configuration process of Splunk universal forwarder method is depicted in the diagram
below:

Steps

1. Install and configure Splunk Universal forwarder and start the instance using following steps:

a. Download Splunk Universal Forwarder 8.0.0
b. Install the Splunk universal forwarder by entering the following command. Replace the file name in

the command:

[root@ABS]# tar -xvf splunkforwarder-8.0.0-8c86330ac18-Linux-x86_64.tgz
splunkforwarder/
splunkforwarder/share/

c. Start the Splunk universal forwarder

[root@ABS]# cd splunkforwarder/bin
[root@ABS]# ./splunk start --accept-license

d. Add forward server details (Receiver host and port in Splunk)

[root@dashboard]# ./splunk add forward-server ip:port

Splunk username: admin Password: Added forwarding to:
 192.168.1.158:9997.

i Note: Enable the receiving port in Splunk. For example, configure port number 9997 from the
above snippet in your Splunk deployment.

e. Edit inputs.conf on your splunk forwarder to look like following

[root@ABS]# ./splunk add monitor /opt/pingidentity/splunk/data/
Added monitor of '/opt/pingidentity/splunk/data/'.

f. Edit inputs.conf on your splunk forwarder

[root@dashboard]# cat /opt/splunkforwarder/etc/apps/search/local/
inputs.conf

[monitor:///opt/pingidentity/pingidentity/dashboard/logs/attack.log/]

index = pi_events
sourcetype=pi_events_source_type
disabled = false

g. Restart Splunk universal forwarder

[root@ABS]# ./splunk restart

Copyright ©2022

 | ABS AI Engine | 447

2. Verify if data is flowing to Splunk

i Note: If no data is available in Splunk, check your firewall settings.

Alert notification on Slack and Email

You can configure Splunk to send alert notification to a Slack channel or through and email.

Slack

Prerequisites:

▪ The Slack app should already be installed in your Splunk setup.
▪ Connect Slack and Splunk using webhooks. For more information on Slack webhooks, see Incoming

Webhooks

Complete the following steps to create an alert for Slack:

1. Navigate to Settings #> Searches, reports and alerts

i Note: Alert should be created for App: Search & Reporting(search)

Copyright ©2022

https://api.slack.com/incoming-webhooks
https://api.slack.com/incoming-webhooks

 | ABS AI Engine | 448

2. Create new alerts

Enter the values as described in the table below:

Value Description

Description PingIntelligence for APIs Alert

Search Search: index="pi_events"

sourcetype="pi_events_source_type"

access_type="attack"

Alert Type Scheduled -> Run on Cron Schedule

Cron Expression */10 * * * *

Copyright ©2022

 | ABS AI Engine | 449

Time Range 600

Expires 24-hours

Trigger alert when The alert should be triggered for results when
greater than 0

Trigger For each result. This would trigger a new alert for
each event.

Throttle Do not throttle the events

Copyright ©2022

 | ABS AI Engine | 450

3. Configure alert action

Copyright ©2022

 | ABS AI Engine | 451

Value Description

Add Actions Choose the slack app to add actions

Channel Use the channel which has been configured with webhook URL
which starts with either # or @

In this example, we are using channel name as:

PingIntelligence_alerts

Message This is the message which will be posted along with the alert in
slack, We recommend using the below message:

$result.attack_type$ has been detected on API:
 $result.api_name$

More details :
`$result._raw$`

Attachments NA

Fields NA

Webhook URL NA

4. Post a message in Splunk to verify that it is notified in Slack

ABS log messages

The following tables list the critical log messages from abs.log and aad.log file. abs.log file is
rotated every 24-hours. For more information, see ABS logs on page 304

abs.log mesaages:

Log message Description

Warn :-Maximum Transaction limit is reached for
this month

This message is logged in abs.log when the
transaction limit is reached for the allotted license
usage. For more information, see ABS License and
timezone on page 288

Warn :- Attempt to shutdown ABS from 127.0.0.1 This message is logged in abs.log when
shutdown of ABS AI engine is initiated.

Warn :- Failed to delete IPs from IOCs - try again This message is logged in abs.log when the
Attack list REST API encounters an issues while
deleting the IP address from the blacklist.

Warn :- Failed to delete tokens from IOCs - try
again

This message is logged in abs.log when the
Attack list REST API encounters an issues while
deleting the OAuth token from the blacklist

Warn :- Failed to delete usernames from IOCs - try
again

This message is logged in abs.log when the
Attack list REST API encounters an issues while
deleting the usernames from the blacklist.

Copyright ©2022

 | ABS AI Engine | 452

Log message Description

Warn :- Failed to delete api keys from IOCs - try
again

This message is logged in abs.log when the
Attack list REST API encounters an issues while
deleting the API Keys from the blacklist.

Warn :- License is Expired. Please renew your
license

This message is logged in abs.log when ABS
license has expired. For more inforamtion, see ABS
License and timezone on page 288

Warn :- MongoDB primary node is down This message is logged in abs.log when a
MongoDB connection failure occurs.

Warn :- Stream init-wait interrupted This message is logged in abs.log when
streaming of access log files is interrupted.

Warn :- File system usage reached configured
value of: 80 % ABS will not accept new logs from
ASE.

This message is logged in abs.log when ABS
stops accepting access log files from ASE because
of maximum use of filesystem.

Warn :- Error while closing mongo connections This message is logged in abs.log when
shutdown of MongoDB connection was not
successful.

Warn :- Error while loading anomaly dictionary from
mongo

This message is logged in abs.log when writing
of anomalies to data directory fails.

Warn :- Error while closing file handle for stream
config

This message is logged in abs.log when an error
occurs while closing the streaming configuration
file.

Error: exception while parsing license file
/opt/pingidentity/abs/config/
PingIntelligence.lic

This message is logged in abs.log when an error
occurs while reading the license file.

Add the file named “PingIntelligence.lic” to the
specified path with read permission and restart the
ABS AI engine

Error: License /opt/pingidentity/abs/
config/PingIntelligence.lic is invalid. ABS
will shut down now.

This message is logged in abs.log when an error
is encountered while validating the license file.

Provide a valid license file and restart the ABS AI
engine

ABS will shut down now This message is logged in abs.log when your free
ABS license expires.

Attempting to initialize abs, but abs is already in
<message>

This message is logged in abs.log when another
ABS process is already running.

Copyright ©2022

 | ABS AI Engine | 453

Log message Description

error while loading abs.properties <Custom
run-time message>

The various custom error messages could be:

▪ property <abs_propertie> is missing
▪ invalid value for property log_level.

Value should be string and member of
[ALL,DEBUG,INFO,WARN,ERROR,FATAL,OFF]

▪ property management_port is missing
▪ invalid value for property management_port,

value should be integer and (>=1 && <=65535)
▪ invalid value for property jks_password,

deobfuscation of password failed. Please
make sure you are using the correct config/
abs_master.key file

▪ invalid value for property jks_password, value
should be obfuscated using the 'bin/cli.sh
-u admin -p <password> obfuscate_keys'
command

▪ invalid value for property host_ip, value should
be string and ipv4 address

▪ property enable_emails is missing
▪ invalid value for property smtp_host value

should be string and should be as per rfc1024
and rfc1123

This message is logged in abs.log when:

▪ Error occurs when abs.properties file is not
configured with log_level specifications

▪ Error occurs when abs.properties file is not
configured with management_port specifications

error while loading
abs_resources.properties

This message is logged in abs.log when
abs_resources.properties doesn’t contain
values for memory and CPU parameters

error while initializing mongodb replica set
connections

This message is logged in abs.log when
MongoDB initialization fails and cannot access a
read or write client for connections.

error while reading enable_ssl key from mongo
master

This message is logged in abs.log when
MongoDB client tries to fetch the key from
MongoDB collections.

error while reading root_api_attack key from mongo
master

This message is logged in abs.log when
MongoDB client tries to fetch the key from
MongoDB collections.

error while reading /config/abs.properties This message is logged in abs.log while loading
and validating the abs.properties file. Check
whether file exists and its permission.

invalid value for property jks_password, value
should be obfuscated using the 'bin/cli.sh -u admin -
p <password> obfuscate_keys' command

This message is logged in abs.log when an error
occurs while deobfuscating the jks_password using
the master_key

error while loading auth keys from metadata db in
mongo

This message is logged in abs.log when
MongoDB is not accessible.

error while loading restricted user auth keys from
metadata db in mongo

This message is logged in abs.log when
MongoDB is not accessible.

Copyright ©2022

 | PingIntelligence Dashboard | 454

Log message Description

Unable to read <abs_root_dir>/config/
abs.jks file

This message is logged in abs.log when
abs.jks is not created properly or could not read
the file or there is a permission issue.

error while starting management server <runtime
exception>

This message is logged in abs.log when there is
an issue when ABS starts.

API Behavioral Security stopped This message is logged in abs.log when ABS is
shut down.

MongoDB heartbeat failure This message is logged in abs.log when ABS is
unable to connect to MongoDB primary node.

ABS started successfully This message is logged in abs.log when ABS
starts.

PingIntelligence Dashboard

Introduction
The dashboard engine utilizes Elasticsearch and Kibana to provide a graphical view of an API environment
including user activity, attack information, and blocked connections. The dashboard engine fetches data
from ABS AI engine. This data from the ABS AI engine is rendered in Web GUI.

PingIntelligence for APIs Dashboard offers the following:

▪ View various APIs managed by PingIntelligence
▪ View the training status of your APIs.
▪ Hide or display APIs from the main API dashboard, sort APIs or search for APIs
▪ View the API dashboard
▪ Unblock and update thresholds for a blocked client
▪ Display discovered APIs
▪ Configure API discovery properties
▪ API grouping

Installation prerequisite

The prerequisites are divided in the following two categories:

▪ Hardware and software prerequisites on page 454
▪ Browser support on page 455

Hardware and software prerequisites

Ensure that the following prerequisites are completed before installing PingIntelligence Dashboard:

▪ Server: 8 core CPU, 16 GB RAM, 1 TB HDD
▪ Operating system: RHEL 7.6 or Ubuntu 16.0.4 LTS
▪ OpenJDK: 11.0.2 to 11.0.6
▪ SSL certificate: One private key and certificate. By default, PingIntelligence Dashboard uses the

private key and certificate shipped with the binary.
▪ Password: To change the default password, set a minimum 8 character password

Copyright ©2022

 | PingIntelligence Dashboard | 455

▪ ABS: ABS AI engine URL, access, and secret key. Make sure that ABS is reachable from
PingIntelligence Dashboard.

▪ ASE: ASE management URL, access, and secret key. Make sure that ASE is reachable from the
PingIntelligence Dashboard.

i Note: Connecting Dashboard to ASE is optional. Functionality like adding discovered APIs to ASE
and attack management will be limited.

Port numbers: The following is a list of default port numbers. Make sure that these are available for
installing PingIntelligence Dashboard.

▪ PingIntelligence Dashboard server: 8030. Port number 8030 should be exposed to public internet.
Make sure that your organization's firewall allow access to this port.

▪ Elasticsearch: 9200
▪ Kibana: 5601
▪ H2 database: 9092. H2 database is installed and runs as a part of PingIntelligence Dashboard.

Operating system configurations: Modify the following settings for the operating system:

▪ Increase the ulimit to 65536

sudo sysctl -w fs.file-max=65536
sudo sysctl -p

▪ Increase the vm.max_map_count limit to 262144

sudo echo "vm.max_map_count=262144" >> /etc/sysctl.conf
sudo sysctl -p

▪ JDK installation: Set environment variable JAVA_HOME to <jdk_install_dir> directory and add
<jdk_install_dir>/bin to system PATH variable. <jdk_install_dir> is the directory where
JDK is installed.

▪ Choose the <pi_install_dir> directory. The <pi_install_dir> directory is the directory where
PingIntelligence Dashboard is installed. This directory should be readable and writable by the logged in
user.

Browser support

The following table shows the compatibility of PingIntelligence for APIs Dashboard with different browsers
and their versions.

Operating System Google Chrome Mozilla Firefox Apple Safari Microsoft Edge

Mac OS Mojave
-10.14

Version 49.0 and
later

Version 69.0 and
later

Version 12.0 and
later

Mac OS Sierra
-10.12

Version 49.0 and
later

Version 69.0 and
later

Version 10.1 and
later

Mac OS High Sierra
- 10.13

Version 49.0 and
later

Version 69.0 and
later

Version 11.1 and
later

Mac OS Catalina
-10.15

Version 49.0 and
later

Version 69.0 and
later

Version 13.0 and
later

Windows 7 Version 49.0 and
later

Version 69.0 and
later

Windows 8.0 Version 49.0 and
later

Version 69.0 and
later

Copyright ©2022

 | PingIntelligence Dashboard | 456

Operating System Google Chrome Mozilla Firefox Apple Safari Microsoft Edge

Windows 8.1 Version 49.0 and
later

Version 69.0 and
later

Windows 10 Version 49.0 and
later

Version 69.0 and
later

Version 42.7, 44.7,
79.0, 80.0 and later

Install PingIntelligence Dashboard
Complete the following steps to install PingIntelligence Dashboard:

1. Create a <ping_install_dir> directory on your host machine. Make sure that the user has read
and write permissions for the <ping_install_dir> directory.

2. Download the PingIntelligence Dashboard binary
3. Download Elasticsearch 6.8.1 (macOS/RHEL)
4. Download Kibana 6.8.1 (RHEL 64-bit)
5. Change directory to ping_install_dir:

cd pi_install_dir

6. Untar the PingIntelligence Dashboard:

tar -zxf pi-api-dashboard-4.3.tar.gz

7. Change directory to pingidentity/webgui/

cd pingidentity/webgui/

8. Install PingIntelligence Dashboard by entering the following command and follow the instructions
displayed on the prompt:

./bin/pi-install-ui.sh

elasticsearch-6.8.1.tar.gz file path >
kibana-6.8.1-linux-x86_64.tar.gz file path >

Use bundled ssl key and self signed certificate for ui server [y/n]? >[n]
ssl private key path >
ssl certificate path >

Use default password [changeme] for all components and users [y/n]? > [n]
UI login admin user 'admin' password >
Renter UI login admin user 'admin' password >
UI login regular user 'ping_user' password >
Renter UI login regular user 'ping_user' password >

ABS url >
Use default access/secret key for ABS [y/n] ? > [n]
ABS access key >
ABS secret key >

ASE management url >
Use default access/secret key for ASE [y/n] ? > [n]
ASE access key >
ASE secret key >

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.1.tar.gz
https://artifacts.elastic.co/downloads/kibana/kibana-6.8.1-linux-x86_64.tar.gz

 | PingIntelligence Dashboard | 457

configuring elasticsearch… please wait for 15 seconds
elasticsearch config is completed.

configuring kibana…please wait 60 seconds
kibana config is completed.

configuring dashboard…
generating new obfuscation master key
dashboard config is completed.

configuring webgui…
generating new obfuscation master key
webgui config is completed.

saving auto generated credentials for all components to
 webgui_internal.creds file

WebGUI installation completed.

Start WebGUI [y/n] > [y]

start elasticsearch...
 elasticsearch started. Log is available at elasticsearch/logs/
elasticsearch.log

start dashboard……
 dashboard started. Log available at dashboard/logs/dashboard.log

start kibana……
 kibana started. Log available at kibana/logs/kibana.log

start ui server……
 UI server started. Log available at webgui/logs/admin/admin.log

WebGUI started. Log available at webgui/logs/admin/admin.log

Please access WebGUI at https://<pi_install_host>:8030

<pi_install_host> can be ip address, hostname or fully qualified domain
 name of this server.
<pi_install_host> should be reachable from your computer.

Important Action:
1) Credentials for all internal components are available in
 webgui_internal.creds file. Move this file from
 this server and securely keep it elsewhere. For any debugging purposes
 you will be asked to get
 credentials for a component from this file.
2) Two obfuscation master keys are auto-generated
 pingidentity/webgui/config/webgui_master.key
 pingidentity/dashboard/config/dashboard_master.key
3) For security purposes you should move obfuscation master keys from this
 server. But when components
 are restarted, master keys should be present at the original locations.

Verify the installation

You can verify the installation by checking the process IDs (PID) of each component. You can check the
pid of components at the following location:

▪ Elasticsearch: <pi_install_dir>/elasticsearch/logs/elasticsearch.pid

Copyright ©2022

 | PingIntelligence Dashboard | 458

▪ Kibana: <pi_install_dir>/kibana/logs/kibana.pid
▪ Dashboard: <pi_install_dir>/dashboard/logs/dashboard.pid
▪ Webgui: <pi_install_dir>/webgui/logs/webgui.pid

Tune Dashboard performance parameters

Configure the following three parameters for Dashboard's better performance. Note that the following
tuning parameters if you have your setup of Elasticsearch and Kibana.

If you have used PingIntelligence automated deployment or pi-install-ui.sh script to deploy
Dashboard, these tuning are done as part of installation.

Parameter Description Location

Elasticsearch

-Xms and -Xmx ▪ Xms - Defines the minimum
heap size of Elasticsearch.
Set it to 4GB as Xms4g.

▪ Xmx - Defines the maximum
heap size of Elasticsearch.
Set it to 4GB as Xmx4g.

$ES_HOME/config/
jvm.options

thread_pool.search.size Defines thread pool size for
count/search/suggest operations
in Elasticsearch. Configure it to
50% of total CPUs allocated.

$ES_HOME/config/
elasticsearch.yml

Kibana

elasticsearch.requestTimeout Time (in milliseconds) to wait for
Elasticsearch to complete the
request and return the response
back to Kibana. Set the value to
60000 milliseconds.

$KIBANA_HOME/config/
kibana.yml

Mitigating Cross-Site-Scripting (XSS)

To detect and mitigate attacks like Cross Site Scripting(XSS), PingIntelligence Dashboard implements
Content Security Policy (CSP). The following are the configuration details.

Response header - Content-Security-Policy

Response header value - default-src ‘self’; font-src ‘self’ use.typekit.net;
script-src ‘self’ use.typekit.net; style-src ‘self’ ‘unsafe-inline’
use.typekit.net p.typekit.net; img-src ‘self’ data: p.typekit.net;

Configure authentication - SSO or native
PingIntelligence for APIs Dashboard provides two methods for user authentication: native or single sign-on
(SSO).

You can configure the authentication method by configuring pi.webgui.server.authentication-mode property
in the <pi_install_dir>/pingidentity/webgui/config/webgui.properties file. The default
authentication method is native.

i Note:

SSO authentication should be used only for production deployments. Use native authentication for PoC
deployments.

Copyright ©2022

 | PingIntelligence Dashboard | 459

SSO configuration for PingIntelligence for APIs Dashboard

SSO configuration for PingIntelligence Dashboard involves configuring both Dashboard and PingFederate.
The following is a summary of configuration steps:

1. Verify the prerequisites.
2. Configure an OAuth client in PingFederate.
3. Configure the webgui.properties file.
4. Configure the sso.properties file in Dashboard.
5. Import the PingFederate SSL server certificate.
6. Obfuscate sso.properties.
7. Start Dashboard.

Verify the prerequisites

Ensure the following prerequisites are complete before SSO configuration:

▪ PingFederate is installed and configured to support OIDC SSO for any client. The current supported
PingFederate versions are 9.3 or 10.1.

▪ PingIntelligence for APIs Dashboard is installed.

Configure OAuth client in PingFederate

Creating and configuring an OAuth client in PingFederate is an essential step for PingIntelligence
Dashboard's SSO authentication. If the OAuth client is not correctly configured in PingFederate, it results
in authentication failure. To configure an OAuth client, complete the steps in Configuring an OAuth client in
PingFederate for PingIntelligence Dashboard SSO on page 461 .

Configure webgui.properties file

Edit the <pi_install_dir>/pingidentity/webgui/config/webgui.properties to set the value
of pi.webgui.server.authentication-mode to sso to configure authentication using SSO.

Authentication mode
valid values: native, sso
pi.webgui.server.authentication-mode=sso

Configure SSO properties file in Dashboard

Configure the <pi_install_dir>/pingidentity/webgui/sso.properties file to complete the
PingIntelligence Dashboard's SSO authentication. For more information, see Dashboard sso.properties
configuration on page 463.

Import the PingFederate SSL server certificate

After the PingIntelligence Dashboard configuration for SSO is complete, import the PingFederate’s SSL
server certificate to the PingIntelligence Dashboard’s truststore <pi_install_dir>/pingidentity/
webgui/config/webgui.jks.

Complete the following steps to import SSL certificate:

1. Copy Pingfederate’s SSL server certificate to <pi_install_dir>/pingidentity/webgui/
config/ directory

2. Execute the following command.

cd <pi_install_dir>/pingidentity/webgui/config/
keytool -import -trustcacerts -file <pf_certificate.crt> -alias pi-sso -
keystore webgui.jks

Copyright ©2022

 | PingIntelligence Dashboard | 460

i Note:

The default password to import pf_certificate.crt to webgui.jks is changeme.

Obfuscate sso.properties

You can obfuscate keys added in SSO properties using the following commands.

cd <pi_install_dir>/pingidentity/webgui
./bin/cli.sh obfuscate_keys

Start PingIntelligence for APIs Dashboard

Start the PingIntelligence for APIs Dashboard. For more information, see Start and stop Dashboard on
page 110.

When the PingIntelligence Dashboard is started successfully, access it using https://
<pi_install_host>:8030. The Dashboard will start SSO Authentication, and a new session will get
created for the logged-in users.

i Note:

Every PingIntelligence Dashboard SSO authentication event is attached with a unique ID, which is
logged in <pi_install_dir>/pingidentity/webgui/logs/admin/sso.log .

If SSO authentication fails for any reason, PingIntelligence Dashboard shows the following error message.

i Note:

You can filter sso-event-ref = <unique ID> in the <pi_install_dir>/pingidentity/
webgui/logs/admin/sso.log file to find the reason for SSO failure.

Copyright ©2022

 | PingIntelligence Dashboard | 461

Configuring an OAuth client in PingFederate for PingIntelligence Dashboard SSO
Configure an OAuth client in PingFederate for PingIntelligence Dashboard single sign-on (SSO).

About this task
For more information on creating and configuring an OAuth client in PingFederate, see Managing OAuth
clients.

Steps

▪ Create and configure an OAuth client in PingFederate with the following configuration details.

Option Description

Client ID Create an OAuth client in PingFederate
with Client ID as PingIntelligence. You can
use any other value for Client ID in place of
PingIntelligence.

Client Authentication The current release of PingIntelligence
Dashboard supports NONE and CLIENT
SECRET authentication methods.

Client TLS Certificate authentication and Private
Key JWT based authentication are not supported
by the Dashboard.

When CLIENT SECRET is selected as the client
authentication method, you can generate a
random client secret or use a custom secret,
which is used by PingIntelligence Dashboard for
client authentication.

Require Signed Request Do not enable.

i Important:

PingIntelligence Dashboard does not support
signed requests.

Redirection URIs Set the redirection URI in the PingFederate OAuth
client configuration. The path in the URI is as
follows: https://pi_install_host:8030/
login/oauth2/code/PingIntelligence.

Do not change the path in the URI, just
substitute the hostname. For example,
https://172.16.40.180:8030/login/
oauth2/code/PingIntelligence.

Claims The following Claims need to be configured
in PingFederate, and are mandatory for a
successful authentication of a logged in user in
PingIntelligence Dashboard.

▪ A Claim for Subject Identifier, which should
provide the unique identifier for the logged in
user.

▪ A Claim for providing First Name.

Copyright ©2022

https://docs.pingidentity.com/bundle/pingfederate-101/page/hsx1564002992533.html
https://docs.pingidentity.com/bundle/pingfederate-101/page/hsx1564002992533.html

 | PingIntelligence Dashboard | 462

Option Description

▪ A Claim for providing Last Name.
▪ A Claim for providing the Role information.

i Note:

PingIntelligence Dashboard fetches the claims
for an authenticated User from the PingFederate
UserInfo endpoint.

Supported values for the Role Claim are ADMIN
and REGULAR. They are case-sensitive, if a
blank or any other value is configured, SSO will
fail. Roles assigned to Users with in an enterprise
should be mapped to ADMIN or REGULAR.

Scopes The Scopes required to be configured in
PingFederate for PingIntelligence Dashboard
application are:

▪ Mandatory Scopes- profile and openid
▪ Additional Scopes

i Note:

The Claims configured for PingIntelligence
Dashboard can be mapped to the Mandatory
Scope profile or to one or more Additional
Scopes.

Allowed Grant Types Enable Authorization Code. PingIntelligence
Dashboard supports only Authorization Code as
the grant type.

Restrict Response Types If enabled, select code.

Proof Key For Code Exchange (PKCE) Do not enable.

i Important:

PingIntelligence Dashboard does not support
PKCE.

ID Token Signing Algorithm The supported ID Token SignIn Algorithms are:

▪ Default
▪ RSA using SHA-256

ID Token Key Management Encryption
Algorithm

Select No Encryption because it is not supported
by PingIntelligence Dashboard.

Copyright ©2022

 | PingIntelligence Dashboard | 463

Dashboard sso.properties configuration
To complete the Dashboard's SSO authentication, configure the <installation_path>/
pingidentity/webgui/sso.properties file.

The following table describes the SSO properties.

Property Description

pi.webgui.sso.oidc.provider.issuer-
uri

Configure the URI of the OIDC service provider (PingFederate).
For example, pi.webgui.sso.oidc.provider.issuer-
uri=https://pf_installed_host:9031.

Dashboard retrieves the PingFederate OpenID
Provider configuration using the following URL:
<pi.webgui.sso.oidc.provider.issuer-uri>/.well-
known/openid-configuration.

i Note:

This is a mandatory property.

pi.webgui.sso.oidc.client.id Configure the OIDC client ID. The default value is
PingIntelligence. Make sure to configure the same value in
PingFederate. If you want to change the default value, change
the client ID in PingFederate as well. For more information, see
Configuring an OAuth client in PingFederate for PingIntelligence
Dashboard SSO on page 461.

i Note:

This is a mandatory property.

pi.webgui.sso.oidc.client.secret Set the client secret value in plain-text of the OAuth client created
for Dashboard application in PingFederate. The secret value
is obfuscated in Dashboard. The default value configured in
sso.properties is changeme.

i Note:

This is a required property only if the value of the property
pi.webgui.sso.oidc.client.authentication-method is not set to
NONE.

Copyright ©2022

 | PingIntelligence Dashboard | 464

Property Description

pi.webgui.sso.oidc.client.authentication-
method

Configure the OIDC client authentication method. The possible
values are:

▪ BASIC - Basic authentication header based client authentication
▪ POST - Client credentials sent in POST body for authentication
▪ NONE - Client does not authenticate itself

The default value is BASIC.

i Note:

If Client Authentication configuration in the OAuth client created
in PingFederate is set to NONE, then use NONE for this property.
If Client Authentication is set to CLIENT SECRET, use BASIC or
POST. This is a mandatory property.

pi.webgui.sso.oidc.provider.user-
uniqueid-claim-name

The value of this property should be the claim name that holds the
unique value to identify the signed-on user. It provisions a new user
in Dashboard data source or updates the user if it already exists
with updated claim, if any. The default value in Dashboard is sub.

i Note:

This is a mandatory property.

pi.webgui.sso.oidc.provider.user-
first-name-claim-name

The value of this property should be the claim name that holds the
first name of the signed-on user.

The default value for the claim is given_name.

If you configure any other non-standard claim to send the value of
first name in UserInfo, the name of that claim should be configured
in Dashboard properties as follows.

pi.webgui.sso.oidc.provider.user-first-name-
claim-name=my_first_name_claim

i Note:

This is a mandatory property.

Copyright ©2022

 | PingIntelligence Dashboard | 465

Property Description

pi.webgui.sso.oidc.provider.user-
last-name-claim-name

The value of this property should be a claim name that holds the last
name of the signed-on user.

The default value for the claim is family_name.

If you configure any other non-standard claim to send the value of
last name in UserInfo, the name of that claim should be configured
in Dashboard properties as follows.

pi.webgui.sso.oidc.provider.user-last-name-
claim-name=my_last_name_claim

i Note:

This is a mandatory property.

pi.webgui.sso.oidc.provider.user-
role-claim-name

The value of this property should be a claim name that holds the
value of the role of the signed-on user.

The default value in Dashboard is role.

If the user uses a different claim name in PingFederate to send
the role value, the same should be updated in this property. For
example, pi.webgui.sso.oidc.provider.user-role-
claim-name=my_role_claim_name.

i Note:

This is a mandatory property.

pi.webgui.sso.oidc.client.additional-
scopes

The value of this property should be any additional scopes (comma
separated) that need to be passed in the authorization request if
required by the enterprise for retrieving the role claim. For example,
pi.webgui.sso.oidc.client.additional-scopes=read,
read_role.

Such scopes, if any, should be created in PingFederate and
attached to the OAuth client created in PingFederate for Dashboard
and configured to return the role claim for authorization in
Dashboard. This is not a mandatory property.

The following is a sample snippet of sso.properties.

PingIntelligence WebGUI SSO properties file
This is in standard java properties file format
comments are denoted by number sign (#) as the first non blank
 character
multiline values are ended with '\' as end of line

OIDC Provider uri
WebGUI queries <issuer-uri>/.well-known/openid-configuration
 to get OIDC provider metadata
issuer ssl certificate is not trusted by default. So import
 issuer ssl certificate into config/webgui.jks

Copyright ©2022

 | PingIntelligence Dashboard | 466

issuer should be reachable from both back-end and front-end
pi.webgui.sso.oidc.provider.issuer-uri=https://localhost:9031

OIDC Client id
pi.webgui.sso.oidc.client.id=PingIntelligence

OIDC Client secret
This can be empty
pi.webgui.sso.oidc.client.secret=OBF:AES:BcB3MOE/K
+VAa579oBpky4PrIo4z9LnI4vXsltqI=

OIDC Client authentication mode.
Valid values: BASIC, POST, and NONE
pi.webgui.sso.oidc.client.authentication-method=BASIC

claim name for unique id of the user in UserInfo response
a new user is provisioned using this unique id value
pi.webgui.sso.oidc.provider.user-uniqueid-claim-name=sub

claim name for first name of the user in UserInfo response
either first name or last name can be empty, but both should
 not be empty
pi.webgui.sso.oidc.provider.user-first-name-claim-name=given_name

claim name for last name of the user in UserInfo response
either first name or last name can be empty, but both should
 not be empty
pi.webgui.sso.oidc.provider.user-last-name-claim-name=family_name

claim name for role of the user in UserInfo response
valid values for roles are ADMIN and REGULAR
pi.webgui.sso.oidc.provider.user-role-claim-name=role

additional scopes in authorization request
multiple scopes should be comma (,) separated
openid,profile scopes are always requested
pi.webgui.sso.oidc.client.additional-scopes=exclusive

Start and stop Dashboard

You can choose to start and stop all the components together or individually. It is recommended to start
and stop components together using the following command:

cd <pi_install_dir>/pingidentity/webgui
./bin/start-all.sh

Starting elasticsearch.. [started]

Verifying elasticsearch connectivity.. [OK]
Verifying ABS connectivity.. [OK]

Starting dashboard.. [started]
Starting kibana.. [started]

Copyright ©2022

 | PingIntelligence Dashboard | 467

Verifying Kibana connectivity.. [OK]
Verifying ASE connectivity.. [OK]

Starting webgui.. [started]

WebGUI started.

To stop all the components of PingIntelligence Dashboard together, enter the following command:

cd <pi_install_dir>/pingidentity/webgui
./bin/stop-all.sh

Stopping webgui..[stopped]
Stopping dashboard.. [stopped]
Stopping kibana.. [stopped]
Stopping elasticsearch.. [stopped]

WebGUI stopped.

Start and stop PingIntelligence Dashboard components individually

Start the components in the following order:

1. Start Elasticsearch: Enter the following command to start Elasticsearch:

cd <pi_install_dir>/pingidentity/elasticsearch
./bin/elasticsearch -d -p logs/elasticsearch.pid

2. Start Dashboard: Enter the following command to start Dashboard:

cd <pi_install_dir>/pingidentity/dashboard
./bin/start.sh

3. Start Kibana: Enter the following command to start Kibana:

cd <pi_install_dir>/pingidentity/kibana
./bin/kibana >> ./logs/kibana.log 2>&1 & echo $! > logs/kibana.pid

4. Start Web GUI: Enter the following command to start Web GUI:

cd <pi_install_dir>/pingidentity/webgui
./bin/start.sh

Stop the components individually by entering the following commands:

Stop Elasticsearch: Stop Elasticsearch by entering the following command:

cd <pi_install_dir>/pingidentity/elasticsearch
kill -15 "$(<logs/elasticsearch.pid)"

Stop dashboard engine: Stop the dashboard engine by entering the following command:

cd <pi_install_dir>/pingidentity/dashboard
./bin/stop.sh

Stop Kibana: Stop Kibana by entering the following command:

cd <pi_install_dir>/pingidentity/kibana
kill -9 "$(<logs/kibana.pid)"

Copyright ©2022

 | PingIntelligence Dashboard | 468

Stop Web GUI: Enter the following command to stop Web GUI:

cd <pi_install_dir>/pingidentity/webgui
./bin/stop.sh

Start and stop PingIntelligence Dashboard as a service

You can also start and stop PingIntelligence Dashboard as a service.

Start Dashboard as a service

Complete the following steps to start PingIntelligence Dashboard as a service:

1. Navigate to the <pi_install>/pingidentity/webgui/util directory and run the following
command to install PingIntelligence Dashboard as a service:

sudo ./install-systemctl-service.sh pi-webgui

2. Start the service by entering the following command:

sudo systemctl start pi-webgui.service

Stop Dashboard service

To stop PingIntelligence Dashboard service, run the following command:

sudo systemctl stop pi-webgui.service

Access PingIntelligence Dashboard

Access the PingIntelligence for APIs Dashboard from a browser at this default URL: https://
<pi_install_host>:8030 .

Users

There are two pre-configured login users in PingIntelligence for APIs Dashboard :

▪ admin
▪ ping_user

Multiple users can share the admin and ping_user logins simultaneously on PingIntelligence
Dashboard. The admin user has access to all PingIntelligence Dashboard functions. A ping_user can
only view all the API dashboards.

At the login screen, login as admin or ping_user. The default password for both the users is changeme.

i CAUTION: You must change the default password for production deployments. However, in a Docker
PoC deployment use the default password.

You can change the password using the following CLI command.

<pi_install_dir>/webgui/bin/cli.sh -u admin update_ui_password --username
 -value <admin or ping_user> --new-password -p
Enter admin password > <current admin password>
Enter new password > <new password>
Reenter new password > <new password>
success: password updated.

Copyright ©2022

 | PingIntelligence Dashboard | 469

i Note: If the Dashboard is not accessible, check if the default port (8030) was changed by your system
administrator.

PingIntelligence Dashboard is categorized into the following components:

▪ Main Dashboard - Available for admin and ping_user
▪ APIs - Available only for admin user
▪ Discovered APIs - Available only for admin user
▪ Attack Management - Available only for admin user
▪ License

Session management

The PingIntelligence Dashboard allows you to configure the maximum number of active sessions. You can
set the pi.webgui.session.max-active-sessions parameter in the <pi_install_dir>/webgui/config/
webgui.properties file to limit the maximum number of allowable active sessions. The default value is
50.

Delete active sessions- You can delete active sessions using the following CLI command. The current
active users will be prompted to re-login in to the Dashboard.

<pi_install_dir>/webgui/bin/cli.sh -u <username> -p <password>
 delete_sessions

i Note: You need to have Admin user privileges to delete active user sessions.

Copyright ©2022

 | PingIntelligence Dashboard | 470

Automatic rollover index

PingIntelligence for APIs Dashboard uses Index Lifecycle Management (ILM) policy support of
Elasticsearch to rollover time-series data. Rolling over the time-series data is important to maintain a low
latency during search operations. The ILM policy allows for an automatic rollover of index based on time or
size of data.

i Note: ILM policy for automatic rollover index works in Elasticsearch with X-Pack.

Configuring automatic rollover index

Configure the path to the ILM policy in es.index.dashboard.activity.ilm.policy property
in dashboard/config/dashboard.properties file. The ILM policy file should be a valid JSON.
Following is a sample ilm.json file available in the dashboard/config directory. Leave the value of
es.index.dashboard.activity.ilm.policy property empty if you do not wish to use ILM policy.

{
 "policy": {
 "phases": {
 "hot": {
 "actions": {
 "rollover": {
 "max_size": "30GB",
 "max_age": "30d"
 },
 "set_priority": {
 "priority": 100
 }
 }
 },
 "warm": {
 "min_age": "30d",
 "actions": {
 "shrink": {
 "number_of_shards": 1
 },
 "readonly": {},
 "forcemerge": {
 "max_num_segments": 1
 },
 "set_priority": {
 "priority": 50
 }
 }
 },
 "cold": {
 "min_age": "90d",
 "actions": {
 "freeze": {},
 "set_priority": {
 "priority": 0
 }
 }
 }
 }
 }
}

Policy phases - The ILM policy is divided into three phases:

Copyright ©2022

 | PingIntelligence Dashboard | 471

▪ hot - In the hot phase of the policy, the index is actively used to read and write data. The index
remains in the hot phase till the defined policy age or if the index reaches the maximum size. After the
index reaches the age or size, it is rolled over and new index is created.

Configure the max_age and max_size of the rollover index. The index is rolled over based on which
value among the size and age is triggered first.

▪ warm - In the warm phase of the policy, no new data is written to the index, however, it may be more
frequently queried for searching data. The index next moves to the cold phase.

Configure the min_age of the index for the warm phase.
▪ cold - In the cold phase, index is neither written to or read from. In the cold phase of policy, you can

move the index to a low cost storage device.

Configure the min_age of the index for the cold phase.

Priority - After an Elasticsearch restart, indices are reloaded back into memory in sequence according to
priority. Index with highest priority is loaded first. In the above sample JSON, the hot phase with priority
100 is of the highest priority. Hot index will be loaded into memory first. The warm phase with a priority
number 50 is second in priority. Warm index will be loaded into memory after hot index. Use a positive
integer number to set the priority.

Dashboard

The Dashboard provides a near real-time snapshot of your API environment. It provides insights on user
activity, attack information, blocked connections, forensic data, and much more. The Dashboard makes
periodic REST API calls to the ABS (API Behavioral Security) AI engine, which returns JSON reports that
are used to generate visualizations and API metrics. The following illustration shows the data flow for API

dashboard.

To view the API dashboard, click on Dashboard. The Dashboard provides information on the following::

▪ Global metrics like:

▪ Blacklist across APIs for each client identifier. For more information, see Interactive blacklists on
page 24.

▪ Total attacks across APIs
▪ Total requests across APIs
▪ Number of APIs in your environment

▪ Time series visualization of total number of requests and attacks. For more information, see Dashboard
time series on page 26.

▪ Data on Per API activity. For more information, see Per API activity on page 475.
▪ Data on attacks across APIs. For more information, see Cross API attacks and recently discovered

APIs on page 482.
▪ Forensic reports across APIs. For more information, see Forensic reports on page 477.
▪ Recently discovered APIs in the environment.

Copyright ©2022

 | PingIntelligence Dashboard | 472

Interactive blacklists

PingIntelligence for APIs Dashboard provides the capability of interactive blacklist management. A blacklist
is a list of client identifiers that were detected executing an attack. The dashboard enables you to unblock
the blacklisted client identifiers or tune the threshold values for attack types. It supports the following client
identifier types- IP address, Cookie, Token, API Key, and Username. You can view the top-500 entries on
each blacklist from the dashboard.

Click on the count for any blacklist type, for example, IP Blacklist. The dashboard lists the blacklisted IP
addresses along with the Detected date..

Copyright ©2022

 | PingIntelligence Dashboard | 473

The following screenshot shows the expanded blacklist:

For each blacklisted IP address, you get the option to Unblock or Tune in the Action list. Clicking on either
action redirects the dashboard to the Attack management application. Attack management allows you to
run the operations for unblocking the client identifiers and tuning the threshold values.

i Note: The Action list is available only for an Admin user. You need to have Admin user privileges to
perform Unblock and Tune operations on a client identifier.

Copyright ©2022

 | PingIntelligence Dashboard | 474

The following screen shot shows the Attack management

UI.

The values in Client Identifier Type and Enter IP Address get auto-populated into the Attack
management application from the dashboard. The AMT Action is auto-selected. Click Run to execute the
operation. For more information on Attack management, see Attack management on page 20.

i Note: Dashboard does not populate the API key key-name in the Attack management application
when the client identifier is API key. It only populates the API key value.

Dashboard time series

PingIntelligence Dashboard shows the attacks in a time-series format. To adjust the timeframe viewed on
the Dashboard, click between the time-period arrows located on the top right corner of the dashboard and
select the desired time period.

See the example in the following screen

capture:

Copyright ©2022

 | PingIntelligence Dashboard | 475

The following screen capture shows the total requests and number of attackers data in time series

format.

Per API activity

PingIntelligence for APIs Dashboard provides detailed analytics on each API. On the main Dashboard, the
following information is available:

▪ Training status - An API is trained after the ABS AI engine analyzes its traffic patterns and builds AI
models to detect attacks on the API. For more information, see AI Engine training on page 319

▪ Total number of requests made to the API during the requested timeframe
▪ Total attacks on the API during the requested timeframe

.

Copyright ©2022

 | PingIntelligence Dashboard | 476

Click on the API name to launch an API-specific dashboard. The dashboard provides following insight into
the API activity:

▪ Client attacks on the API - PingIntelligence for APIs identifies the number of individual clients executing
attacks by client identifier - API Keys, Cookies, IP addresses, OAuth2 tokens, and Usernames. It also
displays the total number of attacks (including multiple attacks per client) originating from any client
identifier

▪ API Attacks - ABS AI Engine reports on client attacks targeted on a specific API. It identifies different
attack types on your API based on client activity. The dashboard displays information that can be sorted
by attack type or count. For more information, see REST API attacks on page 338.

▪ API Activity and Attacks - The API dashboard provides the total number of requests and attackers for
the API in a time-series format.

▪ Top Resources Accessed - The most frequently accessed API resources can be viewed in sorted order
by URL or number of requests.

▪ Top IP Addresses - The IP addresses from which the API requests have originated can be viewed in
sorted order by IP or number of requests.

▪ Top Device Types – The device type from which the API requests have originated can be viewed in
sorted order by device type or the number of requests.

▪ Top Users – The username accessing the API can be viewed in sorted order by username or number of
requests.

▪ Error Codes - The number of failed requests are categorized by HTTP status codes in a bar chart.

Copyright ©2022

 | PingIntelligence Dashboard | 477

Forensic reports

The Forensic reports provided by PingIntelligence for APIs Dashboard render deep insights into the client
API activity. They provide analytics on recent attacks and API activities of top clients. The ABS AI Engine
generates forensic insights by analyzing the API traffic patterns. PingIntelligence for APIs Dashboard
projects these insights as Forensic reports.

Copyright ©2022

 | PingIntelligence Dashboard | 478

An example of top clients is the Top IP Addresses forensic report, which gives insight into the activity of the
most common IP addresses accessing APIs in your environment.

Click on the individual IP addresses to drill down further and get details on the APIs accessed by the IP
address, attacks generated by it and so on.

You can get similar insights on activites from other client identifiers including Usernames, API Keys,
Tokens, and Cookies.

Copyright ©2022

 | PingIntelligence Dashboard | 479

i Note: For client identifiers that exceed 4096 characters, the Dashboard displays only attack
information. It does not report forensic details, such as APIs accessed by the identifiers, number of
requests, and so forth.

The following table shows the forensics reported by the Dashboard.

Forensic reports Analytics reported

Recent Attacks The forensic report on recent attacks give following
information:

▪ The time of the attack.
▪ The API attacked.
▪ The client identifier from which the attack

originated - The identifier can be IP address,
cookie, token, username, API key.

▪ Count of attacks.

▪ Top Users
▪ Top Tokens
▪ Top API Keys
▪ Top Cookies
▪ Top IP Addressess

The Top client identifier reports provide a list of
following information for each client identifier:

▪ Client identifier value.
▪ Count of APIs attacked using the client identifier.
▪ Number of attacks from the client identifier.
▪ Number of requests made using the client

identifier.

i Note: You can drill down on each client identifier to get more finer insights like APIs accessed, count
of requests made to each API, type of attacks generated from the client identifier, devices from which the
request initiated and much more.

With PingIntelligence Dashboard, you can get the attack insights for different time-periods. For more
information, see Dashboard time series on page 26.

Client forensic report

The Client Forensic report provides insights into client activity in the course of an attack. It presents a
detailed analysis of the client traffic patterns prior to an attack. The report gives the following information :

▪ The APIs accessed by the client and the total number of requests made to these APIs.
▪ The different types of attacks executed by the client and the count of those attacks.
▪ The URLs accessed by the client and the total number of requests made to these URLs.

The client activity is reported in the time intervals of 10-minutes.

View the Client Forensic report

To know the details of client activity before an attack, complete the following steps :

i Note: The steps are explained using IP Address as the client identifier. You can follow the same
process to retrieve client forensics for other client identifier types.

Copyright ©2022

 | PingIntelligence Dashboard | 480

1. Click Recent Attacks in Forensic Reports, to open the Recent Attacks report.

2.
Click on icon next to IP to sort the recent attacks for that client identifier type. Click on the IP
Address for which the client forensics are to be retrieved. This opens the detailed report for the client.

Copyright ©2022

 | PingIntelligence Dashboard | 481

3. In the IP report, select the Attack for which the client forensics are required. This opens the Attack
Insights report for the client.

4. In the Attack Insight report, select the Attack Time from Client Forensics Links to open the Client
Forensics report for the client.

Copyright ©2022

 | PingIntelligence Dashboard | 482

5. The Client Forensic report provides detailed client activity prior to the attack time that is selected in the
step-4. It displays details like the APIs and URLs accessed by the client, other attacks executed by the
client. It also provides the count of such requests and attacks.

i Note: Changes to the Time Range filter on the top-right corner of the Dashboard will not impact the
results retrieved by the Client Forensic report.

Cross API attacks and recently discovered APIs

PingIntelligence for APIs Dashboard provides data on attacks on the APIs in your ecosystem, along
with their count. PingIntelligence for APIs can detect per API attacks and across API attacks. For more
information, see REST API attack types on page 339.

Copyright ©2022

 | PingIntelligence Dashboard | 483

The Dashboard also displays APIs discovered in your ecosystem. For more information, see Discovered
APIs on page 496.

Attack insights

Attack insights provides information on why an attack was identified. The Dashboard displays the
percentage by which the normal behavior was exceeded and hence and attack was reported. The
attack insight is rendered for a specific API, a client identifier and an attack type, for example,
header manipulation attack. To view the attack insight, navigate to the main Dashboard. Click on
Recent Attacks and then click on a client identifier. In the Dashboard page of the client identifier
that is displayed, click on the Attack to display the Attack Insight Dashboard page for that specific

Copyright ©2022

 | PingIntelligence Dashboard | 484

attack. To view the percentage deviation from the normal behavior, hover your mouse over the

bar.

Copyright ©2022

 | PingIntelligence Dashboard | 485

In the following screenshot, the deviations are 5 and 9900% from the normal

behavior.

Attack remediation

Attack remediation allows you to verify if the client that has executed an attack is on the
active blacklist at that point in time. You can unblock a client and remove from the blacklist.
If blocking is not enabled, then the client will be on the blacklist but not blocked. You can
access the Attack management Dashboard to Unblock the client or Tune the thresholds

Copyright ©2022

 | PingIntelligence Dashboard | 486

from Attack remediation. For more information, see Attack management on page 20.

APIs

APIs grouping

The API tab displays all the APIs available in ABS AI engine. PingIntelligence for APIs Dashboard
provides the capability to organize these APIs into logical groups. You can create API groups as per your
requirements. For example, you can group your APIs location-wise, functionality-wise, and so on. Every
API will be part of at least one API group in the Dashboard. The APIs grouping feature makes searching for
a specific API quick and easy. The Dashboard supports two kinds of groups:

▪ Default API group: This is the global API group. All the existing as well as newly discovered APIs will
be part of it initially. APIs that do not belong to any other API group will automatically get added to the
default API group. You can only view and move APIs from the default APIs group. You cannot delete an
API from a default API group.

▪ User-defined API groups: These are the API groups that you can create based on your requirements.
You can add or delete an API from the user-defined API groups.

Copyright ©2022

 | PingIntelligence Dashboard | 487

API details

You can click on icon to expand an API group. The following details are available for each API within an
API group:

▪ API name: API name used by PingIntelligence
▪ Prediction mode: A true status means that at least one training threshold value is set. It does not

necessarily mean that all the training is complete. A false status means that the API is still under
training mode

▪ Training duration: The minimum configured time in hours configured in ABS AI engine to train an
API. This is configured in abs_init.js in ABS. For more information, see AI Engine training on page
319

▪ URL: API basepath URL configured in the API JSON file. For more information, see API JSON
definition

▪ Host name: Host name of the API configured in the API JSON file. For more information, see API
JSON definition

▪ Protocol: The protocol configured in the API JSON file. For more information, see API JSON definition
▪ API type: API type can be regular, decoy - incontext, or decoy-out-of-context. For more

information on deception, see API deception environment on page 225
▪ Token: A true status means that PingIntelligence will use OAuth tokens for reporting and attack

detection. For more information, see API JSON definition
▪ API Key header and API key query string (QS): The API Key values configured in the API JSON file

and used for reporting and attack detection.. For more information, see API JSON definition
▪ Cookie: The cookie value configured in the API JSON file and used for reporting and attack detection.

Displays blank, if cookie was not configured in API JSON. For more information, see API JSON
definition

▪ Servers: The backend API server configured in the API JSON file - "*" supports all the host names. For
more information, see API JSON definition

Using the toggle button , you can hide or display information for the API in the PingIntelligence
Dashboard. This provides the flexibility to display only selected APIs. Even if an API is hidden from the API
dashboard, the dashboard engine keeps fetching API data from ABS AI engine. The hidden API is moved
to the end of list. If the APIs are paginated, the hidden APIs are moved to the last page. When you toggle

Copyright ©2022

 | PingIntelligence Dashboard | 488

the button to display a hidden API, the Dashboard displays data for the API on the Dashboard. You can

also go to the dashboard for the API by clicking the API analytics icon .

Administer API groups

PingIntelligence for APIs Dashboard allows following administrative operations on API groups. You need to
have Admin user privileges to perform these operations.

i Note: A successful execution of these operations is followed by a success notification. Click the
button on the top-right corner to reflect the changes made to the API groups.

Create new API group

To create an API group, click Create New API group on the top-right corner. Fill in the following details for
the new API group, and click Save:

▪ GROUP NAME: The display name of the API group.
▪ GROUP DESCRIPTION: Additional information about the API group.
▪ CUSTOM ATTRIBUTE KEY: The metadata key for the API group.
▪ CUSTOM ATTRIBUTE VALUE: Metadata about the API group. This can be used in search operations.

Copyright ©2022

 | PingIntelligence Dashboard | 489

You can edit an API group and modify the metadata. To edit an API group click icon.

Delete an API group

To delete an API group, click icon on the bottom-right corner of the API group. APIs in the group that
are not part of any other API groups, will be added to the default API group. You cannot delete the default
API group.

Add, delete, and move APIs

You can add, delete, or move an API from an API group.

▪ To add an API to group, click Add APIs on the top-right corner of the API group.
Select the API from the Add APIs to the Group pop-up and click Submit.
You can select more than one API and add them to a group in one instance.

▪ To move an API to a different API group, click Move API. Select Move API in the Move/Delete
from the Group pop-up. Now select the target API group and click Submit. You can move the

Copyright ©2022

 | PingIntelligence Dashboard | 490

API to more than one target API groups. Once the API is moved it'll no longer be part of that API

group.
▪ To delete an API from an API group, click Move API. Select Delete API in the Move/Delete

from the Group pop-up. Now click Submit. Once an API is deleted from a group, and if it
does not belong to any other API groups, then it automatically gets added to the default group.

Change a user-defined API group in to the default API group

You can convert a user-defined API group in to the default API group, by completing the following steps

1. Click SETTINGS.
2. On the left pane, Click API Grouping Settings.
3. From the SELECT GROUP list, select the API group that you want to convert in to the default group.
4. Click Save.

Copyright ©2022

 | PingIntelligence Dashboard | 491

Search or sort API groups and APIs

Search APIs

You can search for a specific API, with in an API group as well as across multiple API groups. For quick
and easy retrieval, when you search at API group level, you can filter your search based on Group

Copyright ©2022

 | PingIntelligence Dashboard | 492

name, Attribute, or API. When API is chosen for filtering, only non- empty API groups are loaded.

Sort API groups and APIs

You can sort API groups based on Group name, Group creation date, or Last modified

date.

Copyright ©2022

 | PingIntelligence Dashboard | 493

You can also sort the APIs with in an API group based on Creation date or Training start date.

Attack management

The attack management feature of PingIntelligence for APIs Dashboard supports unblocking of clients and
tuning thresholds values for attacks. Click on the Attack Management tab on the left pane to access it.

i Note: The Attack management feature is available only for an Admin user. You need to have Admin
user privileges to perform Unblock and Tune operations on a client identifier.

Copyright ©2022

 | PingIntelligence Dashboard | 494

The following screenshot illustrates the Attack Management

UI.

Interactive blacklists

The PingIntelligence for APIs Dashboard provides the capability of unblocking or tuning a blacklist directly
from the Dashboard. The user can select the client identifier and the Attack management action from the
Dashboard. For more information, see Interactive blacklists on page 24. The following screen shot
shows the client identifier blacklists across APIs in the Dashboard.

i Note: When the user initiates Attack management from the Dashboard, the values for the client
identifiers are auto-populated except the API key key-name.

Unblock a client identifier

Complete the following steps to unblock a client identifier:

1. Select the type of client identifier from the Client Identifier Type list.
2. Enter the value of the client identifier.

i Note: For API Key and Cookie, enter the name and the value.

3. Select the Unblock Client check box.
4. Click Run.

Copyright ©2022

 | PingIntelligence Dashboard | 495

The following screen shot illustrates the unblock client operation.

The unblock operation deletes the client identifier from the PingIntelligence ASE and ABS AI engine
blacklist. To verify that the client identifier has been deleted from ASE, run the view_blacklist CLI
command or blacklist REST API in ASE. To verify that the client identifier has been deleted from ABS, use
the attacklist REST API. For more information on ABS blacklist, see ABS blacklist reporting on page
350.

i Note: The API keys will not be deleted from the blacklist immediately in ASE if the API Key key-name
is not entered. The deletion is delayed until ASE retrieves the blacklist data from ABS.

Tune threshold

To address false positives, the Attack Management feature supports automatic threshold tuning. When
tuning thresholds for a specific client identifier, the Attack management functionality does the following:

1. It fetches all the attacks flagged for the client identifier from ABS AI Engine.
2. After it has identified all the attacks, it increases the threshold values for those attacks. At this point, the

threshold has moved from system defined to user defined. For more information on thresholds, see
Tune thresholds for false positives on page 324.

Complete the following steps to tune thresholds:

1. Select the type of client identifier from the Client Identifier Type list.
2. Enter the value of the client identifier.
3. Select the Tune Threshold check box.

Copyright ©2022

 | PingIntelligence Dashboard | 496

4. Provide the approximate number of days since the client was blocked. The maximum value is 30-days.

i Note: The value for How many days ago client was blocked? gets auto-populated when Attack
Management is initiated from the Dashboard interactive blacklist. The value is calculated as follows,

How many days ago client was blocked? = Current date - Attack detection
 date + 1

When auto-populating, if the calculated value is more than 30 days, it is trimmed down to 30.You
can use the same formula when populating the value manually. The Attack detection date for a client
identifier is available in the interactive blacklists.

5. Click Run.

The following screen shot illustrates tuning threshold for a client identifier.

Discovered APIs

API discovery is a process to discover APIs in your API environment. The discovery process involves all
PingIntelligence components.

▪ ASE - A root API is defined in ASE for the discovery process to start. The root API access log data is
sent to ABS AI engine for processing.

Copyright ©2022

 | PingIntelligence Dashboard | 497

▪ ABS AI engine - The ASE access logs are processed to discover APIs in your environment.
▪ Dashboard - Displays and manages Renders the discovered APIs. Dashboard allows you to

edit the discovered APIs and publish them to ASE. To view the APIs discovered from your API
ecosystem, navigate to Discovered APIs in the Dashboard as shown in the screenshot below.

Configure API discovery

To customize the discovery process, configure the discovery parameters on the Dashboard. Navigate to
Discovered APIs > Settings as shown in the screenshot below.

Discovery settings consists of the following three parts:

▪ Mode - Configure the mode in which APIs are published to ASE. The mode can be Manual or Auto.
▪ Discovery Configuration - Switch discovery ON or OFF, configure the subpath depth of the API base

path and discovery interval.
▪ Default API Properties - Configure the default properties of discovered APIs. You can edit the

properties of an individual API in manual mode before publishing it to ASE.

The following sections explain each parts of Discovery settings in detail.

Mode

Configure the mode in which Dashboard publishes the discovered APIs to ASE. The two modes are:

▪ Manual mode - In the manual mode, you can review the discovered APIs, edit
the properties of the APIs and then publish one or more APIs to ASE. For more

Copyright ©2022

 | PingIntelligence Dashboard | 498

information on editing the discovered APIs, see Edit the discovered APIs on page 502.

Copyright ©2022

 | PingIntelligence Dashboard | 499

▪ Auto mode - In the auto mode, Dashboard automatically publishes the APIs to ASE after a configured
time interval. In auto mode, if you edit an API, it is published to ASE in the subsequent interval.
Configure the following for auto mode:

▪ Polling Interval - The time interval at which Dashboard publishes APIs to ASE. It is a good practice
to have a minimum of a 10-minute interval.

▪ Delete non-discovered APIs - When enabled, any APIs manually added to ASE are deleted.

▪ ASE Deployment - Displays the ASE deployment mode - inline or sideband. The deployment mode is
configured in the /pingidentity/webgui/config/webgui.properties file. Here is a snippet of
the webgui.properties file to configure the ASE deployment mode.

ase properties
ASE management url
pi.webgui.ase.url=https://10.96.2.237:8010
ASE mode: valid values: inline or sideband
pi.webgui.ase.mode=inline

pi.webgui.ase.access-key=OBF:AES:NuZ4O93cWBKyKDFOZFINHeBew8sQ:eu//
E2CIObNNGvFOfHrLuAuec4WvN4yZsThAea4iBLA=

Copyright ©2022

 | PingIntelligence Dashboard | 500

pi.webgui.ase.secret-key=OBF:AES:NuZ4O93cWBKyKDFOZFINHeBew8sQ:eu//
E2CIObNNGvFOfHrLuAuec4WvN4yZsThAea4iBLA=

i Note: Make sure that the ASE mode configured in webgui.properties matches the
configuration in pingidentity/ase/config/ase.conf file in ASE.

Discovery Configuration

Configure enabling or disabling discovery from the Discovery Configuration tab by toggling the AI
Engine Discovery button. Configure the following:

▪ Discovery Source - Dashboard can discover APIs from three sources, ABS AI engine, PingAccess,
and Axway API gateway. The discovery source is configured in the /pingidentity/webgui/
config/webgui.properties file Following is a snippet of the webgui.properties file for
configuring the discovery source.

api discovery properties
discovery source
valid values: abs, axway and pingaccess
for axway and pingaccess, see config/discovery.properties
pi.webgui.discovery.source=abs

When the API discovery source is PingAccess or Axway, configure the gateway management URL and
credentials in the /pingidentity/webgui/config/discovery.properties file. Following is a
snippet of the discovery.properties file for configuring the credentials.

Axway API Gateway config. Only valid if
 pi.webgui.discovery.source=axway
API Manager URL
axway.management.url=https://127.0.0.1:8075/
API Manager admin username
axway.management.username=username
API Manager admin password
axway.management.password=xxxxxxxx

PingAccess config. Only valid if pi.webgui.discovery.source=pingaccess
Admin URL
pingaccess.management.url=https://127.0.0.1:9000/
Admin username
pingaccess.management.username=username
Admin password
pingaccess.management.password=xxxxxx

▪ AI Engine Discovery - Toggle the button to start or stop API discovery. Make sure a root API is
configured in ASE for the AI engine to discover APIs. For more information on discovery process, see
API discovery and configuration on page 329.

▪ AI Engine Subpath Depth - Defines the number of subpaths used to uniquely discover the base path
of a new API. The maximum value is 6. For more information, see Discovery Subpaths on page 333.

▪ AI Engine Discovery Update Interval - Defines the time interval at which new discovered APIs are
updated in the Dashboard. The minimum value is 1-hour.

Copyright ©2022

 | PingIntelligence Dashboard | 501

Default API Properties

You can configure the default API JSON properties from this tab. These properties apply to all the
discovered APIs. You can edit the properties of the discovered APIs in the manual mode before publishing
to ASE. For more information on the API properties, see Define an API JSON

Copyright ©2022

 | PingIntelligence Dashboard | 502

Edit the discovered APIs

You can edit the discovered APIs from the Discovered APIs page. To edit an API, click on the buttons as
shown in the next two screenshots.

Step 1

Copyright ©2022

 | PingIntelligence Dashboard | 503

Step 2

Copyright ©2022

 | PingIntelligence Dashboard | 504

The edit API page is displayed when you click on the edit button as shown in step 2.

The edit API page is divided into three tabs.

▪ Profile
▪ Servers
▪ Inline Security

These are the same properties that you configure when you define an API JSON in ASE. For more
information on defining an API JSON, see Define an API JSON. You can also reset the edited changes
by clicking on the Reset to default discovery config button on the top-right corner. This resets the API
properties to the one that was set during the Configure API discovery on page 497 step.

Configure dashboard engine
When you install the PingIntelligence Dashboard, the on-prompt installation steps asks for configuration
values including, access and secret key, ABS and ASE URL and so on. These values after installation
are populated in the <pi_install_dir>/dashboard/config/dashboard.properties file. To
change these values, stop the dashboard engine, edit the dashboard.properties file and then start
the dashboard engine. See, Start and stop Dashboard on page 110 on how to start and stop each
component individually.

Dashboard properties file

ABS
ABS Hostname/IPv4 address
abs.host=127.0.0.1
ABS REST API port
abs.port=8080
ABS SSL enabled (true/false)

Copyright ©2022

 | PingIntelligence Dashboard | 505

abs.ssl=true
ABS Restricted user access (true/false)
abs.restricted_user_access=true
ABS access key
abs.access_key=OBF:AES:NuBmDdIhQeNlRtU8SMKMoLaSpJviT4kArw==:HHuA9sAPDiOen3VU
+qp6kMrkgNjAwnKO6aa8pMuZkQw=
ABS secret key
abs.secret_key=OBF:AES:NuBmDcAhQeNlPBDmyxX+685CBe8c3/STVA==:BIfH
+FKmL5cNa1DrfVuyc5hIYjimqh7Rnf3bv9hW0+4=
ABS query polling interval (minutes)
abs.query.interval=10
ABS query offset (minutes. minimum value 30 minutes)
abs.query.offset=30

UI
publish attacks+metrics to UI. Valid values true or false
publish.ui.enable=true
elasticsearch URL
es.url=https://localhost:9200/
elasticsearch username. User should have manage_security privilege
es.username=elastic
elasticsearch user password
es.password=OBF:AES:NOp0PNQvc/RLUN5rbvZLtTPghqVZzD9V:
+ZGHbhpY4HENYYqJ4wn50AmoO6CZ3OcfjqTYQCfgBgc=
kibana version
kibana.version=6.8.1

Log4j2
publish attacks to Log4j2. Valid values true or false
By default it provides syslog support
publish.log4j2.enable=false
log4j2 config file to log attacks to an external service. For example,
 Syslog
use com.pingidentity.abs.publish as logger name in log4j2 configuration
log4j2.config=config/syslog.xml
log4j2 log level for attack logging
log4j2.log.level=INFO
directory for any log4j2 config dependency jar's.
useful for third party log4j2 appenders
it should be a directory
log4j2.dependencies.dir=plugins/

Log level
dashboard.log.level=INFO

The following table describes all the parameters in the dashboard.properties file:

Parameter Description

ABS

abs.host IP address of the ABS server

i Note: Two options exist to choose an ABS server: 1) Utilize an
existing ABS server. 2) For production deployments, Ping Identity
recommends dedicating an exclusive ABS reporting node.

abs.port REST API port number of the ABS host – See abs.properties

Default value is 8080

Copyright ©2022

 | PingIntelligence Dashboard | 506

abs.ssl Setting the value to true ensures SSL communication between ABS and
dashboard engine.

abs.restricted_user When set to true, Elasticsearch uses the restricted user header
(configured in pingidentity/abs/mongo/abs_init.js file) to
fetch the obfuscated values of OAuth token, cookie and API keys. When
set to false, the admin user header is used to fetch the data in plain
text. For more information on admin and restricted user header, see
ABS users for API reports

abs.access_key Access key from ABS – See pingidentity/abs/mongo/
abs_init.js. Make sure to enter the access key based on the value
set in the previous variable. For example, if abs.restricted_user
is set to true, then enter the access key for restricted user. If
abs.restricted_user is set to false, then use the access key for the
admin user.

abs.secret_key Secret key from ABS – See pingidentity/abs/mongo/
abs_init.js. Make sure to enter the secret key based on the value
set in the previous variable. For example, if abs.restricted_user
is set to true, then enter the secret key for restricted user. If
abs.restricted_user is set to false, then use the secret key for the
admin user.

abs.query.interval Polling interval to fetch data from ABS. The default is 10 minutes

abs.query.offset The time required by ABS to process access logs and generate result.
The minimum and default value is 30-minutes.

UI

publish.ui.enable Set it to true to display PingIntelligence Dashboard. The Dashboard
displays attack and metrics data. Set it to false, if you do not want to
display the Dashboard.

es.url Elasticsearch URL

es.username Elasticsearch username

es.password Elasticsearch password.

kibana.version Kibana version - default is 6.8.1

dashboard.log.level Log level for Dashboard

Default log level is INFO. Another log level is DEBUG

Log4j

publish.log4j2.enable Set it to true to send attack data to syslog server. Set it to false to
disable sending attack data to syslog server.

i Note: Dashboard and Syslog cannot be disabled together.

log4j2.config The log4j2 config file which logs the attack data.

log4j2.log.level Log level for log4j.

Default log level is INFO.

log4j2.dependencies.dir The directory for any log4j configuration dependency. Make sure that it
is a directory.

Copyright ©2022

 | PingIntelligence Dashboard | 507

Dashboard engine fast forward

Start PingIntelligence Dashboard in fast-forward mode to populate the Dashboard with historical data.
Possible scenarios in which running Dashboard in fast-forward mode is useful are:

▪ Elasticsearch data was accidentally deleted, and you want to repopulate the Dashboard.
▪ The Dashboard was not available for a specific duration of time, and you wish to fetch the data for that

time duration.
▪ The Dashboard was installed after the other PingIntelligence components were deployed, and you want

to populate the Dashboard with data from when PingIntelligence was first started.

The following diagrams summarize the use case for Dashboard's fast-forward

mode:

When you run Dashboard in fast-forward mode, it fetches data from a time frame you define in YYYY-
MM-DDTHH:mm format in the dashboard.properties file. For example, if you want to fetch data from
January 1, 2019 01:00 to March 31, 2019 23:00 , then earlier-date in dashboard.properties would be
2019-01-01T01:00 and later-date would be 2019-03-31T23:00.

Dashboard stops querying the AI engine when its query reaches the later date. The Dashboard stopping
time is logged in the logs/dashboard_fastforward.log file along with the other Dashboard activities.
The logs/dashboard_fastforward.log file is rotated every 24-hours. You can see the data
visualization of the specified period in the Dashboard UI already running.

i Attention: If your current Dashboard engine is running in /opt/pingidentity/dashboard/,
make sure that you use a different directory to run Dashboard in fast-forward mode, for example, /opt/
pingidentity/dashboard_fast_forward/.

Copy the Dashboard binary and configure the dashboard.properties file with earlier-date and later-
date in the Fastforward section of the properties file. The following table shows the available parameters
for Dashboard fast-forward mode.

Parameter Description

dashboard.fastforward.earlier_time The query start date and time in YYYY-DD-
MMTHH:mm format.

dashboard.fastforward.later_time The query end date and time in YYYY-DD-
MMTHH:mm format.

dashboard.fastforward.query.range The time in minutes that Dashboard queries the AI
engine in a single pass.

Copyright ©2022

 | PingIntelligence Dashboard | 508

Parameter Description

dashboard.fastforward.query.cooling_period The time in seconds between two Dashboard
queries to the AI engine. The minimum and the
default value is 60 seconds.

The following is an example of the Fastforward section of the dashboard.properties file.

Fastforward. Only applicable if dashboard is started with 'start.sh --
fast-forward'

earlier time. format YYYY-MM-DDTHH:mm
E.g 2019-07-12T10:00
dashboard.fastforward.earlier_time=2019-07-12T10:00

later time. format YYYY-MM-DDTHH:mm
E.g 2019-11-13T23:50
dashboard.fastforward.later_time=2019-11-13T23:50

query range in minutes. It should be multiple of 10
minimum value is 10
dashboard.fastforward.query.range=60

cooling period between each query polling batch in seconds
dashboard.fastforward.query.cooling_period=60

Start dashboard engine in fast-forward mode

Install a new instance of dashboard binary in a different directory in /opt/pingidentity/, for example,
/opt/pingidentity/dashboard_fast_forward. Enter the following command to start Dashboard in
fast-forward mode:

/opt/pingidentity/dashboard_fast_forward/bin/start.sh --fast-forward
starting Dashboard Fastforward 4.1

Configure dashboard engine for syslog

PingIntelligence dashboard engine supports sending attack information to a syslog server. Enable
syslog support by editing the dashboard.properties file. By default syslog is disabled. Dashboard
uses Log4j version2.11.2 to publish attack data to syslog.

Following is a snippet of dashboard.properties with syslog enabled.

Log4j2
publish attacks to Log4j2. Valid values true or false
By default it provides syslog support
publish.log4j2.enable=true
log4j2 config file to log attacks to an external service. For example,
 Syslog
use com.pingidentity.abs.publish as logger name in log4j2 configuration
log4j2.config=config/syslog.xml

log4j2 log level for attack logging
log4j2.log.level=INFO
directory for any log4j2 config dependency jar's.
useful for third party log4j2 appenders
it should be a directory
log4j2.dependencies.dir=plugins/

Copyright ©2022

 | PingIntelligence Dashboard | 509

The attack data is published to a Log4j logger named com.pingidentity.abs.publish. The
Log4j configuration file must have a logger named com.pingidentity.abs.publish. Any Log4j2
config file that wants to capture attack data from Dashboard must have at least one logger with name
com.pingidentity.abs.publish.

PingIntelligence Dashboard ships with a syslog.xml and attack_log.xml file in the Dashboard
config directory. The config file supports other formats available with Log4j including
.properties, .json, or .yml.

syslog.xml

Following is a snippet of the syslog.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="warn" name="APIIntelligence" packages="">
 <Appenders>
 <!--<Syslog name="bsd" host="localhost" port="514" protocol="TCP"
 ignoreExceptions="false" immediateFlush="true" />-->
 <Syslog name="RFC5424" host="localhost" port="614" protocol="TCP"
 format="RFC5424" appName="APIIntelligence" mdcId="mdc"
 facility="LOCAL0" enterpriseNumber="18060" newLine="true"
 messageId="Audit" id="App" ignoreExceptions="false"
 immediateFlush="true"/>
 </Appenders>
 <Loggers>
 <Logger name="com.pingidentity.abs.publish" level="info" additivity="false">
 <AppenderRef ref="RFC5424"/>
 </Logger>
 </Loggers>
</Configuration>

Configure server and port number of syslog server

Configure the server and port number of syslog server in config/syslog.xml file. Following is a snippet
of the syslog.xml file displaying the server and port number parameters:

 <!-- ### Syslog RFC5424 format, TCP -->
 <Syslog name="TCP_RFC5424"
 host="localhost"
 port="614"
 appName="APIIntelligence"
 id="App"
 enterpriseNumber="18060"
 facility="LOCAL0"
 messageId="Audit"
 format="RFC5424"
 newLine="true"
 protocol="TCP"
 ignoreExceptions="false"
 mdcId="mdc" immediateFail="false" immediateFlush="true"
 connectTimeoutMillis="30000" reconnectionDelayMillis="5000"/>

attack.log for Splunk

Configure dashboard.properties for attack.log

Edit the pingidentity/dashboard/config/dashboard.properties file to send the attack data
to attack.log. By default syslog is configured. To send the attack data to attack.log, edit the
dashboard.properties file as shown in the snippet below:

Log4j2
publish attacks to Log4j2. Valid values true or false

Copyright ©2022

 | PingIntelligence Dashboard | 510

By default it provides syslog support
publish.log4j2.enable=true
log4j2 config file to log attacks to an external service. For example,
 Syslog
use com.pingidentity.abs.publish as logger name in log4j2 configuration
log4j2.config=config/attack_log.xml
log4j2 log level for attack logging
log4j2.log.level=INFO
directory for any log4j2 config dependency jar's.
useful for third party log4j2 appenders
it should be a directory
log4j2.dependencies.dir=plugins/

attack_log.xml: Following is a snippet of the attack_log.xml. The attack_log.xml produces
attack.log that is consumed by Splunk. The attack.log captures the attack data in a JSON format.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration name="APIIntelligence" packages="" status="warn">
 <Appenders>
 <RollingFile name="attack_log" append="true"
 fileName="${sys:dashboard.rootdir}/logs/attack.log"
 filePattern="logs/attack.log.%d{yyyy-MM-dd}" immediateFlush="true" >
 <PatternLayout>
 <Pattern>pi-attack-info-%m%n</Pattern>
 </PatternLayout>
 <Policies>
 <TimeBasedTriggeringPolicy/>
 </Policies>
 </RollingFile>
 </Appenders>

 <!-- Attacks are logged to logger with name com.pingidentity.abs.publish
 There should be at least one logger with name
 com.pingidentity.abs.publish
 It is better to set additivity="false" so that same attacks will not
 be logged in dashboard.log -->

 <Loggers>
 <Logger additivity="false" level="info" name="com.pingidentity.abs.publish">

 <AppenderRef ref="attack_log"/>
 </Logger>
 </Loggers>
</Configuration>

The attack data is published to a Log4j logger named com.pingidentity.abs.publish. The
Log4j configuration file must have a logger named com.pingidentity.abs.publish. Any Log4j2
config file that wants to capture attack data from Dashboard must have at least one logger with name
com.pingidentity.abs.publish.

Dashboard log messages

The following tables list the critical log messages from dashboard.log file. The dashboard.log file is
rotated every 24-hours.

Copyright ©2022

 | PingIntelligence Dashboard | 511

Log messages Description

error - fatal protocol violation This message is logged in dashboard.log when
there is a HTTP/(S) protocol error while connecting
to ABS or Elasticsearch.

error - fatal transport error This message is logged in dashboard.log when
there is an unknown host for ABS or Elasticsearch.

error - error while sending message to syslog This message is logged in dashboard.log
when the syslog server is not reachable, or there
is an error in configuration of SSL or non-SSL
connections.

error - capacity full in syslog consumer worker,
retries exhausted, ignoring this message

This message is logged in dashboard.log when
the Syslog server is not reachable, or there is
an error in the configuration of SSL or non-SSL
connections.

error - error while closing response stream This message is logged in dashboard.log when
ABS, or Elasticsearch socket is not closed properly.

error - error while flushing file stream This message is logged in dashboard.log when
there is a failure in the storage disk, or the storage
disk is full..

error - error while closing file stream This message is logged in dashboard.log when
there is a failure in the storage disk, or the storage
disk is full..

error - error while parsing access_time from file This message is logged in dashboard.log when
ABS returns an invalid access_time or the time
format is not consistent.

error - error while parsing api_key name from file This message is logged in dashboard.log when
ABS returns an empty API Key in the API Key
metrics or attack report.

error - error while parsing cookie name from file This message is logged in dashboard.log when
ABS returns an empty cookie name in the metrics
or attack report.

warn - http request " + <URL> + ", response status:
" + <Response status>

This message is logged in dashboard.log when
ABS or Elasticsearch returns HTTP status code
that is greater than or equal to 300.

Dashboard stopped This message is logged in dashboard.log when
Dashboard is shutdown.

Purge dashboard logs

The purge.sh script either archives or purges processed access log files which are stored in the /opt/
pingidentity/dashboard/logs directory.

i Note: When the purge script is run, the log files are permanently deleted from the /opt/
pingidentity/dashboard/logs directory. Always backup the files before deleting.

Located in the /opt/pingidentity/dashboard/util directory, the purge script deletes logs older
than the specified number of days. Run the script using the Dashboard command line.

Copyright ©2022

 | PingIntelligence Dashboard | 512

i Note: The number of days specified should be between 1-365 days.

For example.

/opt/pingidentity/dashboard/util/purge.sh -d 3
In the above example, purge.sh deletes all access log files older than 3
 days. Here is sample output.
/opt/pingidentity/dashboard/util/purge.sh -d 3
This will delete the data in /opt/pingidentity/dashboard/logs which is older
 than 3 days.
Are you sure (yes/no): yes
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-07 : last
 changed at Sat Feb 9 00:29:43 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-09 : last
 changed at Mon Feb 11 00:29:48 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-08 : last
 changed at Sun Feb 10 00:29:56 EST 2019
Done.

Force delete: You can force delete the Dashboard log files by using the -f option with the purge.sh
script. When using this option, the script does not check for confirmation to purge the log files. Use the
force purge option with the -d option to provide the number of days of logs to keep.

Example: The following snippet shows an example of the force purge and -d option.

/opt/pingidentity/dashboard/util/purge.sh -d 3 -f
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-07 : last
 changed at Sat Feb 9 00:31:26 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-09 : last
 changed at Mon Feb 11 00:31:30 EST 2019
removing /opt/pingidentity/dashboard/logs/dashboard.log.2019-02-08 : last
 changed at Sun Feb 10 00:31:35 EST 2019
Done.

In the above example, the script force purges the Dashboard log files while keeping log files of 3-days.

External log archival

The purge script can also archive logs older than the specified number of days to secondary storage. Use
the -l option and include the path of the secondary storage to archive log files. For example:

/opt/pingidentity/dashboard/util/purge.sh -d 3 -l /tmp/

In the above example, log files older than 3-days are archived to the tmp directory. To automate log
archival, add the script to a cron job.

Purge data from Elasticsearch

To manage storage on the Dashboard server, you can either archive or purge Elasticsearch data.
PingIntelligence provides a purge script to remove older Elasticsearch data.

i Warning: When the purge script is run, all files are permanently deleted from the Elasticsearch data
directory. Hence it is recommended to take a backup of Elasticsearch documents before proceeding with
the purge.

Copyright ©2022

 | PingIntelligence Dashboard | 513

Run the purge script, on the dashboard engine command line. The number of days specified should be
between 1-365 days.

/opt/pingidentity/dashboard/util/purge_elasticsearch.sh -d 3

In the following example, purge_elasticsearch.sh deletes all files older than 3 days. Here is a sample
output:

/opt/pingidentity/dashboard/util/purge_elasticsearch.sh -d 3
This will delete the data in elastic search which is older than 3 days.
Are You sure(yes/no):yes
2017-04-17 11:13:07 INFO Starting purge with options, days : 3 path : /opt/
poc/pingidentity/dashboard/config/dashboard.properties

To delete all data and Elasticsearch templates, use the following:

curl -s https://<elasticsearch_ip_address>:<port>/_all -X DELETE -u elastic

When you use the -X DELETE option, the system goes back to a fresh installation state.

i Note: Purge for Elasticsearch runs in the background. Documents are not deleted immediately after
purge_elasticsearch.sh execution. Elasticsearch deletes purged documents with a lag of 5 minutes.

The following example illustrates deletion of Elasticsearch records older than 15 days. The Number of
Records Purged : null is an expected message due to the time lag in actual deletion.

[xxxxxxxxx@T5-03 dashboard]$./util/purge_elasticsearch.sh -d 15
This will delete the data in elasticsearch cluster which are older than 15
 days.
Are You sure(yes/no):yes
Starting Elasticsearch purge
2020-04-09 03:16:44 INFO Starting purge with options, days : 15 path : /
home/xxxxxxxx/pingidentity/dashboard/config/dashboard.properties
2020-04-09 03:16:45 INFO API's Loaded from elasticsearch : [app54, app58,
 app63, app8, app2, app3, app66, app74, app79, app77]
2020-04-09 03:16:45 INFO Purging data for global indice activity-api
2020-04-09 03:16:45 INFO Number of Records Purged : null
2020-04-09 03:16:45 INFO Purging data for global indice activity-api-key
2020-04-09 03:16:45 INFO Number of Records Purged : null
2020-04-09 03:16:45 INFO Purging data for global indice activity-token
2020-04-09 03:16:45 INFO Number of Records Purged : null

.

.

i Note: It is recommended to run purge_elasticsearch.sh during lean API traffic periods.

Purge Web GUI logs

The purge.sh script either archives or purges processed access log files and admin log files which are
stored in the /opt/pingidentity/webgui/logs/access/ and /opt/pingidentity/webgui/
logs/admin/ directories respectively.

i Note: When the purge script is run, the log files are permanently deleted. Hence it is recommended
to always backup the files before deleting.

Copyright ©2022

 | API Gateway integration | 514

Located in the /opt/pingidentity/webgui/util directory, the purge script deletes logs older than
the specified number of days. Run the script using the webgui command line.

i Note: The number of days specified should be between 1-365 days.

For example.

/opt/pingidentity/webgui/util/purge.sh -d 1
This will delete the logs in /opt/e2e/pingidentity/webgui/logs/admin and /
opt/e2e/pingidentity/webgui/logs/access that are older than 1 days.
Are you sure (yes/no): yes
Removing /opt/e2e/pingidentity/webgui/logs/admin/admin.log.2020-04-08 : last
 changed at Wed Apr 8 17:07:49 UTC 2020
removing /opt/e2e/pingidentity/webgui/logs/access/access.log.2020-04-08 :
 last changed at Wed Apr 8 19:03:31 UTC 2020
Done

Force delete: You can force delete the webgui log files by using the -f option with the purge.sh script.
When using this option, the script does not check for confirmation to purge the log files. Use the force
purge option with the -d option to provide the number of days of logs to keep.

Example: The following snippet shows an example of the force purge and -d option.

/opt/pingidentity/webgui/util/purge.sh -d 2 -f

In the above example, the script force purges the webgui log files while keeping log files of 2-days.

External log archival

The purge script can also archive logs older than the specified number of days to secondary storage. Use
the -l option and include the path of the secondary storage to archive log files. For example.

/opt/pingidentity/webgui/util/purge.sh -d 2 -l /backup/

In the above example, log files older than 2-days are archived to the backup directory. To automate log
archival, add the script to a cron job.

API Gateway integration

Akana API gateway integration

Akana API gateway sideband integration

This integration guide discusses the deployment of PingIntelligence for APIs in a sideband configuration
with Akana API Gateway. PingIntelligence for APIs in a sideband deployment mode integrates with Akana
API Gateway to provide in-depth analytics on API traffic. A PingIntelligence policy is installed in the Policy
Manager component of Akana API Gateway to pass API metadata to PingIntelligence for detailed API
activity reporting and attack detection. For more information on sideband deployment, see Sideband ASE
on page 150 .

PingIntelligence for APIs provides JavaScript policy that extracts API metadata from a request and
response processed by Akana API Gateway. The API metadata is passed to API Security Enforcer (ASE).
Here are a few highlights of the integration solution:

▪ Support for SSL connectivity through a valid CA signed certificate.

Copyright ©2022

 | API Gateway integration | 515

▪ Support for connection keep alive between Akana gateway and ASE, for faster processing of request
and response data.

▪ Support for ASE-failover by provisioning a secondary ASE.
▪ OAuth attribute extraction and username support for OAuth enabled APIs.
▪ Interception of OAuth tokens sent as part of query parameters.

i Note: Akana Gateway does not support self-signed certificates.

PingIntelligence policies:

Three policies are made available to support the integration. They are packaged in pi-api-akana-
policy-4.x.x.tar.gz file. The following diagram shows the directory structure for reference.

pi_policy.js: This is the main PingIntelligence policy. It extracts the metadata for each API call, formats it
into JSON and makes API calls to pass the metadata to ASE.

retain-header-policy.js: After validating a token with the OAuth server, Akana gateway deletes
the incoming Authorization header. As a result, this header does not get forwarded to ASE. The
retainHeader.js remedies this by capturing the deleted Authorization header and passes it to pi_policy.js for
metadata extraction. The retainHeader.js policy gets executed before pi_policy.js.

config.js: This script takes ASE configuration as input from the user. The script then connects the ASE
nodes and the policy.

i Note: The retain-header.js policy needs to be attached to all OAuth enabled APIs, to ensure user
information is extracted from API reqeusts.

The following diagram shows the logical setup of PingIntelligence for APIs components and Akana API
Gateway:

Copyright ©2022

 | API Gateway integration | 516

The traffic flow through the Akana API gateway and PingIntelligence for APIs components is explained
below :

1. Client sends an incoming request to Akana API gateway.
2. PingIntelligence policy deployed on Akana API gateway is executed on the request to extract the

metadata from the incoming request.
3. Akana API gateway makes an API call to send the request metadata to API Security Enforcer

(ASE).The ASE checks the client identifiers such as usernames, tokens against the blacklist. If all
checks pass, ASE returns a 200-OK response to the Akana API gateway. If not, a different response
code is sent to Akana API gateway (400 or 403). The request information is also logged by ASE and
sent to the Ping Intelligence API Behavioral Security (ABS)AI Engine for processing.

4. The Akana API gateway forwards the API requests to the backend server after the ASE processes it.
If the gateway receives a 403-Forbidden response from ASE, it blocks the client. Otherwise it forwards
the request to the backend server.

5. The response from the backend server is received by Akana API Gateway.
6. The PingIntelligence policy is again applied on the response to extract the metadata from the server

response.
7. Akana API gateway makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing. ASE sends a 200-OK to API gateway.
8. Akana API gateway sends the response received from the backend server to the client.

Prerequisites

Complete the following prerequisites before deploying PingIntelligence policy on Akana API gateway.

Install PingIntelligence software:PingIntelligence software should be installed and configured. Refer to
Automated deployment or Manual deployment.

Copyright ©2022

 | API Gateway integration | 517

Verify that ASE is in sideband mode:Check that ASE is in sideband mode by running the following ASE
command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

Enable sideband authentication: For a secure communication between Akana gateway and ASE, enable
sideband authentication by entering the following ASE command:

./bin/cli.sh enable_sideband_authentication -u admin –p

Ensure SSL is configured in ASE for client side connection using CA-signed certificate.Please refer to
Configure SSL for external APIs on page 132 for more details.

Generate sideband authentication token: To generate the token in ASE, enter the following command in
the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Enable connection keepalive between gateway and ASE- Navigate to /opt/pingidentity/ase/
config/. Set the value of enable_sideband_keepalive to true in ase.conf file. If the ASE is running stop
it, before making the change. Start ASE after setting the value. For more information on ASE configuration,
see ASE configuration - ase.conf on page 152

Add PingIntelligence ASE APIs

This section explains the steps to add a primary and secondary ASE nodes to Akana API gateway.

i Important: The primary and secondary ASE APIs should not be exposed to external API clients. For
more details on securing ASE APIs, see Secure PingIntelligence ASE APIs on page 520.

To add ASE APIs to Akana API gateway:

1. Login to Akana portal and click Add API from the APIs drop down list.
2. Select I want to design my API from scratch(REST) only.
3. Enter the following details for ASE:

a. Name of the API in Name.
b. Enter the Endpoint-<http/https>://<ASE-Hostname or IP>/ase.
c. Enable Advanced Options.
d. Enter API version in Version ID.
e. Select Pattern Proxy in the Pattern section.
f. Select an Implementation.
g. Select Deployment Zones.

Copyright ©2022

 | API Gateway integration | 518

4. Click Save after entering the details.

Copyright ©2022

 | API Gateway integration | 519

5. Add 2 resources under Resources, one to post request metadata to ASE and another to post response
metadata to ASE.

To add a resource to ASE API, open API Designer by performing below 3 steps.

a. Navigate to the Overview page of the API.
b. Choose Details from the left menu pane. The summary of the API is displayed in the details.
c. In the Design section, click Edit to enter API Designer.

To add the Request resource to API

a. Click Add Resource to open the Edit Resource window.
b. Enter /request in the Path to post request metadata to ASE.
c. Choose the VerbPOST.
d. Enter Operation ID. If the user does not provide the value, a random value is generated for

Operation ID.
e. Click Finish after updating the other non mandatory details like Description, Summary, and Tags.
f. Click Save to reflect the changes.

Copyright ©2022

 | API Gateway integration | 520

i Note: A default resource is created when an API is added to Akana API Gateway. This resource
can be edited to add the first resource.

To add the Response resource to API

a. Click Add Resource to open the Edit Resource window.
b. Enter/response in the Path to post request metadata to ASE.
c. Choose the Verb POST.
d. Enter Operation ID. If the user does not provide the value, a random value is generated for

Operation ID.
e. Click Finish after updating the other non mandatory details like Description, Summary, and Tags.
f. Click Save to reflect the changes.

6. Repeat steps 1- 5, and add the secondary (back-up) ASE node.

Secure PingIntelligence ASE APIs

Copyright ©2022

 | API Gateway integration | 521

The primary and secondary ASE APIs, added in Akana API Gateway, should be secured from
unauthorized access of external clients. To ensure this, secure the ASE APIs using the API Consumer
Application Security operational policy. The policy allows control on the clients attempting to access the
ASE APIs. Add the policy to both primary and secondary ASEs in the Akana gateway.

Complete the following steps to add API Consumer Application Security operational policy to ASE APIs::

1. Login to Akana Policy Manager, navigate to the Tenant and select the ASE API.
2. Click + to expand and select Policies. Click Operational Policies and then click Add Policy on the

bottom-right.

3. In the Add Policy Wizard, select API Consumer Application Security Policy from Add Policy. Enter
a Policy Name, click Next and then click Finish to save the policy.

Copyright ©2022

 | API Gateway integration | 522

4. The policy appears under Policies in ASE API. Click the policy. Click Modify in API Consumer
Application Security Policy section.

5. Click Apply on the next screen without making any changes.

6. Next click Activate Policy.

Copyright ©2022

 | API Gateway integration | 523

7. Select the ASE API and click Manage in Policy Attachments section.

8. Click Attach on the next page, to attach the policy to ASE API.

9. In the Attach Organization Policies window, select the policy added from Policies window, and select
the <Policy Name> checkbox in front of it. Click Apply.

10.Click Close.
11.Repeat steps 1-10, and add the policy to secondary ASE API.

Capture ASE details

This section elaborates the steps involved to capture details of Service name, Interface name,Operation
name for primary and secondary ASE nodes.The Service Qname,Interface Name, and Operation Name
are used in config.js.

To capture the above values:

1. Login to Akana Policy Manager, navigate through the Organization Tree on the left and select the
Tenant and then the ASE API.

Copyright ©2022

 | API Gateway integration | 524

2. Expand the Services and click on the API.

a. Capture Service Qname.

b. Capture Interface Name.

c. Click Operations tab on the menu, and capture Operations Name.

Copyright ©2022

 | API Gateway integration | 525

i Note: Repeat the above steps to capture the Service Qname,Interface Name, and Operation Name
details for Secondary ASE API.

Deploy PingIntelligence policies

Deploying PingIntelligence policies in Akana API gateway is divided into three parts:

▪ Adding an input script (config.js).
▪ Adding PingIntelligence policy and applying the policy to APIs.
▪ Adding RetainerHeader policy and applying the policy to APIs.

Complete the following steps to download and extract the PingIntelligence policy:

1. Download the PingIntelligence policy.
2. Extract the policies by using the following command.

tar –zxvf <<file name>>

For example,

tar –zxvf pi-api-akana-policy-4.1.1.tar.gz

Add Input script

Complete the following steps to add input script to API gateway:

1. Login to Akana Policy Manager, navigate to the Tenant and click Scripts.
2. Click Add Script.

Copyright ©2022

 | API Gateway integration | 526

3. Enter Script Name and Script Description, and click Next.

4. Select JavaScript as Language from the list.
5. Copy the contents of config.js script provided by PingIntelligence and paste them into the Source.

Copyright ©2022

 | API Gateway integration | 527

6. Substitute the values of ‘Service_QName’, ‘Interface_Name’, and ‘Operation_Name’ that were captured
in Capture ASE details step.This needs to be performed for both primary and secondary ASE nodes.
The below table lists the variables in config.js that needs to be populated.

Variable Purpose

ase_token Variable to hold ASE sideband authentication token.

primary_ase_service Service QName for primary ASE.

primary_ase_interface Interface name for primary ASE.

primary_ase_request_operation Operation Name for posting Request Metadata in primary ASE.

primary_ase_response_operation Operation Name for posting Response Metadata in primary ASE.

secondry_ase_service Service QName for secondary ASE

secondary_ase_interface Interface name for secondary ASE

secondary_ase_request_operation Operation Name for posting Request Metadata in secondary
ASE.

secondary_ase_response_operation Operation Name for posting Response Metadata in secondary
ASE.

Here is a sample substitution snippet for reference:

var ase_token = "ASE-Token-123";
/*Primary ASE Configuration*/
var primary_ase_service = "{pi-as-ase-primary_0.0.0}svc_314492f1-
ecdc-4184-93a0-57ee2258154b.smshargi.sandbox";
var primary_ase_interface = "{pi-as-ase-primary_0.0.0}pi-as-ase-
primary_PortType_0";
var primary_ase_request_operation = "postRequestMetadata";
var primary_ase_response_operation = "postResponseMetadata";
/************************/
/*Secondary ASE Configuration*/
var secondry_ase_service = "{pi-as-ase-primary_0.0.0}svc_314492f1-
ecdc-4184-93a0-57ee2258154b.smshargi.sandbox";
var secondary_ase_interface = "{pi-as-ase-primary_0.0.0}pi-as-ase-
primary_PortType_0";
var secondary_ase_request_operation = "postRequestMetadata";
var secondary_ase_response_operation = "postResponseMetadata";

7. Click Finish, and then click Close.

Add PingIntelligence policy

Complete the following steps to add a PingIntelligence policy to Akana gateway:

1. Login to Akana Policy Manager and navigate to the Tenant. Under Policies click Operational
Policies.

Copyright ©2022

 | API Gateway integration | 528

2. Select Add Policy option. Select Policy Type as Private Operational Script Policy from the list and
click Next.

3. Provide Policy Name and Description, click Finish and then click Close.

4. Navigate to Workbench.

Copyright ©2022

 | API Gateway integration | 529

5. In the Private Operational Script Policy section, select the policy name and click Modify.

6. Click on Imports. Select the script added in Add Input Script step above and import it by clicking <<.
7. Select JavaScript as language Language from the list.
8. Copy the contents of pi_policy.js script and paste them into Expression in Source.

9. Click Finish and then click Close.
10.In the WorkFlow Actions click Activate Policy to activate the PingIntelligence policy.

Apply the PingIntelligence policy to APIs

The PingIntelligence Policy can be applied at tenant level, org level and at individual API level. The
following steps explain the process of adding a policy at API level.

1. Login to Akana Portal.

Copyright ©2022

 | API Gateway integration | 530

2. To apply policy at per API level:

a. Click on the API name.
b. In the left window pane, click Implementation on the left pane.

c. Click API implementation name icon. Possible values for API implementation could be (Live/
Sandbox/Development).

d. Click Edit in Policies section.

e. Find the PingIntelligence Policy in Available Policies pane Click Attach under PingIntelligence
policy.

f. Click Save.

Copyright ©2022

 | API Gateway integration | 531

Copyright ©2022

 | API Gateway integration | 532

Add RetainHeader policy

Complete the following steps to add RetainHeader Policy to Akana Gateway:

1. Login to Akana Policy Manager and navigate to the Tenant. Under Policies click Operational
Policies.

2. Select Add Policy option. Select Policy Type as Private Operational Script Policy from the list and
click Next.

3. Provide Policy Name and Description, click Finish and then click

Close.
4. Navigate to Workbench.

Copyright ©2022

 | API Gateway integration | 533

5. In the Private Operational Script Policy section, select the policy name and click Modify.

Copyright ©2022

 | API Gateway integration | 534

Copyright ©2022

 | API Gateway integration | 535

6. Select JavaScript as language in ScriptLanguage from the list.
7. Copy the contents of retain-header-policy.js script and paste them into Expression .
8. Select Pre-policy auditing from

Function.
9. Click Finish and then click Close.
10.In the WorkFlow Actions click Activate Policy to activate the RetainHeader policy.

Apply the RetainHeader policy to APIs

The RetainHeader Policy can be applied at tenant level, org level and at individual API level. The following
steps explain the process of adding a policy at API level.

1. Login to Akana Portal.

Copyright ©2022

 | API Gateway integration | 536

2. To apply policy at per API level:

a. Click on the API name.
b. In the left window pane, click Implementation on the left pane.

c. Click API implementation name icon. Possible values for API implementation could be (Live/
Sandbox/Development).

d. Click Edit in Policies section.

e. Find the RetainHeader Policy in Available Policies pane Click Attach under RetainHeader Policy.
f. Click Save.

Copyright ©2022

 | API Gateway integration | 537

Copyright ©2022

 | API Gateway integration | 538

Apigee API gateway integration

PingIntelligence Apigee Integration

PingIntelligence provides a shared flow to integrate Apigee Edge with PingIntelligence for APIs platform.
The two mechanisms of calling shared flows are flow callout and flow hook policies. A Flow Hook in Apigee
Edge applies the PingIntelligence shared flow globally to all APIs in an environment under an organization.
The Flow Call Out policy in Apigee Edge applies the PingIntelligence shared flow on a per API basis in an
environment under an organization.

PingIntelligence provides an automated tool to deploy both Flow Hook and Flow Call Out polices.

The following diagram shows the logical setup of PingIntelligence ASE and Apigee

Edge:

Here is the traffic flow through the Apigee Edge and PingIntelligence for APIs components.

1. Incoming request to Apigee Edge
2. Apigee Edge makes an API call to send the request information to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP, cookie, OAuth2 token

or API key against the Blacklist. If all checks pass, ASE returns a 200-OK response to the Apigee Edge.
If not, a different response code (403) is sent to Apigee Edge. The request information is also logged by
ASE and sent to the AI Engine for processing.

4. If Apigee Edge receives a 200-OK response from ASE, then it forwards the request to the backend
server. Otherwise, the Gateway optionally blocks the client.

5. The response from the backend server is received by Apigee Edge.
6. Apigee Edge makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.

Copyright ©2022

 | API Gateway integration | 539

7. ASE receives the response information and sends a 200-OK to Apigee Edge.
8. Apigee Edge sends the response received from the backend server to the client.

Prerequisites to deploying PingIntelligence shared flow

Confirm that the following prerequisites are met before using the PingIntelligence Apigee tool.

Prerequisite:

▪ Apigee version - PingIntelligence 4.0 and later works with Apigee Edge Cloud 18.12.04
▪ The machine where the PingIntelligence Apigee tool is installed has anyone of OpenJDK versions

between 11.0.2 to 11.0.6 installed.
▪ PingIntelligence software installation

PingIntelligence 4.0 or later software are installed and configured. For installation of PingIntelligence
software, see the manual or platform specific automated deployment guides.

▪ Verify that ASE is in sideband mode

Make sure that in ASE is in sideband mode by running the following command in the ASE command
line:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For a secure communication between Apigee Edge and ASE,
enable sideband authentication by entering the following command in the ASE command line:

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for Apigee Edge to authenticate with ASE. This token is generated in ASE and
configured in the apigee.properties file of PingIntelligence automated policy tool. To generate the
token in ASE, enter the following command in the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.
▪ Verify the certificate in ase.pem in case of self-signed certificates

Make sure that the certificate applied for ASE data port matches with the certificate present in the
ase.pem certificate file to prevent SSL issues after policy deployment. Run the following command to

Copyright ©2022

 | API Gateway integration | 540

obtain the certificate used in ASE data port. If the certificates do not match, paste the correct certificate
in the /opt/pingidentity/pi/apigee/certs/ase.pem file.

openssl s_client -showcerts -connect <ASE IP address>:<port no> </dev/
null 2>/dev/null | openssl x509 -outform PEM > ase.pem

Download automated policy tool

Download

Complete the following steps to download and install the PingIntelligence policy tool:

1. Download the PingIntelligence policy tool to the /opt directory.
2. Complete the following steps to untar the policy tool:

a. At the command prompt, type the following command to untar the policy tool file:

tar –zxvf <filename>

For example:

tar –zxvf pi-apigee-4.1.tar.gz

b. To verify that the tool successfully installed, type the ls command at the command prompt. This
should list the pingidentity directory and the build .tgz file.

The following table lists the directories:

Directory Description

bin Contains the following scripts:

▪ deploy.sh: The script to deploy the PingIntelligence policy.
▪ undeploy.sh: The script to undeploy the PingIntelligence

policy.
▪ status.sh: Reports the deployment status and configured

Apigee credentials.

certs Contains the certificate ase.pem file that is shipped by default with
ASE. Make sure that that the certificate applied for ASE data port
matches with the certificate present in the ase.pem certificate file
for self-signed certificates. For more information, see Prerequisites
to deploying PingIntelligence shared flow on page 539.

lib Jar files and various dependencies. Do not edit the contents of this
directory.

policy Contains the shared flows:

▪ request_shared_flow_custom.zip
▪ request_shared_flow_kvm.zip
▪ response_shared_flow_custom.zip
▪ response_shared_flow_kvm.zip

config Contains the apigee.properties file.

logs Contains the log and status files.

To configure the PingIntelligence policy tool after installation, edit the apigee.properties file and set
the necessary properties. For more information, see Configure Apigee properties file on page 541.

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html

 | API Gateway integration | 541

Configure Apigee properties file

The apigee.properties file is required for all sideband Apigee configurations. It is used to set
properties for PingIntelligence policy tool after installation. It can also be optionally configured to capture
the user information. The file is available in the /pingidentity/pi/apigee/config/ directory.

The following table describes the variables in the file.

Variable Description

configuration_store Choose where ASE token is stored. The possible
values are kvm and custom. The default is
custom. When custom is chosen, the ASE token
is configured inside the PingIntelligence policy
and uploaded to Apigee Edge directly. When kvm
is chosen, the ASE token is stored in the KVM
store.

apigee_url URL to connect to Apigee Edge

i Note: If your Apigee installation is on a
private cloud, then change the URL to the one
that matches your Apigee management server
API IP:Port or hostname with protocol.

apigee_username Username to connect to Apigee Edge

apigee_password Password to connect to Apigee Edge

apigee_environment The target environment for the PingIntelligence
shared flow

apigee_organization The target organization for the PingIntelligence
shared flow

ase_host_primary The ASE primary host IP address and port or
hostname and port

ase_host_secondary The ASE secondary host IP address and port or
hostname and port.

i Note: This field cannot be left empty. In a
testing environment, you can provide the same IP
address for primary and secondary ASE host.

ase_ssl Enable or disable SSL communication between
Apigee Edge and ASE. The default value is true.

ase_sideband_token Configure the ASE token generated during the
prerequisite step.

Configuration properties to extract user information

enable_oauth_policy Choose whether to send user_info to ASE or not
using the PingIntelligence OAuth Policy. Possible
values are true or false. The default value is
false. When set to false the OAuthPolicy is not
executed. For more information on OAuthPolicy,
see Extract user information from access tokens
on page 544.

Copyright ©2022

 | API Gateway integration | 542

Variable Description

access_token_position Location of access_token in the API request.
Possible values are header or queryparam.
The default value is header. It is used in the
OAuthPolicy. For example.

access_token_position=queryparam

i Note: At present only Bearer prefix is
supported in Authorization header by Apigee.

access_token_variable A variable to hold access_token value. The
default value is Authorization. It is used in the
OAuthPolicy. For example,

access_token_variable=access_token
 => -H "access_token:
 Rft3dqrs56Blirls56a"

username_key_mapping This is used in the PingIntelligence policy to set
the key of username attribute in access_token
info. The default value is username.

client_id_key_mapping This is used in the PingIntelligence policy
to set the key of client_id attribute in
access_token info. The default value is
client_id.

Timeout configurations

connect_timeout Connection timeout in milliseconds between
Apigee API gateway and PingIntelligence ASE.

io_timeout Read timeout in milliseconds between Apigee API
gateway and PingIntelligence ASE.

keepalive_timeout Connection keepalive timeout between Apigee
API gateway and PingIntelligence ASE. Make
sure that enable_keepalive to true in ase.conf
for keepalive configuration to take effect.

i Note: Make sure that the
enable_sideband_keepalive is set to true in
ase.conf file for keepalive connection between
Apigee API gateway and ASE. For more
information, see ASE configuration - ase.conf on
page 152.

i Note: Backslashes ' \' are not supported in username and client_id values.

The following is a sample apigee.properties file.

Copyright 2020 Ping Identity Corporation. All Rights Reserved.
Ping Identity reserves all rights in The program as delivered.
 Unauthorized use, copying,

Copyright ©2022

 | API Gateway integration | 543

modification, reverse engineering, disassembling, attempt to discover any
 source code or
underlying ideas or algorithms, creating other works from it, and
 distribution of this
program is strictly prohibited. The program or any portion thereof may not
 be used or
reproduced in any form whatsoever except as provided by a license without
 the written
consent of Ping Identity. A license under Ping Identity's rights in the
 Program may be
available directly from Ping Identity.
KVM Mode kvm/custom
configuration_store=custom
Apigee management server URL
apigee_url=https://api.enterprise.apigee.com
Apigee management server username
apigee_username=
Apigee management server username
apigee_password=
Apigee environment to which it should be deployed
apigee_environment=prod
Apigee organization name
apigee_organization=
ASE Primary Host <IP/Host>:<port>
ase_host_primary=
ASE Secondary Host <IP/Host>:<port>
ase_host_secondary=
ASE SSL status
ase_ssl=true
ASE sideband authentication token
ase_sideband_token=none
Enable OAuth Policy (allowed values: true | false)
Setting it to false will not send user_info to ASE
enable_oauth_policy=false
Position of Access Token (allowed values: header | queryparam)
access_token_position=header
access_token_position=header, access_token_variable=Authorization => -H
 "Authorization: Bearer Rft3dqrs56Blirls56a"
access_token_position=header, access_token_variable=access_token => -H
 "access_token: Rft3dqrs56Blirls56a"
access_token_position=queryparam, access_token_variable=access_token
 => ...?access_token=Rft3dqrs56Blirls56a
access_token_variable=Authorization
username key mapping in access_token. This is the key of username in
 access_token attributes
username_key_mapping=username
client_id key mapping in access_token. This is the key of client_id in
 access_token attributes
client_id_key_mapping=client_id
connection timeout between Apigee and ASE. Value is in milliseconds
connect_timeout=5000
read timeout between Apigee and ASE. Value is in milliseconds
io_timeout=5000
keepalive timeout between Apigee and ASE. Value is in milliseconds
set enable_keepalive to true in ase.conf for the below configuration to
 take effect
keepalive_timeout=30000

i Note: If configuration_store is set to custom, the above configuration will be embedded into the
PingIntelligence policy. If configuration_store is set to kvm, the above configuration is pushed to a
key-value map store while deploying the policy and is retrieved during policy execution.

Copyright ©2022

 | API Gateway integration | 544

Resetting timeout configurations

About this task

You can reset the timeout configurations after you have deployed the PingIntelligence policy in the
following two ways:

▪ Undeploy the policy and reset the values in apigee.properties file and redeploy the
PingIntelligence policy. For more information on undeploying the policy, see Change deployed policy
mode on page 555. Or

▪ Update the values in Apigee Edge Management UI.

Following are the steps to update the timeout configurations in Apigee Edge Management UI:

Steps

1. In the Apigee Edge Management UI, navigate to Sharedflows page.

2. In the Sharedflows page, open PingIntelligence-Request-SharedRule.

3. Click on ASE Service Callout-Request under Policies.

4. Click on the Develop tab as shown in the screenshot.

5. Change the timeout values under HTTPTargetConnection and save the changes.

6. Repeat steps 4 and 5 for PingIntelligence-Response-Shared-Rule also.

Extract user information from access tokens

PingIntelligence for APIs provides the OAuthPolicy.xml policy to capture user information from the
requests sent to Apigee gateway. The policy verifies the access token from the bundled Apigee OAuth
server and extracts details like username and client id and other request metadata. It can verify access
tokens provided as part of a request header or a query parameter.

The OAuthPolicy extracts request metadata tagged to an access token. The policy should be executed
before the PingIntelligence policy that builds the ASE request message, which captures the username and
client id from the metadata extracted by OAuthPolicy.

The OAuthPolicy can be attached using a Flow Hook or a Flow Call Out. For more information, see Deploy
PingIntelligence Policy for Flow Hook on page 545 and Deploy PingIntelligence Policy for Flow Call Out
on page 547.

It is advised to deploy the OAuthPolicy.xml using a Flow Call Out policy to leverage the flexibility of
applying on a Per API basis. For more information, see Configure PingIntelligence Flow Call Out in Apigee
on page 548. The following screenshot illustrates the PingIntelligence shared flow with OAuthPolicy.

Copyright ©2022

 | API Gateway integration | 545

i Note: At present, the OAuthPolicy supports extraction of user information from access tokens
generated by Apigee bundled OAuth server only.

Configure apigee.properties file to capture the user information

Additionally set the configuration properties in apigee.properties file to extract the user information
using the OAuthPolicy. For more information, see Configure apigee.properties file to extract user
information.

i Note: If a custom OAuth policy is used in place of PingIntelligence OAuthPolicy, then configure the
enable_oauth_policy variable in apigee.properties to false.

Deploy the PingIntelligence policy

Using the PingIntelligence automated policy tool, you deploy the shared flow either by Flow Hook or the
Flow Call Out policy which is configured in the command line. Choose either the included ASE self-signed
certificate or a CA signed certificate

Deploy PingIntelligence Policy for Flow Hook

With a Flow Hook, the PingIntelligence shared flow is applied to all APIs in the environment of an
organization.

Deploy with self-signed certificate: Run the following command to deploy the PingIntelligence policy with
self-signed certificate:

/opt/pingidentity/pi/apigee/bin/deploy.sh -fh
Checking Apigee connectivity
Apigee connectivity ... success
Generating policies

Deploying PI Apigee policy Flow Hook

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... deployed
5) Upload pem file status ... deployed
6) Cache status ... deployed
7) Request policy upload status ... deployed

Copyright ©2022

 | API Gateway integration | 546

8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow hook status ... deployed
12) Postproxy Flow hook status ... deployed

Deployment of PI Policy finished successfully

Deploy with CA signed certificate: Run the following command to deploy the PingIntelligence policy with
CA-signed certificate:

/opt/pingidentity/pi/apigee/bin/deploy.sh -fh -ca

Checking Apigee connectivity
Apigee connectivity ... success
Generating policies

Deploying PI Apigee policy Flow Hook

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... not-applicable - running using CA signed
 certificate
5) Upload pem file status ... not-applicable - running using CA signed
 certificate
6) Cache status ... deployed
7) Request policy upload status ... deployed
8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow hook status ... deployed
12) Postproxy Flow hook status ... deployed

Deployment of PI Policy finished successfully

Verify the status

After deploying the Flow Hook using the PingIntelligence tool, check the status of the deployment by
entering the following command:

/opt/pingidentity/pi/apigee/bin/status.sh
Checking Apigee connectivity
Apigee connectivity ... success

Checking the PI Apigee Policy Flow Hook deployment status

1) PingIntelligence-Config-KVM status ... not applicable
2) PingIntelligence-Encrypted-Config-KVM status ... not applicable
3) ASE target status ... deployed
4) Cache status ... deployed
5) Truststore status ... deployed
6) Request Policy status ... deployed
7) Response Policy status ... deployed
8) Preproxy hook status ... deployed
9) Postproxy hook status ... deployed

PI Apigee Policy is already installed

Copyright ©2022

 | API Gateway integration | 547

Deploy PingIntelligence Policy for Flow Call Out

In the Flow Call Out, the PingIntelligence policy is applied on an per API basis in the environment of an
organization.

Deploy with self-signed certificate: Run the following command to deploy the PingIntelligence policy with
self-signed certificate:

/opt/pingidentity/pi/apigee/bin/deploy.sh -fc
Checking Apigee connectivity
Apigee connectivity ... success
Generating policies

Deploying PI Apigee policy Flow Call Out

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... deployed
5) Upload pem file status ... deployed
6) Cache status ... deployed
7) Request policy upload status ... deployed
8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow call out status ... deployed
12) Postproxy Flow call out status ... deployed

Deployment of PI Policy finished successfully

Deploy with CA signed certificate: Run the following command to deploy the PingIntelligence policy with
CA-signed certificate:

bin/deploy.sh -fc -ca

Checking Apigee connectivity
Apigee connectivity ... success
Generating policies

Deploying PI Apigee policy Flow Call Out

1) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
2) PingIntelligence-Config-KVM status ... not-applicable
3) ASE Server status ... deployed
4) Truststore status ... not-applicable - running using CA signed
 certificate
5) Upload pem file status ... not-applicable - running using CA signed
 certificate
6) Cache status ... deployed
7) Request policy upload status ... deployed
8) Response policy upload status ... deployed
9) Request policy deployment status ... deployed
10) Response policy deployment status ... deployed
11) Preproxy Flow call out status ... deployed
12) Postproxy Flow call out status ... deployed

Deployment of PI Policy finished successfully

Verify the status

Copyright ©2022

 | API Gateway integration | 548

After deploying the Flow Call Out using the PingIntelligence tool, check the status of the deployment by
entering the following command:

/opt/pingidentity/pi/apigee/bin/status.sh
Checking Apigee connectivity
Apigee connectivity ... success

Checking the PI Apigee Policy Flow Call Out deployment status

1) PingIntelligence-Config-KVM status ... not applicable
2) PingIntelligence-Encrypted-Config-KVM status ... not applicable
3) ASE target status ... deployed
4) Cache status ... deployed
5) Truststore status ... deployed
6) Request Policy status ... deployed
7) Response Policy status ... deployed
8) Preproxy call out status ... deployed
9) Postproxy call out status ... deployed

PI Apigee Policy is already installed

Configure PingIntelligence Flow Call Out in Apigee

After deploying the Flow Call Out policy using PingIntelligence, configure the PingIntelligence for APIs
shared flow. Complete the following steps for Flow Call Out for request and response. The steps listed are
for request, complete the same steps for response.

1. Log in to your Apigee Edge account and choose the API

Proxy.

Copyright ©2022

 | API Gateway integration | 549

2. Click on the API name on which you want to apply the policy. The Develop page is displayed:

3. On the Develop page, click on the DEVELOP tab:

Copyright ©2022

 | API Gateway integration | 550

4. In the DEVELOP tab, choose PreFlow under Proxy Endpoints,
and click on + Step for request. The Add Step window is displayed:

5. In the Add Step window, select Flow Callout. From the Shared
Flow drop down list, select the Request rule and click on Add

Copyright ©2022

 | API Gateway integration | 551

6. In the DEVELOP tab, choose PreFlow under Proxy Endpoints, and
click on + Step for response. The Add Step window is displayed.

7. In the Add Step window, select Flow Callout. From the Shared
Flow drop down list, select the Response rule and click on Add.

Copyright ©2022

 | API Gateway integration | 552

8. Request and Response rules are added. Click on Save:

9. Click on default and enter the following lines in the <HTTPTargetConnection> tag:

<Properties>
 <Property name="success.codes">1xx,2xx,3xx,4xx,5xx</Property>

Copyright ©2022

 | API Gateway integration | 553

</Properties>

Copyright ©2022

 | API Gateway integration | 554

Copyright ©2022

 | API Gateway integration | 555

10.Save the Revision:

Change deployed policy mode

You can change the type of policy deployed from Flow Hook to Flow Call Out or Flow Call Out to Flow
Hook using the PingIntelligence policy tool. To change the type of policy complete the following steps:

1. Undeploy the deployed policy by entering one of the following command based on the policy and
certificate used:

▪ Undeploy a Flow Hook policy using self-signed certificate:

/opt/pingidentity/pi/apigee/bin/undeploy.sh -fh
Checking Apigee connectivity
Apigee connectivity ... success

Undeploying PI Apigee policy Flow Hook

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed
11) Truststore status ... undeployed
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

▪ Undeploy a Flow Hook policy using CA-signed certificate:

opt/pingidentity/pi/apigee/bin/deploy.sh -fh -ca

Checking Apigee connectivity
Apigee connectivity ... success

Undeploying PI Apigee policy Flow Hook

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed

Copyright ©2022

 | API Gateway integration | 556

11) Truststore status ... not-applicable - running using CA signed
 certificate
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

▪ Undeploy a Flow Call Out policy using self-signed certificate:

/opt/pingidentity/pi/apigee/bin/undeploy.sh -fc
Checking Apigee connectivity
Apigee connectivity ... success

Undeploying PI Apigee policy Flow Call Out

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed
11) Truststore status ... undeployed
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

▪ Undeploy a Flow Call Out policy using CA-signed certificate:

opt/pingidentity/pi/apigee/bin/deploy.sh -fc -ca

Checking Apigee connectivity
Apigee connectivity ... success

Undeploying PI Apigee policy Flow Call Out

1) Preproxy hook status ... undeployed
2) Postproxy hook status ... undeployed
3) Request policy undeployment status ... undeployed
4) Response policy undeployment status ... undeployed
5) Request policy deleting status ... deleted
6) Response policy deleting status ... deleted
7) PingIntelligence-Encrypted-Config-KVM status ... not-applicable
8) PingIntelligence-Config-KVM status ... not-applicable
9) ASE Primary target server status ... undeployed
10) ASE Secondary target server status ... undeployed
11) Truststore status ... not-applicable - running using CA signed
 certificate
12) Cache status ... undeployed

Undeployment of PI Policy finished successfully

2. Deploy the other policy by following the steps detailed for Flow Hook or Flow Call Out

i Note: Using the above steps you can also change the use of security certificate from self-signed to
CA-signed or from CA-signed to self-signed.

Copyright ©2022

 | API Gateway integration | 557

Add APIs to ASE

After the policy has been deployed to Apigee using the PingIntelligence automated policy tool, add APIs to
ASE. Read the following topics to define and add APIs to ASE:

▪ API naming guidelines on page 159
▪ Define an Inline API JSON configuration file on page 200

For more information on ASE sideband deployment, see Sideband ASE on page 150.

Undeploy the PingIntelligence policy

Using the PingIntelligence automated policy tool, you can undeploy the shared flow either by Flow Hook or
the Flow Call Out policy.

Undeploy PingIntelligence policy for Flow Hook

Undeploy with self-signed certificate- Run the following command to undeploy the PingIntelligence
policy with self-signed certificate.

/opt/pingidentity/pi/apigee/bin/undeploy.sh -fh

Undeploy with CA signed certificate-Run the following command to undeploy the PingIntelligence policy
with CA-signed certificate.

/opt/pingidentity/pi/apigee/bin/undeploy.sh -fh -ca

Undeploy PingIntelligence policy for Flow Call Out

Undeploy with self-signed certificate- Run the following command to undeploy the PingIntelligence
policy with self-signed certificate.

/opt/pingidentity/pi/apigee/bin/undeploy.sh -fc

Undeploy with CA signed certificate- Run the following command to undeploy the PingIntelligence policy
with CA-signed certificate.

/opt/pingidentity/pi/apigee/bin/undeploy.sh -fc -ca

Troubleshoot mismatch of self-signed certificates

If the ASE certificate is changed after the deployment of PingIntelligence policy and it does not match with
the certificate present in the ase.pem certificate file, you might encounter SSL related issues. To resolve
them, complete the following steps:

1. Undeploy the PingIntelligence policy by following either of the two options as applicable:

▪ Undeploy PingIntelligence policy for Flow Hook with self-signed certificate
▪ Undeploy PingIntelligence policy for Flow Call Out with self-signed certificate

2. Paste the correct certificate in the /opt/pingidentity/pi/apigee/certs/ase.pem file. To
obtain the correct certificate, run the following command.

openssl s_client -showcerts -connect <ASE IP address>:<port no> </dev/
null 2>/dev/null | openssl x509 -outform PEM > ase.pem

3. Redeploy the PingIntelligence policy by following either of the two options as applicable:

▪ Deploy PingIntelligence policy for Flow Hook with self-signed certificate
▪ Deploy PingIntelligence policy for Flow Call Out with self-signed certificate

Copyright ©2022

 | API Gateway integration | 558

i Note: Make sure that the ase_ssl parameter in /pingidentity/pi/apigee/config/
apigee.properties file is set to true.

AWS API gateway integration

PingIntelligence AWS API Gateway Integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with AWS API
Gateway via CloudFront. A PingIntelligence policy is installed in CloudFront and uses Lambda functions to
pass API metadata to PingIntelligence for detailed API activity reporting and attack detection with optional
client blocking.

PingIntelligence provides an automated tool to deploy a PingIntelligence policy which is implemented
using the AWS Lambda functions. The policy requires AWS CloudFront to be present with all types of
caching disabled. Lambda functions must be initially deployed in the US-East-1 region and the policy
definition is pushed to any region with your API Gateways after the PingIntelligence policy is added. The
PingIntelligence sideband policy requires a CloudFront instance which can be an existing or newly created
instance.

i Important: Up to 1000 QPS, the default Lambda memory value is sufficient. (See the aws.properties
file for default origin response value). For a larger QPS, contact the PingIntelligence team.

Copyright ©2022

 | API Gateway integration | 559

The following diagram shows the logical setup of PingIntelligence ASE and

CloudFront:

Here is the traffic flow through the CloudFront and PingIntelligence for APIs components.

1. Incoming API Client request destined for the API Gateway arrives at CloudFront
2. A PingIntelligence AWS Lambda policy makes an API call to send the request metadata to

PingIntelligence ASE
3. ASE checks the request against a registered set of APIs and looks for the origin IP, cookie, OAuth2

token or API key in the PingIntelligence AI engine generated Blacklist. If all checks pass, ASE returns a
200-OK response to the AWS Lambda. If not, a different response code (403) is sent to AWS Lambda.
The request information is also logged by ASE and sent to the AI Engine for processing.

Copyright ©2022

 | API Gateway integration | 560

4. If CloudFront receives a 200-OK response from ASE, then it forwards the client request to the backend
server. Otherwise, the CloudFront blocks the client when blocking is enabled for the API.

5. The response from the backend server is received by CloudFront.
6. The Lambda response function makes a second API call to pass the response information to ASE.
7. ASE receives the response information and immediately sends a 200-OK to AWS Lambda. The

response information is also logged by ASE and sent to the AI Engine for processing.
8. CloudFront sends the response received from the backend server to the client.

Prerequisites

Complete the following before running the PingIntelligence AWS policy tool.

Prerequisite:

▪ Install OpenJDK 11 on the system running the PingIntelligence policy tool.
▪ Install PingIntelligence software

PingIntelligence should be installed and configured. Refer to the PingIntelligence deployment guide for
your environment.

▪ AWS admin account: To deploy the PingIntelligence sideband policy, an AWS admin account is
required.

i Note: Make sure that AWS cross-account is not used to deploy PingIntelligence policy.

Copyright ©2022

 | API Gateway integration | 561

▪ Update CloudFront configuration: Verify the following options are configured correctly:

▪ Disable Caching: The PingIntelligence policy deployment tool requires that CloudFront be available
with caching disabled for all CloudFront behaviors. Select None (Improves Caching) from the
Cache Based on Selected Request Headers drop-down list.

▪ TTL: Confirm that Minimum TTL, Maximum TTL, and the Default TTL are set to 0
▪ Forward Cookies: Select All from the drop-down list
▪ Query String Forwarding and Caching: Select Forward all, cache based on all from the drop-

down list

Copyright ©2022

 | API Gateway integration | 562

Copyright ©2022

 | API Gateway integration | 563

▪ Lambda function: PingIntelligence policy tool requires viewer request and origin response Lambda
functions. Make sure that there is no viewer request or origin response Lambda function defined in the
caching behavior.

▪ Verify that ASE is in sideband mode

Check if ASE is in sideband mode by running the following command in the ASE command line:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For a secure communication between CloudFront and ASE, enable
sideband authentication by entering the following command in the ASE command line:

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for CloudFront to authenticate with ASE. This token is generated in ASE and
configured in the aws.properties file of PingIntelligence automated policy tool. To generate the
token in ASE, enter the following command in the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Configure automated policy tool

Download

Complete the following steps to download and install the PingIntelligence policy tool:

1. Download the PingIntelligence policy tool to the /opt directory.
2. Complete the following steps to untar the policy tool:

a. At the command prompt, type the following command to untar the policy tool file:

tar –zxvf <filename>

For example:

tar –zxvf pi-aws-4.0.tar.gz

b. To verify that the tool successfully installed, type the ls command at the command prompt. This
should list the pingidentity directory and the build .tgz file.

The following table lists the directories:

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html

 | API Gateway integration | 564

Directory Description

bin Contains the following scripts:

▪ deploy.sh: The script to deploy the
PingIntelligence policy.

▪ undeploy.sh: The script to undeploy the
PingIntelligence policy.

▪ status.sh: Reports the deployment status of
IAM role and Lambda function.

lib Jar files and various dependencies. Do not edit the
contents of this directory.

policy Contains the request and response Lambda
functions:

▪ request_lambda.zip
▪ response_lambda.zip

config Contains the aws.properties file.

logs Contains the log and status files.

Configure the automated tool

Configure the aws.properties file available in the /pingidentity/pi/aws/config/ directory. The
following table describes the variables in the aws.properties file:

Variable Description

mode Choose the authentication mode between keys
and role

i Note: If you running the PingIntelligence policy
tool from your local machine, use the keys mode. If
you are running the tool from an EC2 instance, use
the rolemode.

access_key AWS access key. This is applicable when the mode
is set to keys

secret_key AWS secret key. This is applicable when the mode
is set to keys

aws_lambda_memory AWS Origin Response Lambda memory in MB.
Default value is 1024 MB. The memory can
be configured in multiple of 64. Minimum and
maximum value are 128 and 3008 respectively. For
more information, see AWS Lambda Pricing

cloudfront_distribution_id The CloudFront distribution ID.

ase_host_primary The ASE primary host IP address and port or
hostname and port

Copyright ©2022

https://aws.amazon.com/lambda/pricing/

 | API Gateway integration | 565

ase_host_secondary The ASE secondary host IP address and port
or hostname and port. ASE secondary host
receives traffic only when the primary ASE host is
unreachable.

i Note: This field cannot be left blank. In a
testing environment, enter the same IP address for
primary and secondary ASE host.

If both the ASE hosts are unreachable, the request
is directly sent to the backend API server.

ase_ssl Enable or disable SSL communication between
Lambda functions and ASE. The default value is
true.

ase_sideband_token Enter the ASE token generated during the
prerequisite step.

Following is a sample aws.properties file:

Copyright 2019 Ping Identity Corporation. All Rights Reserved.
Ping Identity reserves all rights in The program as delivered.
 Unauthorized use, copying,
modification, reverse engineering, disassembling, attempt to discover any
 source code or
underlying ideas or algorithms, creating other works from it, and
 distribution of this
program is strictly prohibited. The program or any portion thereof may not
 be used or
reproduced in any form whatsoever except as provided by a license without
 the written
consent of Ping Identity. A license under Ping Identity's rights in the
 Program may be
available directly from Ping Identity.

#Authentication mode access-key & secret-key / role based access. Values can
 be keys or role.
mode=keys
#AWS access key
access_key=AKIAID7MDWSCUUVHMTNA
#AWS secret key
secret_key=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
#AWS Lambda memory in MB. It should be a multiple of 64. Minimum and maximum
 value are 128 and 3008 respectively.
aws_lambda_memory=1024
#Cloudfront distribution ID
cloudfront_distribution_id=EGQ9OEG3ZDABP

#ASE Primary Host <IP/Host>:<port>
ase_host_primary=test.elasticbeam.com
#ASE Secondary Host <IP/Host>:<port>
ase_host_secondary=test.elasticbeam.com
#ASE SSL status
ase_ssl=true
#ASE sideband authentication token
ase_sideband_token=283ded57cd5f48e6bcd8fa3ba9d2888d

Copyright ©2022

 | API Gateway integration | 566

Create Role

If you have set the authentication mode as role in the aws.properties file, create a role for the EC2
instance. This role is required for the PingIntelligence policy deployment tool. Complete the following steps
to create and configure.

1. Select EC2 as service and click on Next: Permissions button:

Copyright ©2022

 | API Gateway integration | 567

2. Choose the following three Policies and provide a name for each role (for example,
PIDeploymentToolRole):

▪ IAMFullAccess
▪ AWSLambdaFullAccess
▪ CloudFrontFullAccess
▪ AmazonEC2FullAccess

After providing the name, click on Create role.

Copyright ©2022

 | API Gateway integration | 568

3. In the Summary page of the role that you created in step 2, click on the
Trust relationships tab and then click on Edit trust relationship button:

Copyright ©2022

 | API Gateway integration | 569

4. In the Edit Trust Relationship page, enter the following lines and click on Update Trust Policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]

Copyright ©2022

 | API Gateway integration | 570

}

Copyright ©2022

 | API Gateway integration | 571

Copyright ©2022

 | API Gateway integration | 572

5. Configure the IAM role, as the role that you created (for example,

PIDeploytmentToolRole):

Copyright ©2022

 | API Gateway integration | 573

Deploy PingIntelligence Policy for AWS

Using the PingIntelligence AWS policy tool, deploy the PingIntelligence policy in AWS @Lambda in the
North Virginia (US-East-1) region. Note: the policy must currently be initially deployed in this region. The
Lambda function pushes the PingIntelligence policy to the Amazon CloudFront in the local AWS instances.
The PingIntelligence Lamba policy communicates with PingIntelligence ASE to pass request and response
metadata and check whether the client request should be blocked or passed to the AWS gateway.

To deploy the PingIntelligence policy, run the following command:

/opt/pingidentity/pi/aws/bin$ deploy.sh -ca

Deploying PI AWS Policy with CA-signed certificate

1) Create IAM Role named PI-Role - status... done
2) Create a policy named LambdaEdgeExecution-PI - status... done
3) Attach LambdaEdgeExecution-PI Policy to Role PI-Role... done
4) Generating policy... done
5) Deploying PI-ASE-Request Lambda... done
6) Fetching PI-ASE-Request Lambda version... done
7) Deploying PI-ASE-Response Lambda... done
8) Fetching PI-ASE-Response Lamda version... done
9) Deploying PI-ASE-Request Lamda CloudFront... done
10) Deploying PI-ASE-Response Lambda CloudFront... done

Successfully deployed PI AWS Policy.

When the deploy.sh script is run without ca option, the policy is deployed using the self-signed
certificate which is included in the PingIntelligence policy. By the running the policy tool, the following two
policies are deployed:

▪ Request Lambda
▪ Response Lambda

Check the status of deployment: To check the status of the PingIntelligence policy deployment, run the
status.sh command:

/opt/pingidentity/pi/aws/bin$ status.sh
Checking the PI AWS Policy deployment status

1) IAM Role named PI-Role deployment - status... deployed
2) IAM Policy named LambdaEdge-PI deployment - status... deployed
3) PI-ASE-Request Lamda deployment - status... deployed
4) PI-ASE-Response Lamda deployment - status... deployed
5) PI-ASE-Request Lamda CloudFront deployment - status... deployed
6) PI-ASE-Response Lamda CloudFront deployment - status... deployed

PI AWS Policy is already installed.

API discovery
PingIntelligence API discovery is a process to discover, and report APIs from your API environment. The
discovered APIs are reported in PingIntelligence Dashboard. APIs are discovered when a global API JSON
is defined in the ASE. For more information, see API discovery and configuration on page 329 . You can
edit the discovered API's JSON definition in Dashboard before adding them to ASE. For more information
on editing and configuring API discovery, see Discovered APIs on page 496.

Next steps - Integrate into your API environment

After the policy deployment is complete, refer to the following topics for next steps:

Copyright ©2022

 | API Gateway integration | 574

It is recommended to read the following admin guide topics apart from reading the ASE and ABS Admin
Guides:

▪ ASE port information
▪ API naming guidelines
▪ Adding APIs to ASE in Sideband ASE. You can add individual APIs or you can configure a global API.
▪ Connect ASE and ABS

After adding APIs to PingIntelligence, the API model needs to be trained. The training of an API model is
executed in the ABS AI engine.. The following topics provide a high level view of the process.

▪ Train your API model
▪ Generate and view the REST API reports using Postman
▪ View PingIntelligence for APIs Dashboard.

Uninstall CloudFront sideband policy

Remove the PingIntelligence AWS policy with the undeploy tool which detaches the policy from
CloudFront. The amount of time required to detach the policy from CloudFront varies depending on the
CloudFront region where the policy is deployed.

To undeploy the policy, run the following command:

/opt/pingidentity/pi/aws/bin$ undeploy.sh
Undeploying PI AWS Policy

1) Fetching PI-ASE-Request Lambda version... done
2) Fetching PI-ASE-Response Lamda version... done
3) Undeploy PI-ASE-Request Lamda CloudFront... done
4) Undeploy PI-ASE-Response Lamda CloudFront... done
5) Undeploy PI-ASE-Request Lamda... done
6) Undeploy PI-ASE-Response Lamda... done
7) Detaching IAM Role named PI-Role from policy LambdaEdgeExecution-PI -
 status... done
8) Deleting IAM Role named PI-Role - status... done
9) Deleting policy named LambdaEdgeExecution-PI - status... done

Successfully undeployed PI AWS Policy.

Copyright ©2022

 | API Gateway integration | 575

Check the progress of detaching the policy from the CloudFront in the AWS GUI as shown in the following
screenshot:

Copyright ©2022

 | API Gateway integration | 576

After the State has moved from Enabled to Disabled, delete the Request and Response Lambda functions.
Use the cloud_front_id from the aws.properties file to search for PingIntelligence Lambda
functions.

i Note: If the Lambda functions are not deleted, then the following message is displayed on the
console: Deletion of the Lambda function may take up to one hour. Please re-run
undeploy.sh after one hour.

Axway API gateway integration

Axway sideband integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with
an Axway API Gateway. A PingIntelligence policy is installed in the Axway API Gateway and passes
API metadata to PingIntelligence for detailed API activity reporting and attack detection with optional
client blocking. PingIntelligence 4.0 software adds support for reporting and attack detection based on
usernames captured from token attributes.

The following diagram shows the complete deployment:

Copyright ©2022

 | API Gateway integration | 577

Copyright ©2022

 | API Gateway integration | 578

Here is the traffic flow through Axway and PingIntelligence for APIs components.

1. Client sends an incoming request to Axway
2. Axway makes an API call to send the request metadata to ASE
3. ASE checks the request against a registered set of APIs and checks the origin IP, cookie, API Key,

or OAuth2 token in the PingIntelligence AI engine generated Blacklist. If all checks pass, ASE returns
a 200-OK response to the Axway. If not, a different response code is sent to Axway. The request
information is also logged by ASE and sent to the AI Engine for processing.

4. If Axway receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, the Gateway optionally blocks the client.

5. The response from the backend server is received by Axway.
6. Axway makes a second API call to pass the response information to ASE which sends the information

to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to Axway.
8. Axway sends the response received from the backend server to the client.

Prerequisites

Complete the following before configuring the Axway API Gateway:

Copyright ©2022

 | API Gateway integration | 579

▪ Confirm the Axway version PingIntelligence 4.0 works with Axway 7.5.3 or

later.

Copyright ©2022

 | API Gateway integration | 580

▪ OAuth token store: If you wish to detect username based attacks, make sure that OAuth token store is
configured in Axway.

▪ Install PingIntelligence software

PingIntelligence should be installed and configured. Refer to the PingIntelligence deployment guide for
your environment.

▪ Verify that ASE is in sideband mode

Check that ASE is in sideband mode by running the following ASE command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For a secure communication between Axway and ASE, enable
sideband authentication by entering the following ASE command:

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for Axway to authenticate with ASE. To generate the token in ASE, enter the
following ASE command:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.
▪ Port for AAD

If you are using AAD to automate API definition updates on PingIntelligence, open the following ports:

▪ Open the management port to fetch API definitions from Axway. The default port is 8075.
▪ Open port 8010 in ASE for AAD to add API definitions.

To connect PingIntelligence ASE with Axway API Gateway, complete the following steps:

▪ Import the Axway Policy in Axway Policy Studio
▪ Deploy the Axway Policy
▪ Import the APIs from the Management VM to Axway API Manager.

Deploy PingIntelligence policy

Deploying PingIntelligence policy requires completing the following two parts:

▪ Configuring Axway Policy Studio
▪ Configure persistent connection for ASE keep-alive
▪ Configuring Axway API Manager

Copyright ©2022

 | API Gateway integration | 581

Axway Policy Studio configuration

1. Launch Axway Policy Studio and create a new project from an API Gateway instance:

2. In the New Project pop-up window, enter the details and click Next:

Copyright ©2022

 | API Gateway integration | 582

3. Enter Host details, Username, and Password of the API Gateway to connect and click Next:

Copyright ©2022

 | API Gateway integration | 583

4. Click Import configuration fragment from the File sub menu in the menu bar

From the pop-up window, import the Axway Policy from the directory where it was saved. Select the
policy and click OK:

Copyright ©2022

 | API Gateway integration | 584

5. After the Axway Policy is imported, click on Policies > ASESecurity >
ASE Request Handler > Access Token Information. Double click on

Copyright ©2022

 | API Gateway integration | 585

Access Token Information box in the ASE Request Handler window.

a. In the Configure "Access Token Information" pop-up window,
enter your OAuth token store information and click the ... button.

Copyright ©2022

 | API Gateway integration | 586

b. In the Select OAuth Cache pop-up window, select the OAuth token store.

Copyright ©2022

 | API Gateway integration | 587

6. After the Axway Policy is imported, click Environment Settings in the left-hand column and Click Add
HTTP Header. In the HTTP Header Value field, enter the ASE authentication token that was created.

7. After the Axway Policy is imported, click Environment Settings in the left-hand column and click
Connect to ASE Request under ASE_Request_Connector. Enter the IP address or the hostname of
your ASE in the URL field as shown in the screen shot:

Copyright ©2022

 | API Gateway integration | 588

8. In the Environment Settings in the left-hand column, click Connect to ASE Response under
ASE_Response_Connector. Enter the IP address or the hostname of your ASE in the URL field as
shown in the screen shot:

9. In the left pane of the window, click Server Settings.
10.In the Server Settings window, double-click Request Policies under API Manager

Copyright ©2022

 | API Gateway integration | 589

11.In the Add Request Policy pop-up window, check the ASE Request Handler and click OK

12.Click Add and then Save

13.
Repeat step 9-10 for Response Policies.

14.Deploy the Policies by clicking Deploy.

Copyright ©2022

 | API Gateway integration | 590

Configure ASE persistent connection

You can optionally configure TCP keep-alive connections in the ase.conf file of ASE. Following is a
snippet of ase.conf displaying the enable_sideband_keepalive variable. The default value is set to
false.

; enable connection keepalive for requests from gateway to ase.
; This setting is applicable only in sideband mode.
; Once enabled ase will add 'Connection: keep-alive' header in response
; Once disabled ase will add 'Connection: close' header in response
enable_sideband_keepalive=false

If this variable is set to true, then you must configure persistent connections in Axway Policy Studio by
completing the following steps:

1. Click on Environment Configuration
2. Under Environment Configuration, click Listeners > API Gateway.
3. Click On your ASE IP address in Sample Services
4. In the Remote Host Settings pop-up window, un-check Allow HTTP 1.1
5. Check Include Content Length in request. Make sure all other options are not selected.
6. Click OK and Deploy the policy

Copyright ©2022

 | API Gateway integration | 591

Axway API Manager configuration

Complete the following steps to configure Axway API Manager:

1. Login to the Axway API Manager.

Copyright ©2022

 | API Gateway integration | 592

2. In the Axway API Manager, click Frontend API and Create new API

.
3. Click Outbound tab and enter Backend Service URL (your backend application server) and Request

Policy details:

Configuration for capturing OAuth: To capture OAuth token based attacks, complete the following steps:

1. In the API Manager, click on Frontend API > Inbound tab.

Copyright ©2022

 | API Gateway integration | 593

2. From the Inbound security drop-down list, select OAuth and click

Edit.
3. In the OAuth Security Device window, disable Remove credentials on success radio

button.

API discovery

PingIntelligence API discovery is a process to discover, and report APIs from your API environment. The
discovered APIs are reported in PingIntelligence Dashboard. APIs are discovered when a global API JSON
is defined in the ASE. For more information, see API discovery and configuration on page 329 . You can
edit the discovered API's JSON definition in Dashboard before adding them to ASE. For more information
on editing and configuring API discovery, see Discovered APIs on page 496.

Axway API Manager configuration for PingIntelligence Dashboard

The PingIntelligence Dashboard pulls the API definition from Axway API Manager and converts them
to a JSON format compatible with ASE. The Dashboard needs certain tags to be configured in Axway
API Manager for it to import the normal and decoy API definitions. The following topics provide more
information on configuring tags in Axway API Manager and configuring tags for the decoy API:

▪ Configure tags in API Manager
▪ Configure tags for decoy API

Copyright ©2022

 | API Gateway integration | 594

Configure tags in API Manager

Tags are a medium to let ASE know which APIs from the API ecosystem need to be processed for
monitoring and attack detection. Tags are also required for cookie and login URL parameters to be
captured by PingIntelligence Dashboard for adding to ASE API JSON definition.

Tagging the API for AI processing:

You need to configure ping_ai tag for all the APIs for which you want the traffic to be processed using
the AI engine. For example, if you have 10 APIs in your ecosystem and you want only 5 APIs traffic to be
processed using the AI engine, then apply the ping_ai tag on those 5 APIs.

In the Axway API Manager, click on Frontend API > API tab. In the API tab, navigate to Tags section and
add the following tag and value:

▪ ping_ai – Set it to true if you want the traffic for API to be processed by PingIntelligence
▪ ping_blocking – This parameter defines whether the enable_blocking in ASE API JSON is set

to true or false when the PingIntelligence Dashboard fetches the API definition from Axway. The
default value is true. If you want to disable blocking in ASE, set it to false.

Tags for Cookie and Login URL (Optional)

If your APIs use a cookie or log in URL then configure the following two tags and values for a cookie and
login URL. In the Axway API Manager, click Frontend API > API tab. In the API tab, navigate to Tags
section and add the following tag and value:

▪ ping_cookie – JSESSIONID
▪ ping_login – yourAPI/login

i Note: If the API has API Key or OAuth2 token configured, the PingIntelligence Dashboard
automatically learns it and adds it to the API JSON definition. You do not need to configure any tags for
API Key and OAuth2 token.

The following illustration shows the tags to be added:

Copyright ©2022

 | API Gateway integration | 595

Copyright ©2022

 | API Gateway integration | 596

Configure tags for decoy API

You can configure Decoy APIs in Axway API Manager. A Decoy API is an API for which the traffic does not
reach the backend API servers. The Decoy API is deployed to gather information about potential threats
that your API ecosystem may face. Traffic directed to Decoy API configured in Axway API Gateway is
redirected to ASE which functions as the backend server. ASE sends a preconfigured response, like 200
OK, for requests sent to a Decoy API.

You need to configure the following TAGS and VALUES in the API tab for Frontend API in Axway API
Manager:

▪ ping_ai – true

▪ ping_decoy – true

API JSON for decoy API: The converted API JSON will have the decoy section configured as highlighted
in the following JSON file:

{

Copyright ©2022

 | API Gateway integration | 597

 "api_metadata": {
 "protocol": "https",
 "url": "/decoy",
 "hostname": "*",
 "cookie": "",
 "cookie_idle_timeout": "",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "",
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "",
 "error_def": "",
 "error_message_body": ""
 },
 "flow_control": {
 "client_spike_threshold": "0/second",
 "server_connection_queueing": false
 },
 "api_memory_size": "64mb",
 "health_check": false,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/",
 "server_ssl": false
 "servers": [],
 "decoy_config": {
 "decoy_enabled":true,
 "response_code": 200,
 "response_def": "OK",
 "response_message": "OK",
 "decoy_subpaths": []
 }
 }
}

Axway XFF policy for decoy APIs

PingIntelligence provides an XFF policy for your decoy APIs. The XFF policy adds an 'X-Forwarded-For'
to the backend only if it is not present in the original incoming request. If the 'X-Forwarded-For' header is
already present in the incoming request, the policy takes no action.

Follow the steps 1-4 of Axway Policy Studio configuration to import the XFF policy. Deploy the XFF policy
after importing.

Copyright ©2022

 | API Gateway integration | 598

OAuth2 Token and API Keys

If you have configured the API Key in Request Header or in Query String, the PingIntelligence Dashboard
reads and converts these values to apikey_qs or apikey_header values in the ASE API JSON.
PingIntelligence's AI engine considers API Key values only in request headers or the query string.

Similarly, if you have configured OAuth2 token, the PingIntelligence Dashboard marks the value of
oauth2_access_token as true in the ASE API JSON.

i Note: You do not need to configure any tags for API Keys or OAuth2 token.

Following API JSON file shows the converted parameters. The protocol, url, and hostname are
picked from the values that you configure in Resource path when you create the Frontend API.

Copyright ©2022

 | API Gateway integration | 599

{
 "api_metadata": {
 "protocol": "https",
 "url": "/shop",
 "hostname": "192.168.11.103",
 "cookie": "JSESSIONID",
 "cookie_idle_timeout": "",
 "logout_api_enabled": false,
 "cookie_persistence_enabled": false,
 "oauth2_access_token":true,
 "apikey_qs": "KeyId",
 "apikey_header": "",
 "enable_blocking": true,
 "login_url": "/shop/login",
 "api_mapping": {
 "internal_url": ""
 },
 "api_pattern_enforcement": {
 "protocol_allowed": "",
 "http_redirect": {
 "response_code": "",
 "response_def": "",
 "https_url": ""
 },
 "methods_allowed": [],
 "content_type_allowed": "",
 "error_code": "",
 "error_def": "",
 "error_message_body": ""
 },
 "flow_control": {
 "client_spike_threshold": "0/second",

Copyright ©2022

 | API Gateway integration | 600

 "server_connection_queueing": false
 },
 "api_memory_size": "64mb",
 "health_check": false,
 "health_check_interval": 60,
 "health_retry_count": 4,
 "health_url": "/",
 "server_ssl": false
 "servers": [],
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

Azure API gateway integration

Azure APIM sideband integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with
Azure API Manager (APIM). A PingIntelligence policy is installed in APIM and passes API metadata
to PingIntelligence for detailed API activity reporting and attack detection with optional client blocking.
PingIntelligence policy for Azure also supports detecting attacks based on the username.

The APIM PingIntelligence policy works in the following two configurable mode:

▪ Asynchronous mode: When the PingIntelligence policy is configured in the Asynchronous mode,
APIM does not wait for a response from PingIntelligence ASE before sending the API client request to
the backend API server. In this mode PingIntelligence deployment passively logs the API request and
response. It performs detailed API activity reporting and attack detection without blocking of attacks.

▪ Synchronous mode: When the PingIntelligence policy is configured in the Synchronous mode, Azure
API gateway waits for a response from PingIntelligence ASE before sending the request to the backend
API server or blocking it. In this mode, PingIntelligence actively logs and responds to the API requests
and response. It performs detailed API activity reporting with attack detection and blocking of attacks.

Copyright ©2022

 | API Gateway integration | 601

The following diagram shows the logical setup of PingIntelligence ASE and

Azure:
Copyright ©2022

 | API Gateway integration | 602

Here is the traffic flow through the Azure and PingIntelligence for APIs components.

1. Client sends an incoming request to APIM
2. APIM makes an API call to send the request metadata to ASE
3. ASE checks the request against a registered set of APIs and looks up the origin IP, cookie, OAuth2

token or API key on the PingIntelligence AI engine generated Blacklist. If all checks pass, ASE returns a
200-OK response to APIM. If not, a different response code is sent to APIM. The request information is
also logged by ASE and sent to the AI Engine for processing.

4. If APIM receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, if it receives a 403-forbidden response, the APIM blocks the client when blocking is enabled
for the API.

5. The response from the backend server is received by APIM.
6. APIM makes a second API call to pass the response information to ASE which sends the information to

the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to Azure.
8. APIM sends the response received from the backend server to the client.

Prerequisites

Complete the following prerequisites before deploying the PingIntelligence policy on APIM:

Prerequisite:

▪ Confirm that the Azure API Management Service is available
▪ Version : The PingIntelligence policy supports Azure APIM Q2CY2020 version. If you are using any

other version, contact Ping Identity support.
▪ Confirm that the APIs to which you want to apply the PingIntelligence policy are available

Copyright ©2022

 | API Gateway integration | 603

▪ Configure CA certificate in APIM: If you want to use the ASE self-signed
certificate, then configure the CA certificate from the Security -> CA certificates

section.

Copyright ©2022

 | API Gateway integration | 604

▪ PingIntelligence policy application

Select one of the following four levels to apply the PingIntelligence policy: .

▪ For all the APIs
▪ For a group of APIs, that is, at the product level
▪ For individual APIs
▪ For a specific operation in the API

▪ PingIntelligence software installation

Install and configure PingIntelligence software. Refer to the PingIntelligence deployment guide for your
environment.

▪ Verify that ASE is in sideband mode

Check that ASE is in sideband mode by running the following ASE command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband

http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.61 MB, free 102.39
 MB
google pubsub : disabled
log level : debug
timezone : local (UTC)

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For a secure communication between APIM and ASE, enable
sideband authentication by entering the following ASE command:

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for APIM to authenticate with ASE. To generate the token in ASE, enter the
following ASE command:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Deploy PingIntelligence policy

PingIntelligence provides an XML policy file to integrate PingIntelligence and Azure API Management
Service. This policy can be applied at an individual API level, for all the APIs, to a group of APIs, or for an
operation of an API.

PingIntelligence recommends that the PingIntelligence policy be the first policy in the Azure policy XML.
This ensures that all the traffic is captured by ASE and sent to PingIntelligence AI engine for analysis.

Complete the following steps to deploy the PingIntelligence policy:

Copyright ©2022

 | API Gateway integration | 605

1. Download the PingIntelligence policy XML file from the Sideband Integration section of the download
page

2. Login to your Azure account and create the following Named value in your API Management service

▪ ase-primary: The primary ASE node.
▪ ase-secondary: The secondary ASE node. The traffic is redirected to the secondary ASE node if

the primary ASE node is not reachable.

i Note: Make sure that the ASE primary and secondary IP address is followed by a /.

▪ ase-token: The authentication token for secure communication between Azure API Management
service and ASE.

▪ connection-timeout: The number of seconds for which the API Management Service waits for ASE
to respond.

▪ enable-async-mode: Set the value to true to enable asynchronous mode between APIM and
ASE. When the asynchronous mode is enabled, the Azure gateway does not wait for a response
from ASE and sends the request to the backend server. The ASE performs detailed API activity
reporting and attack detection without blocking of attacks. If you do not want to enable asynchronous
mode, set the value to false. In this case, the Azure gateway does not send the API request to the
backend server, until it receives a response from ASE.

▪ oauth2-jwt-username-claim: JWT claim name for username.
▪ oauth2-token-qs-name: The name of the query string parameter that contains the OAuth token. If

you choose not to intercept the OAuth tokens coming as part of query string, then set the value to
@(null).

i Note: The PingIntelligence policy extracts the OAuth token from the query string, configured
in oauth2-token-qs-name. A new Authorization header- Authorization: Bearer <OAuth
token> is added to the metadata sent to ASE. If there is an existing Authorization header, the token
is prepended so that ABS AI engine can analyse it. If the query string has multiple query parameters
with the same name, the first parameter is intercepted by the policy.

▪ retry-count: The number of times APIM tries to connect to ASE.

If you change any of the Named Values after the policy is operational, it takes 60-seconds for the
change to be applicable. For example, if you change the ase-primary node IP address, the new IP
address would take effect only after 60-seconds.

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 606

3. Open the downloaded PingIntelligence policy XML file and copy the policy at the desired level: All
APIs, individual APIs, operation level, or Group of APIs. Click on Policies in the Inbound processing
UI box and paste the policy.

i Note: The PingIntelligence policy does not validate the authenticity of a JWT. Configure the
PingIntelligence policy after <validate-jwt> policy.

Copyright ©2022

 | API Gateway integration | 607

Copyright ©2022

 | API Gateway integration | 608

4. Click on the Save button to save the

policy

Copyright ©2022

 | API Gateway integration | 609

i Attention: If an existing policy is deployed, copy and paste the <inbound> section of the
PingIntelligence policy into the <inbound> section of your existing policy. Similarly, replace the <outbound>
section of the policy. It is recommended that the PingIntelligence policy be the first policy that is executed.

API discovery

PingIntelligence API discovery is a process to discover, and report APIs from your API environment. The
discovered APIs are reported in PingIntelligence Dashboard. APIs are discovered when a global API JSON
is defined in the ASE. For more information, see API discovery and configuration on page 329 . You can
edit the discovered API's JSON definition in Dashboard before adding them to ASE. For more information
on editing and configuring API discovery, see Discovered APIs on page 496.

Integrate PingIntelligence

After the policy deployment is complete, refer to the following topics for next steps:

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS AI Engine Admin Guides:

▪ Customizing ASE ports on page 120
▪ API naming guidelines on page 159
▪ Adding APIs in Sideband ASE on page 150. You can add individual APIs or you can configure a

global API. For more information, seeAPI discovery and configuration on page 329.
▪ Configure ASE to ABS connectivity on page 179

After you have added your APIs in ASE, the API model needs to be trained. The training of an API model is
executed in the ABS AI engine. The following topics provide information on important topics, however it is a
good practice to read the entire ABS Admin Guide.

▪ AI Engine training on page 319
▪ API reports using Postman on page 394
▪ Access PingIntelligence Dashboard on page 17

Configure ASE persistent connection

You can optionally configure TCP keep-alive connections in the ase.conf file of ASE. Following is a
snippet of ase.conf displaying the enable_sideband_keepalive variable. The default value is set to
false.

; enable connection keepalive for requests from gateway to ase.
; This setting is applicable only in sideband mode.
; Once enabled ase will add 'Connection: keep-alive' header in response
; Once disabled ase will add 'Connection: close' header in response
enable_sideband_keepalive=false

CA API gateway integration

PingIntelligence - CA API gateway sideband integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with
CA API gateway. You can attach the PingIntelligence for APIs integration to your APIs in the CA API
Gateway by incorporating the Encapsulated Assertions to a subset of or to each API policies. When these
Encapsulated Assertions are executed inside an API Gateway policy, the gateway passes API metadata to
PingIntelligence for detailed API activity reporting and attack detection with optional client blocking.

Copyright ©2022

 | API Gateway integration | 610

The following diagram shows the logical setup of PingIntelligence for APIs and CA API

gateway:

Here is the traffic flow through the CA API gateway and PingIntelligence for APIs components.

1. Incoming API Client request arrives at the CA API Gateway
2. A PingIntelligence assertion running on the CA API Gateway makes an API call to send the request

metadata to PingIntelligence ASE
3. ASE checks the request against a registered set of APIs and looks for the origin IP, cookie, OAuth2

token or API key in the PingIntelligence Blacklist. If all checks pass, ASE returns a 200-OK response to
CA. If the client is on the blacklist and blocking is enabled a 403 response is sent to CA. The request
information is also logged by ASE and sent to the AI Engine for processing.

4. If CA receives a 200-OK response from ASE, then it forwards the client request to the backend server.
Otherwise, the CA blocks the client when a 403 response is received.

5. The response from the backend server is received by CA.
6. CA makes a second API call to pass the response information to ASE.
7. ASE receives the response information and immediately sends a 200-OK to CA. The response

information is also logged by ASE and sent to the AI Engine for processing.
8. 8. CA sends the response received from the backend server to the client.

PingIntelligence encapsulated assertions include capabilities for enhanced sideband performance and
availability including:

▪ Persistent SSL sessions - Support for flowing sideband calls across a persistent SSL session
between the API Gateway and PingIntelligence.

i Note: Requires enabling enable_sideband_keepalive parameter in the PingIntelligence
ASE ase.conf file.

▪ Redundant PingIntelligence nodes - optional redundant PingIntelligence ASE nodes can be configured
in the encapsulated assertion to bypass a node failure.

Prerequisite

Confirm that the following prerequisites are met before deploying the PingIntelligence integration.

Prerequisite:

Copyright ©2022

 | API Gateway integration | 611

▪ CA API Gateway Policy Manager - PingIntelligence was developed with and qualified with CA API
Gateway 9.4 (contact PingIdentity for other supported releases). Use the included Policy Manager to
configure the gateway..

▪ PingIntelligence software installation

PingIntelligence 4.0 software is installed and configured. For installation of PingIntelligence software,
refer to the manual or automated deployment guides.

▪ Java must be installed on the system from where the bundle is imported into the CA API gateway
▪ Verify that ASE is in sideband mode Confirm that ASE is operating in sideband mode by running

the following command in the ASE command line:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For a secure communication between CA and ASE, enable
sideband authentication by entering the following command in the ASE command line:

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for CA to authenticate with ASE. This token is generated in ASE and configured in
the policy XML file. To generate the token in ASE, enter the following command in the ASE command
line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Install and configure the PingIntelligence bundle

Installing and configuring the PingIntelligence bundle for CA API gateway consists of following steps:

1. Configure properties in pingintelligence-properties.bundle file.
2. Import the bundle file and the properties file into the CA API gateway using the import script.
3. Configure a certificate and the ASE token using CA API Policy Manager

Configure PingIntelligence bundle

Complete the following steps to configure the CA API gateway PingIntelligence policy:

Copyright ©2022

 | API Gateway integration | 612

1. Download the PingIntelligence policy files from the download site. The downloaded package will have
the following files and properties:

▪ ASE Check Request: The assertion used to analyze API requests.
▪ ASE Check Response: The assertion used to analyze API responses.
▪ Cluster-wide Properties:

▪ ase_host_https: The default is https://ase-server.example.com
▪ ase_host2_https: The default is https://ase-server-2.example.com
▪ ase_path_request and ase_path2_request: The default path is /ase/request
▪ ase_path_response and ase_path2_response: The default path is /ase/response

▪ API examples:

▪ /shop - Example API that may be called by an external client. The API shows how to support
both failing and non-failing policies.

▪ /shop/backend - An example shop-backend for demo purposes.
2. Untar the package
3. Edit the pingintelligence-properties.bundle to configure the following properties:

▪ ase_host_https and ase_host2_https: Primary and secondary PingIntelligence ASE IP
address and port number. If the primary ASE is not available, the request is sent to the secondary
ASE.

▪ ase_request_connection_timeout: The time in milliseconds for which API gateway waits to
establish a TCP connection for the client request with ASE. After the timeout period, the request is
directly sent to the backend server. The default value is 30,000 milliseconds.

▪ ase_request_read_timeout: The time in milliseconds for which API gateway waits to get a
response from ASE for the request. After the timeout period, the request is directly sent to the
backend server. The default value is 60,000 milliseconds.

▪ ase_response_connection_timeout: The time in milliseconds for which API gateway waits to
establish a TCP connection with ASE for the response from the backend server. After the timeout
period, the response is directly sent to the client. The default value is 30,000 milliseconds.

▪ ase_response_read_timeout: The time in milliseconds for which API gateway waits to get
a response from ASE for the request. After the timeout period, the request is directly sent to the
backend server. The default value is 60,000 milliseconds.

▪ ase_path_request and ase_path2_request: Use default value in sample file.
▪ ase_path_response and ase_path2_response: Use default value in sample file.

Following is a sample pingintelligence-properties.bundle file:

<?xml version="1.0" encoding="UTF-8"?><l7:Bundle xmlns:l7="http://
ns.l7tech.com/2010/04/gateway-management">
 <l7:References>
 <l7:Item>
 <l7:Name>ase_host_https</l7:Name>
 <l7:Id>f33082fa66314439b5d7e8703ac0963a</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-09T20:18:03.316Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="f33082fa66314439b5d7e8703ac0963a" version="1">
 <l7:Name>ase_host_https</l7:Name>
 <l7:Value>https://your-ase-host-and-port</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_path_request</l7:Name>
 <l7:Id>f33082fa66314439b5d7e8703ac09636</l7:Id>

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 613

 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-09T20:18:03.316Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="f33082fa66314439b5d7e8703ac09636" version="0">
 <l7:Name>ase_path_request</l7:Name>
 <l7:Value>/ase/request</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_path_response</l7:Name>
 <l7:Id>f33082fa66314439b5d7e8703ac09633</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-09T20:18:03.316Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="f33082fa66314439b5d7e8703ac09633" version="0">
 <l7:Name>ase_path_response</l7:Name>
 <l7:Value>/ase/response</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_request_connection_timeout</l7:Name>
 <l7:Id>07b5ecd6fc3baca9518885b71dbcee8e</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-09T20:18:03.316Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="07b5ecd6fc3baca9518885b71dbcee8e" version="0">
 <l7:Name>ase_request_connection_timeout</l7:Name>
 <l7:Value>30000</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_request_read_timeout</l7:Name>
 <l7:Id>07b5ecd6fc3baca9518885b71dbcee90</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-09T20:18:03.316Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="07b5ecd6fc3baca9518885b71dbcee90" version="0">
 <l7:Name>ase_request_read_timeout</l7:Name>
 <l7:Value>60000</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_response_connection_timeout</l7:Name>
 <l7:Id>07b5ecd6fc3baca9518885b71dbcee92</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-09T20:18:03.316Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="07b5ecd6fc3baca9518885b71dbcee92" version="0">
 <l7:Name>ase_response_connection_timeout</l7:Name>

Copyright ©2022

 | API Gateway integration | 614

 <l7:Value>30000</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_response_read_timeout</l7:Name>
 <l7:Id>07b5ecd6fc3baca9518885b71dbcee94</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-09T20:18:03.316Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="07b5ecd6fc3baca9518885b71dbcee94" version="0">
 <l7:Name>ase_response_read_timeout</l7:Name>
 <l7:Value>60000</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_path2_response</l7:Name>
 <l7:Id>753f4df53a2f3daf040f9807a4f9a126</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-18T17:04:41.043Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="753f4df53a2f3daf040f9807a4f9a126" version="0">
 <l7:Name>ase_path2_response</l7:Name>
 <l7:Value>/ase/response</l7:Value>
 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_path2_request</l7:Name>
 <l7:Id>753f4df53a2f3daf040f9807a4f9a124</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-18T17:04:41.043Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="753f4df53a2f3daf040f9807a4f9a124" version="0">
 <l7:Name>ase_path2_request</l7:Name>
 <l7:Value>/ase/request</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 <l7:Item>
 <l7:Name>ase_host2_https</l7:Name>
 <l7:Id>753f4df53a2f3daf040f9807a4f9a122</l7:Id>
 <l7:Type>CLUSTER_PROPERTY</l7:Type>
 <l7:TimeStamp>2019-07-18T17:04:41.043Z</l7:TimeStamp>
 <l7:Resource>
 <l7:ClusterProperty
 id="753f4df53a2f3daf040f9807a4f9a122" version="1">
 <l7:Name>ase_host2_https</l7:Name>
 <l7:Value>https://your-second-ase-host-and-port</l7:Value>

 </l7:ClusterProperty>
 </l7:Resource>
 </l7:Item>
 </l7:References>

Copyright ©2022

 | API Gateway integration | 615

Import PingIntelligence policy

After the PingIntelligence bundle is configured, import it into the CA API gateway. PingIntelligence provides
a script to import the policy. Complete the following steps to import the bundle:

1. Open the import_pingintelligence.sh file in an editor.
2. Configure the following values:

▪ GW: API gateway hostname and port
▪ GW_user admin:password: API gateway username
▪ GW_PASS_B64: A base64 encoded password used to encrypt/decrypt secure passwords

3. Run the import_pingintelligence.sh script. After the import script is run, the PingIntelligence
policy is installed in the API gateway.

Verify the policy import: Connect to the API gateway using the CA API Gateway Policy Manager. Verify
the PingIntelligence folder is visible in the lower left-hand side window.

Following is a sample import_pingintelligence.sh script:

!/usr/bin/env bash

Configure the gateway host and port and user credentials
#
GW=localhost:8443
GW_USER=admin:password
GW_PASS_B64=**********=

Import the folder 'PingIntelligence'
#
curl -k -u $GW_USER -X PUT -H "Content-Type: application/xml" -H "L7-key-
passphrase: $GW_PASS_B64" "https://$GW/restman/1.0/bundle" -d @../docker-
build/add-ons/ssg/policies/pingintelligence.bundle

Import cluster properties that configure the PingIntelligence bundle
#
ase_host_https
ase_path_request
ase_path_response
ase_host2_https
ase_path2_request
ase_path2_response
ase_request_connection_timeout
ase_request_read_timeout
ase_response_connection_timeout
ase_response_read_timeout
#
curl -k -u $GW_USER -X PUT -H "Content-Type: application/xml" "https://
$GW/restman/1.0/bundle" -d @../docker-build/add-ons/ssg/policies/
pingintelligence-properties.bundle

Configure ASE token and certificate

After the bundle is imported into the CA API gateway, configure the certificate and ASE token using the CA
API Policy Manager.

Configure the certificate: Complete the following steps to configure the certificate using CA API Policy
Manager:

1. In CA API Policy Manager, navigate to Tasks > Certificate, Keys and Secrets > Manage Certificates
2. Click Add and complete the steps on the GUI to add a certificate.
3. In the Specify Certificate Options step (step 3 in GUI), select the Outbound SSL Connections

checkbox and click Next.

Copyright ©2022

 | API Gateway integration | 616

4. In the Configure Validation step (step 4 in GUI), select the Certificate is a Trust Anchor checkbox
and click Finish.

Configure ASE token: Complete the following steps in the CA API Policy Manager to configure the ASE
token that was generated as part of Prerequisite on page 610.

1. In the CA API Policy Manager, navigate to Tasks > Certificate, Keys and Secrets > Manage Stored
Passwords

2. Select ase_token and click on properties.
3. In the Stored Password Properties pop-up window, click on Change Password.
4. In the Enter Password pop-up window, enter the ASE token and click Ok.

Apply PingIntelligence policy

The bundle includes ASE check request and check response encapsulated assertions. Apply these
assertions to each API that you want to monitor using PingIntelligence. You can include these assertions
in global policies if you want each incoming API call to automatically be checked by PingIntelligence or you
can attach those assertions in service-level policies.

For service-level policies, each API will add two assertions, ASE Check Request and ASE Check
Response. ASE Check Request is applied before routing the request to the backend. Whereas ASE Check
Response is used after a call to the downstream endpoint (which is on line 25 in the screenshot below):

The ASE Check Request assertion is configured with the following:

ASE check request

ASE Check Request:

If you do not configure the properties, the assertion extracts all required details by itself. This includes:

▪ Retrieving all the request headers
▪ Generating a correlationId (used as X-CorrelationID)
▪ Retrieving the ASE Token
▪ Retrieving the ASE HTTPS host
▪ Retrieving the ASE request path
▪ Sending a message to ASE

Copyright ©2022

 | API Gateway integration | 617

PingIntelligence recommends adding username to capture the user name when it is available. Examples
of username variables include:

▪ ${request.http.parameter.username} - The username variable included in the incoming
request HTTP header.

▪ ${session.subscriber_id} - The username variable when authenticating users with the OAuth
Toolkit (OTK)

▪ ${request.username} – The username variable
in the case of HTTP Basic authentication

The variable name to use in this case will often be very implementation-specific. Use what you already
defined as part of your CA API Gateway implementation.

You should change other if you are customizing to accommodate special use cases.

▪ CorrelationID: Optional – used if you want to override the correlationId which will otherwise
automatically be assigned.

▪ Custom data: Optional - used to modify the internal of that assertion.
▪ true: Useful for users developing an API for debugging or auditing purposes.

The assertion has an output which is the generated correlationId:ase.correlationId that is
utilized by the ASE check response assertion.

ASE check response

This ASE Check Response assertion must be configured for each API with the following variables:

▪ Correlation-ID: The ASE request and response correlation IDs, if specified, must match. Otherwise,
keep ase.correlationId

▪ All service response headers: The default value is ${response.http.allheadervalues}.
This variable is created by the routing assertion that executed the backend call. If it is customized, for
example, myresponse, then the updated variable should be used.

▪ Response code: The HTTP response status of the backend call.
▪ Response status: This value is ignored and hard coded to OK.
▪ Username (optional): This should match the username variable setting in the ASE Check Request

assertion. The screenshot shows an example where the username is being extracted from the incoming
HTTP request.

▪ Custom data (optional): Used by customers who would like to modify the internals of an assertion.
▪ true: Useful for users developing an API for debugging or auditing purposes.

API discovery

PingIntelligence API discovery is a process to discover, and report APIs from your API environment. The
discovered APIs are reported in PingIntelligence Dashboard. APIs are discovered when a global API JSON

Copyright ©2022

 | API Gateway integration | 618

is defined in the ASE. For more information, see API discovery and configuration on page 329 . You can
edit the discovered API's JSON definition in Dashboard before adding them to ASE. For more information
on editing and configuring API discovery, see Discovered APIs on page 496.

Integrate PingIntelligence

After the policy deployment is complete, refer to the following topics for next steps:

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS AI Engine Admin Guides:

▪ Customizing ASE ports on page 120
▪ API naming guidelines on page 159
▪ Adding APIs in Sideband ASE on page 150. You can add individual APIs or you can configure a

global API. For more information, seeAPI discovery and configuration on page 329.
▪ Configure ASE to ABS connectivity on page 179

After you have added your APIs in ASE, the API model needs to be trained. The training of an API model is
executed in the ABS AI engine. The following topics provide information on important topics, however it is a
good practice to read the entire ABS Admin Guide.

▪ AI Engine training on page 319
▪ API reports using Postman on page 394
▪ Access PingIntelligence Dashboard on page 17

F5 BIG-IP integration

F5 BIG-IP PingIntelligence integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with F5
BIG-IP version 13.1.0.8. A PingIntelligence policy is installed in F5 BIG-IP and passes API metadata
to PingIntelligence for detailed API activity reporting and attack detection with optional client blocking.
PingIntelligence software includes support for reporting and attack detection based on usernames captured
from JSON Web Token (JWT).

Copyright ©2022

 | API Gateway integration | 619

This diagram depicts the architecture of PingIntelligence for APIs components along with F5 BIG-

IP:

Following is an description of the traffic flow through F5 BIG-IP and PingIntelligence ASE:

1. Client sends an incoming request to F5 BIG-IP
2. F5 BIG-IP makes an API call to send the request metadata to ASE
3. ASE checks the request against a registered set of APIs and looks for the origin IP, cookie, OAuth2

token or API key in PingIntelligence AI engine generated Blacklist. If all checks pass, ASE returns a
200-OK response to the F5 BIG-IP. If not, a different response code is sent to F5 BIG-IP. The request
information is also logged by ASE and sent to the AI Engine for processing.

4. F5 BIG-IP receives a 200-OK response from ASE, then it forwards the request to the backend server. A
request is blocked only when ASE sends a 403 error code.

5. The response from the backend server is received by F5 BIG-IP.
6. F5 BIG-IP makes a second API call to pass the response information to ASE which sends the

information to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to F5 BIG-IP.
8. F5 BIG-IP sends the response received from the backend server to the client.

Prerequisite

F5 BIG-IP and PingIntelligence sideband integration supports F5 BIG-IP TMOS v13.1.0.8 with node.js
v6.9.1. If you are using any other version of F5, contact Ping Identity support for help.

F5 prerequisites:

▪ F5 BIG-IP is already running v13.1.0.8 software
▪ Knowledge of iRules LX in F5. Refer the F5 documentation for information on iRules.
▪ A Virtual Server is configured to front-end the incoming traffic. Make sure to apply HTTP profile to the

virtual server.
▪ A valid F5 BIG-IP license and iRules LX is enabled in your setup.

PingIntelligence prerequisites:

Copyright ©2022

 | API Gateway integration | 620

This section assumes that you have installed and configured PingIntelligence software. For more
information on PingIntelligence installation, see PingIntelligence for APIs setup on page 44 or
PingIntelligence manual deployment on page 79

▪ Download the PingIntelligence policy from the download site.
▪ Verify that ASE is in sideband mode: Log in to your ASE machine and check that ASE is in

sideband mode by running the following status command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For secure communication between F5 BIG-IP and ASE, enable
sideband authentication by entering the following ASE command:

./bin/cli.sh enable_sideband_authentication -u admin –p admin

▪ Generate sideband authentication token

A token is required for BIG-IP to authenticate with ASE. To generate the token in ASE, enter the
following command in the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use in Import and configure PingIntelligence policy
on page 620

Deploy PingIntelligence policy

Deploying PingIntelligence policy for F5 BIG-IP consists of the following steps:

1. Import and configure PingIntelligence policy
2. Create an LX plugin
3. (Optional step) Add server pools for the backend and add virtual server for the frontend. If you already

have frontend virtual servers and backend server pool, skip to next step.
4. Add iRule to the virtual server

The PingIntelligence policy is specific to an ASE cluster. If you have more than one ASE cluster, then add
the policy to a new workspace and create a new plugin. When you import the PingIntelligence policy, it is
imported to an LX workspace and opens in a Nodejs editor.

Import and configure PingIntelligence policy

Complete the following steps to import PingIntelligence policy in F5:

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 621

1. Login to your F5 UI and navigate to Local Traffic > iRules > LX

Workspaces.

In the Workspaces tab, click on import.

Copyright ©2022

 | API Gateway integration | 622

2. A Workspace import page is displayed. Enter the Name and choose the PingIntelligence policy that you
downloaded from Ping Identity download site. Click on Import.

3. Clicking on Import creates an LX Workspace

Copyright ©2022

 | API Gateway integration | 623

4. Open the Workspace by clicking on it. The policy is pre-loaded with extension named oi_ext. Edit the
ASE configuration by clicking on ASEConfig.js file. It opens the PingIntelligence policy in the editor:

The following table describes the ASE variables:

Variable Description

ase_primary IP address of primary ASE node

ase_primary_port Port number of primary ASE node

ase_secondary IP address of secondary ASE node

ase_secondary_port Port number of secondary ASE node

is_ase_ssl Set to true if traffic to ASE is sent over HTTPS

ase_token The ASE sideband authentication token that was
generated as part of prerequisites

use_ca Set to true if ASE is using a CA-signed certificate

include_paths Provide the list of paths that the policy should
process. If / is provided as path, then all the traffic
is monitored. The maximum number of subpaths in
path is 3. For example, /a/b/c/.

enable_auth Set to true if traffic contains access token in
authorization header or querystring.

is_access_token_in_header Set to true if access token is present in
authorization header.

Copyright ©2022

 | API Gateway integration | 624

Variable Description

access_token_variable If the access token is present in querystring,
then specify the key used for token.

authorization_header_prefix If the access token is present in authorization
header, then specify the prefix used for access
token.

user_key_mapping The location of username in JSON payload of JWT
access token.

clientid_key_mapping The location of client ID in JSON payload of JWT
access token

Create LX plugin

After importing and configuring the PingIntelligence policy, create an LX plugin with name pi_plugin.

Complete the following steps to create an LX plugin:

1. Navigate to Local Traffic > iRules > LX Plugins:

Copyright ©2022

 | API Gateway integration | 625

2. In the New Plugin page, click on Create to create a new plugin with name pi_plugin. Select the
workspace that you created earlier from the From Workspace drop-down list and click on Finished.

(Optional) Create backend server pool and frontend virtual server

It is optional to create a backend server pool and frontend virtual server if you already have those set up. If
you have existing backend server pool and frontend virtual server that you want to use, continue with the
steps to .Add PingIntelligence policy on page 628

Complete the following steps if you do not have a backend server pool and frontend virtual server.

Add backend server pool

Complete the following steps to create a backend server pool:

Copyright ©2022

 | API Gateway integration | 626

1. Navigate to Local Traffic > Pools > Pool List and click on Create:

2. In the configuration page for the pool, configure the fields and add a new node for the backend

Copyright ©2022

 | API Gateway integration | 627

3. Click on Finished. This creates a backend server pool which is accessed from clients connecting to the
frontend virtual

server

Add frontend virtual server

Complete the following steps to add a frontend virtual server:

1. Navigate to Local Traffic > Virtual Server > Virtual Server List and click on Create

Copyright ©2022

 | API Gateway integration | 628

2. Configure the frontend virtual server details. At a minimum, configure the following values:

▪ Destination Address: This is the virtual IP address that is used for the frontend.
▪ SSL Profile (Client): Configure if the frontend is SSL
▪ SSL Profile (Server): Configure if the backend is SSL

3. Click on Finished
4. Under Resource tab, add backend pool to virtual server and click on

Update

Add PingIntelligence policy

The imported PingIntelligence policy must be tied to a virtual server. Add the PingIntelligence policy to the
existing or recently created virtual server..

Complete the following steps to add the PingIntelligence policy to the virtual server:

1. Navigate to Local Traffic > Virtual Servers > Virtual Server List
2. Select the virtual server to which you want to add the PingIntelligence policy
3. Click on the Resources tab
4. In the iRules section, click on the Manage button.

Copyright ©2022

 | API Gateway integration | 629

5. Choose the iRule under the pi_plugin that you want to attach to the virtual server.

6. Move the pi_irule to the Enabled window and click on Finished.

Copyright ©2022

 | API Gateway integration | 630

IBM DataPower gateway integration

IBM DataPower Gateway sideband integration

This integration guide discusses the deployment of PingIntelligence for APIs in a sideband configuration
with IBM DataPower Gateway. PingIntelligence for APIs provides policy assembly components that extract
the API metadata from a request or response processed by IBM DataPower Gateway. The API metadata
is passed to PingIntelligence for APIs for detailed API activity reporting and attack detection. For more
information on sideband deployment, see Sideband ASE on page 150.

The PingIntelligence policy assembly components are added using API Manager in IBM API Connect. The
following diagram shows the implementation steps of the PingIntelligence policy assembly components in
the IBM API ecosystem.

i Note:

The PingIntelligence policy assembly components get deployed on a per API basis. You must configure
them for an individual API to extract the request and response metadata for the API.

The following diagram shows the logical setup of PingIntelligence for APIs and IBM DataPower Gateway.

The traffic flow through the IBM DataPower Gateway and PingIntelligence for APIs components is
explained below:

1. A client sends an incoming request to the IBM DataPower Gateway.
2. PingIntelligence policy component is executed on the request to extract the metadata from the incoming

request.

Copyright ©2022

 | API Gateway integration | 631

3. IBM DataPower Gateway makes an API call to send the request metadata to API Security Enforcer
(ASE). The ASE checks the client identifiers such as usernames, tokens against the blacklist. If all
checks pass, ASE returns a 200-OK response to the IBM DataPower Gateway. If the checks do not
pass, ASE sends different response code (403) to the IBM DataPower Gateway. In both cases, ASE
logs the request information and sends it to the Ping Intelligence API Behavioral Security (ABS) AI
Engine for processing.

4. If the ASE sends a 200-OK response to the IBM DataPower Gateway, it forwards the API requests to
the backend server. If the gateway receives a 403-Forbidden response from ASE, it blocks the client.

5. IBM DataPower Gateway receives the response from the backend server.
6. PingIntelligence policy component is applied on the response to extract the metadata from the server

response.
7. IBM DataPower Gateway makes a second API call to pass the response information to ASE, which

sends the information to the ABS AI engine for processing.
8. IBM DataPower API Gateway sends the response received from the backend server to the client.

Prerequisites

Complete the following prerequisites before deploying the PingIntelligence policy.

Confirm the versions- The PingIntelligence policy is validated only for the following versions of IBM APIC
and DataPower:

▪ IBM APIC v5.0.8.7
▪ IBM DataPower Gateway 2018.4.10

Verify User permissions- To configure PingIntelligence policy, the user must have permissions to edit
and publish APIs in the API Manager.

Install PingIntelligence software- PingIntelligence software should be installed and configured. For
more information on PingIntelligence deployment, see PingIntelligence for APIs setup on page 44 and
PingIntelligence manual deployment on page 79.

Verify that ASE is in sideband mode- Check that ASE is in sideband mode by running the following ASE
command.

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE. For more
information on starting ASE, see Start and stop ASE on page 122.

Enable sideband authentication- For a secure communication between IBM DataPower Gateway and
ASE, enable sideband authentication by entering the following ASE command.

./bin/cli.sh enable_sideband_authentication -u admin –p

Copyright ©2022

 | API Gateway integration | 632

Ensure SSL is configured in ASE for client side connection using self-signed certificate. For more
information on configuring self-signed certificate, see Configure SSL for external APIs on page 132.

Enable connection keepalive between gateway and ASE- Navigate to /opt/pingidentity/ase/
config/. Set the value of enable_sideband_keepalive to true in ase.conf file. If the ASE is running stop
it, before making the change. Start ASE after setting the value. For more information on ASE configuration,
see ASE configuration - ase.conf on page 152

Generate sideband authentication token- To generate the token in ASE, enter the following command in
the ASE command line.

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use. The token is required for IBM DataPower Gateway
to authenticate with ASE. It is set as a runtime variable in ASE config set-variable policy. For more
information, see Configure PingIntelligence policy components on page 635.

Deploy PingIntelligence policy

PingIntelligence for APIs provides pi_policy.yaml file for IBM DataPower Gateway sideband integration.
The policy has the following three policy assembly components:

▪ ASE Config- This assembly component configures the ASE connection and authentication parameters.
It implements a set-variable policy that configures the parameters as runtime variables.

▪ ASE Request- This assembly component extracts the API metadata from a request processed by the
IBM DataPower Gateway. It implements a gateway script policy in the DataPower Gateway.

▪ ASE Response- This assembly component extracts the API metadata from a response processed by
the IBM DataPower Gateway. It implements a gateway script policy in the DataPower Gateway.

IBM API Connect provides different policy types to control specific aspects of processing by the DataPower
Gateway. For example, to configure a capability, for logging, for security, and so forth. The set-variable
policy type helps to add or set a runtime variable. The gateway script policy gives built-in access to the
DataPower Gateway to execute a specified DataPower Gateway script program.

The deployment of PingIntelligence policy involves:

▪ Step1- Add PingIntelligence policy components on page 632.
▪ Step2- Configure PingIntelligence policy components on page 635.

i Note: The PingIntelligence policy does not support payload with a DELETE request. When the policy
is deployed, if a DELETE request comes with a payload, the payload will not reach the backend API
server.

Add PingIntelligence policy components

Complete the following steps before adding the PingIntelligence policy to your API:

1. Download the PingIntelligence policy from the ping identity download site.
2. Extract the policy by using the following command.

tar –zxvf <<file name>>

For example,

tar –zxvf pi-api-ibm-policy-4.1.0.tar.gz

Complete the following steps to add the PingIntelligence policy components to your API in IBM API
Manager:

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 633

1. Log in to API Manger.

2. Click the Menu icon on the top-left corner, to open navigation pane.

3. Click Drafts in the navigation pane.

4. Click the APIs tab.

5. Click on your API under TITLE list or enter the API name in Search APIs dialog box and select the API.

Copyright ©2022

 | API Gateway integration | 634

6. Click Source tab to edit your API definition.

7. Copy and paste the content of PingIntelligence policy into the Assembly block of your API definition at
three places as illustrated:

a. Open the pi_policy.yaml file, copy the content of the set-variable: block having ASE Config
component and paste it in the next line after execute: block in your API.

b. Next, copy the content of the gateway script: block containing ASE Request component from
pi_policy.yaml file and paste it after the immediate last line of ASE Config component, that was
copied in step 8.1.

c. Copy the content of the gateway script: block containing ASE Response component from
pi_policy.yaml file and paste it as the last component of your API..

i Note: The assembly component ASE Reponse should always be the last component of your
policy assembly.

8. Click the Validate icon to validate your changes. Click the Save icon after completing the
validation.

9. Click the Assemble tab to open the Assemble view. Verify the sequence of the components ASE
Config, ASE Request, and ASE Response in the Policy Assembly. The order must match as highlighted
in the red boxes of the following image.

Copyright ©2022

 | API Gateway integration | 635

Configure PingIntelligence policy components

After adding the PingIntelligence policy to an API, complete the following steps to configure ASE
parameters:

1. Click Assemble tab. In the main window click ASE Config component to open the property sheet on
the right.

Copyright ©2022

 | API Gateway integration | 636

2. Configure the values for ASE master URL, ASE slave URL, and ASE token. Click the Save icon on
the top-right corner.

i Note: The following format is applicable for ASE master and slave URLs-<http/https>://<ASE-Host
name or IP address>.

3. Publish your API after completing step 2 to make the PingIntelligence policy components part of your
API definition.

Copyright ©2022

 | API Gateway integration | 637

Kong API gateway integration

PingIntelligence - Kong API gateway integration

This guide describes the deployment of the PingIntelligence plugin for Kong 1.5.0 community version API
gateway. Install the plugin on all the Kong nodes that you want to integrate with PingIntelligence. You can
apply the plugin at the global level or a per-service level for both db-less and database mode of Kong API
gateway. For more information on Kong's db-less and database mode, see Kong documentation. Following
is a high-level list of features of the PingIntelligence plugin:

▪ You can apply the plugin at the global or per-service level for both database and db-less mode.
▪ The plugin supports keepalive connections.
▪ You can configure ASE primary and secondary nodes for failover. If both the primary and secondary

nodes are not available, the plugin routes the connection to the backend servers.

The following diagram shows the logical setup of PingIntelligence and Kong API

gateway:

Here is the traffic flow through Kong API gateway and PingIntelligence for APIs components.

1. Client sends an incoming request to Kong
2. Kong makes an API call to send the request metadata to ASE
3. ASE checks the request against a registered set of APIs and looks up the client identifier on the

PingIntelligence AI engine generated Blacklist. If all checks pass, ASE returns a 200-OK response to
Kong. If not, a different response code is sent to Kong. The request information is also logged by ASE
and sent to the AI Engine for processing.

Copyright ©2022

https://docs.konghq.com/1.5.x/db-less-and-declarative-config/

 | API Gateway integration | 638

4. If Kong receives a 200-OK response from ASE, then it forwards the request to the backend server. A
request is blocked only when ASE sends a 403 error code to Kong.

5. The response from the backend server is received by Kong.
6. Kong makes a second API call to pass the response information to ASE which sends the information to

the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to Kong.
8. Kong sends the response received from the backend server to the client.

Prerequisites

Complete the following prerequisites for PingIntelligence and Kong API gateway before deploying the
PingIntelligence plugin:

PingIntelligence prerequisites

▪ PingIntelligence software: Make sure that PingIntelligence software is already installed. For more
information on PingIntelligence for APIs installation, see Automated deployment guide or Manual
deployment guide.

▪ Verify ASE mode: Make sure that ASE is deployed in sideband mode. Run the status command to
check the ASE mode:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE. For more
information on ase.conf file, see ASE configuration - ase.conf on page 152

▪ Enable sideband authentication - Enable sideband authentication if you want secure communication
between Kong and ASE by entering the following command in the ASE command line:

./bin/cli.sh enable_sideband_authentication -u admin –p

Generate sideband authentication token

A token is required for Kong to authenticate with ASE. This token is generated in ASE and configured
in the kong.yml file of PingIntelligence plugin. To generate the token in ASE, enter the following
command in the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.
▪ Configure keepalive in ase.conf - If you want to keep alive the connections beteen Kong and ASE,

set the value of enable_sideband_keepalive to true. If ASE is already running, stop ASE,
edit the ase.conf file and then start ASE. For more information on keepalive paramter, see ASE
configuration - ase.conf on page 152.

Kong Prerequisites

Copyright ©2022

 | API Gateway integration | 639

▪ Kong API gateway is already installed
▪ Luarocks, the Lua package manager, is installed on all the Kong nodes where you want to deploy the

PingIntelligence module.

Deploy PingIntelligence policy

Complete the following steps to deploy PingIntelligence plugin for Kong API gateway:

1. Download the PingIntelligence plugin for Kong and copy to /opt/ directory on all the Kong nodes
where you want to deploy PingIntelligence plugin.

2. Untar the plugin file by entering the following command:

$ untar pi-api-kong-policy-4.1.0.tar.gz

3. Change directory to /opt/pingidentity/kong-policy

$ cd /opt/pingidentity/kong-policy

4. Run the luarocks command to deploy the PingIntelligence plugin

$ luarocks make *.rockspec

This command installs the PingIntelligence plugin files at /usr/local/share/lua/5.1/kong/
plugins/pingintelligence/ location. This location may be different based on the version of
Luarocks.

5. Configure /opt/pingidentity/kong-policy/examples/kong.conf to provide the plugin name.
The default plugin name is pingintelligence. The plugin name that you configure in kong.conf is
used in kong.yml file. Following is a sample kong.conf file.

i Note: Edit your existing kong.conf file by copying the plugins =
bundled,pingintelligence section.

#------------------------------
Kong sample configuration file

log_level = debug
plugins = bundled,pingintelligence

proxy_listen = 0.0.0.0:8000
admin_listen = 0.0.0.0:8001
database = off
declarative_config = /opt/pingidentity/kong-policy/examples/kong.yml
lua_ssl_trusted_certificate = /opt/pingidentity/kong-policy/certs/
cacert.pem
lua_package_path = ./?.lua;./?/init.lua;

6. db-less mode: If you are running Kong in db-less mode, configure the kong.yml file for deploying the
PingIntelligence plugin. The following table explains the variables of the file:

Variable Description

services

▪ name
▪ url
▪ routes

▪ name Name of the service or API
▪ url The URL where the service or API is hosted
▪ routesThe subpaths of the service. A maximum of 3-

subpaths are supported

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads.html

 | API Gateway integration | 640

Variable Description

plugins: In this section, define the ASE
specific variables for a service or API.

▪ name
▪ service

▪ name: The name of the plugin. This name was
configured in kong.conf file.

▪ service: The name of the service API. If you want
to apply the plugin to more than one service, create
a service section for each service as shown in the
example kong.yml file. For example, if you have three
services or APIs, your kong.yml file should have
three service sections, one for each service. The
example kong.ymlfile has two sample service names
configured.

config

▪ ase_primary_host
▪ ase_secondary_host
▪ ase_port
▪ ase_token
▪ ase_timeout
▪ ase_keepalive
▪ access_token
▪ use_tls
▪ sni_name
▪ tls_verify

▪ ase_primary_host: IP address of primary ASE node
▪ ase_secondary_host: IP address of the secondary

ASE node.
▪ ase_port: Port number of the ASE node
▪ ase_token: The sideband ASE token that was

generated as part of the prerequisites
▪ ase_timeout: The time in milliseconds for which Kong

waits for ASE to respond before trying the other host.
The default value is 5,000 ms

▪ ase_keepalive: The time in milliseconds for the
keepalive connection. The default value is 60,000 ms.

▪ access_token: If OAuth token is part of the query
string, the access_token field allows you to set the
query param key that holds OAuth token in the query
string

▪ use_tls: Configures a TLS connection between the
API gateway and ASE. The default value is false.

▪ sni_name: Fully qualified domain name (FQDN) of the
certificate applied to ASE data port

▪ tls_verify: When set to true, the API gateway
verifies the certificate. If the certificate validation fails,
the connection is closed. When set to false, the
API gateway does not verify the certificate, however,
the connection between the API gateway and ASE is
encrypted..

▪ Apply plugin at a per-service level: Configure the kong.yml file as described in the table above
with the service name of all the API or services to which you want to apply the plugin. Following is a
sample kong.yml file:

#
 --
This is an example file to get you started with using
declarative configuration in Kong.
#
 --

Metadata fields start with an underscore (_)
Fields that do not start with an underscore represent Kong entities
 and attributes

_format_version is mandatory,
it specifies the minimum version of Kong that supports the format

Copyright ©2022

 | API Gateway integration | 641

_format_version: "1.1"

Each Kong entity (core entity or custom entity introduced by a plugin)
can be listed in the top-level as an array of objects:

services:
 - name: shop-books
 url: <your_service_url>
 routes:
 - name: shop-books-route
 paths:
 - /shopapi-books

 - name: shop-electronics
 url: <your_service_url>
 routes:
 - name: shop-electronics-route
 paths:
 - /shopapi-electronics

plugins:
 - name: pingintelligence
 service: shop-books
 _comment: "An example configuration of pingintelligence plugin"
 config:
 ase_primary_host: localhost
 ase_secondary_host: localhost

 ase_port: "8000"
 ase_token: 1ebd5fde1b0b4373a1ad8b8724d13813
 ase_timeout: "5000"
 ase_keepalive: "60000"
 access_token: access_token
 use_tls: false
 sni_name: test.ase.pi
 tls_verify: false
 tags:
 - api_security

 - name: pingintelligence
 service: shop-electronics
 _comment: "An example configuration of pingintelligence plugin"
 config:
 ase_primary_host: 172.16.40.220
 ase_secondary_host: 172.16.40.220
 ase_port: "8000"
 ase_token: 1ebd5fde1b0b4373a1ad8b8724d13813
 ase_timeout: "5000"
 ase_keepalive: "60000"
 access_token: access_token
 use_tls: false
 sni_name: test.ase.pi
 tls_verify: false
 tags:
 - api_security

▪ Apply plugin at the global level: To apply the plugin at the global level, remove the service
name from the kong.yml file as shown in the sample file below.

#
 --
This is an example file to get you started with using

Copyright ©2022

 | API Gateway integration | 642

declarative configuration in Kong.
#
 --

Metadata fields start with an underscore (_)
Fields that do not start with an underscore represent Kong entities
 and attributes

_format_version is mandatory,
it specifies the minimum version of Kong that supports the format

_format_version: "1.1"

Each Kong entity (core entity or custom entity introduced by a plugin)
can be listed in the top-level as an array of objects:

services:
 url: <your_service_url>
 routes:
 paths:

plugins:
 - name: pingintelligence
 _comment: "An example configuration of pingintelligence plugin"
 config:
 ase_primary_host: localhost
 ase_secondary_host: localhost

 ase_port: "8000"
 ase_token: 1ebd5fde1b0b4373a1ad8b8724d13813
 ase_timeout: "5000"
 ase_keepalive: "60000"
 access_token: access_token
 use_tls: false
 sni_name: test.ase.pi
 tls_verify: false
 tags:
 - api_security

7. Start the API gateway after the plugin has been deployed.

$ kong start -c kong.conf

i Note: By default, Kong is configured to run its services on 8000 port and admin API on 8001 port.
You can change these default ports in kong.conf file.

Database mode

You can also optiinally configure Kong to work in the database mode. If you are running Kong in the
database mode, run the curl command to apply the plugin at a per-service level or global level. Make
sure that Kong is running when you are applying the plugin in database mode.

▪ Apply plugin at service level: Run the following command to apply the plugin at a per service level:

curl --location --request POST '<kong_ip>:<kong_admin_port>/services/
<service_name>/plugins' \
--header 'Content-Type: application/json' \
--data-raw '{
 "name": "pingintelligence",
 "config": {

Copyright ©2022

 | API Gateway integration | 643

 "tls_verify": true,
 "sni_name": "test.ase.pi",
 "ase_port": "444",
 "ase_primary_host": "localhost",
 "ase_token": "e537d22cc0984fcfa28468066486f830",
 "ase_timeout": "5000",
 "ase_keepalive": "60000",
 "ase_secondary_host": "localhost",
 "access_token": "AccessKey",
 "use_tls": true
 }
}'

▪ Apply plugin at the global level: Run the following curl command to apply the plugin at the global
level.

curl --location --request POST '<kong_ip>:<kong_admin_port>/plugins' \
--header 'Content-Type: application/json' \
--data-raw '{
 "name": "pingintelligence",
 "config": {
 "tls_verify": true,
 "sni_name": "test.ase.pi",
 "ase_port": "444",
 "ase_primary_host": "localhost",
 "ase_token": "e537d22cc0984fcfa28468066486f830",
 "ase_timeout": "5000",
 "ase_keepalive": "60000",
 "ase_secondary_host": "localhost",
 "access_token": "AccessKey",
 "use_tls": true
 }
}'

Mulesoft API gateway integration

Mulesoft sideband integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with Mulesoft
API Gateway. A PingIntelligence policy is installed in the Mulesoft API Gateway and it passes API
metadata to PingIntelligence for detailed API activity reporting and attack detection with optional client
blocking.

The PingIntelligence policy works with APIs that are configured with basic endpoint and also with APIs
that are configured with proxy endpoint. The policy is simpler to deploy when applied to APIs that are
configured with the endpoint with proxy option since more API metadata is already accessible by the
policy.

Copyright ©2022

 | API Gateway integration | 644

Traffic flow for Mulesoft integration without user information

Here is the traffic flow through the Mulesoft and PingIntelligence for APIs components.

1. Client sends an incoming request to Mulesoft.
2. The PingIntelligence policy running in Mulesoft collects API metadata and token attributes.
3. Mulesoft makes an API call to send the request information to ASE. ASE checks the request against

a registered set of APIs and checks the origin IP, cookie or OAuth2 token against the AI generated
Blacklist. If all checks pass, ASE returns a 200-OK response to the Mulesoft. If not, a different response
code is sent to Mulesoft. The request information is also logged by ASE and sent to the AI Engine for
processing.

4. If Mulesoft receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, the Gateway optionally blocks the client.

5. The response from the backend server is received by Mulesoft. Mulesoft sends the response received
from the backend server to the client.

6. Mulesoft makes a second API call to pass the response information to ASE which sends the information
to the AI engine for processing. ASE receives the response information and sends a 200-OK to
Mulesoft.

7. Mulesoft sends the response to the client.

Traffic flow for Mulesoft integration with user information

Copyright ©2022

 | API Gateway integration | 645

Here is the traffic flow through the Mulesoft and PingIntelligence for APIs
components. PingFederate is used as the OAuth server to gather the user

information.

1. Client requests and receives an access token from PingFederate.
2. Client sends a request with the access token received from PingFederate.
3. Muelsoft verifies the authenticity of the access token with PingFederate.
4. If the token is invalid, Mulesoft returns a 401-unauthorized message to the client.
5. If the token is valid, the PingIntelligence policy running in Mulesoft collects API metadata and token

attributes.
6. Mulesoft makes an API call to send the request information to ASE. ASE checks the request against

a registered set of APIs and checks the origin IP, cookie or OAuth2 token against the AI generated
Blacklist. If all checks pass, ASE returns a 200-OK response to the Mulesoft. If not, a different response
code is sent to Mulesoft. The request information is also logged by ASE and sent to the AI Engine for
processing.

7. If Mulesoft receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, the Gateway optionally blocks the client.

8. The response from the backend server is received by Mulesoft. Mulesoft sends the response received
from the backend server to the client.

9. Mulesoft makes a second API call to pass the response information to ASE which sends the information
to the AI engine for processing. ASE receives the response information and sends a 200-OK to
Mulesoft.

10.Mulesoft sends the response to the client.

Prerequisites

Complete the following prerequisites before deploying PingIntelligence policy on MuleSoft:

Prerequisite:

Copyright ©2022

 | API Gateway integration | 646

▪ Versions The PingIntelligence policy supports the 3.9.x and 4.x versions of MuleSoft. If you are using
any other version, contact Ping Identity support.

i Note: Due to a known bug in Mulesoft 4.2.2, you can encounter a 502 error response when the
PingIntelligence policy is deployed with MuleSoft 4.2.2. Refer to the following MuleSoft documentation
for more information about the issue and its resolution.

▪ Install PingIntelligence software

PingIntelligence software should be installed and configured. For more information, see PingIntelligence
manual deployment on page 79 or PingIntelligence automated deployment

▪ Verify that ASE is in sideband mode

Check that ASE is in sideband mode by running the following ASE command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband

http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.61 MB, free 102.39
 MB
google pubsub : disabled
log level : debug
timezone : local (UTC)

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For a secure communication between Mulesoft Anypoint and ASE,
enable sideband authentication by entering the following ASE command:

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for Mulesoft Anypoint to authenticate with ASE. To generate the token in ASE, enter
the following command in the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Prerequisites to gather the user information

Complete this optional prerequisite to gather user information from PingFederate. To integrate
PingFederate with Mulesoft follow the instructions detailed in Configure Client Management PingFederate.
This will enable PingFederate OAuth Token Enforcement policy. This policy should be applied before the

Copyright ©2022

https://help.mulesoft.com/s/article/Scatter-Gather-throwing-Event-instance-or-a-MessagingException-on-4-2-2-only
https://docs.mulesoft.com/access-management/conf-client-mgmt-pf-task

 | API Gateway integration | 647

PingIntelligence policy in the Anypoint platform API Manager as shown in the following screenshot.

Currently the PingIntelligence policy supports PingFederate as authorization server.

Deploy PingIntelligence policy

PingIntelligence provides a policy to deploy PingIntelligence 4.3 with Mulesoft 3.9 and 4.0. The policy
package has the following two files:

▪ pi_policy.yaml
▪ pi_policy.xml

Follow the steps to deploy PingIntelligence policy based on the version of Mulesoft API gateway. For
PingIntelligence to detect attacks based on username, make sure that the PingFederate access token
enforcement policy is the first policy deployed. PingIntelligence policy should be the second policy.

Copyright ©2022

 | API Gateway integration | 648

PingIntelligence for Mulesoft 3.9

Before applying the PingIntelligence policy, make sure that the API to which you want to apply the policy is
defined. The steps mentioned below use an API named PingIntelligenceAPI for illustration purpose.

Deploying PingIntelligence policy to Mulesoft Anypoint

1. Log in to your Mulesoft Anypoint account.
2. Open API Manager by expanding the menu on the left-hand side.

3. In the API Administration page, click on Custom

Policies.
4. In the Custom policies page, click on Add custom

policy:

Copyright ©2022

 | API Gateway integration | 649

5. In the Add custom policy pop-up window, add the policy name, for example,
PingIntelligence policy and upload the pi_policy.yaml and pi_policy.xml files.

PingIntelligence policy is added as shown below.

PingIntelligence for Mulesoft 4.x

Complete the following steps to deploy PingIntelligence policy for Mulesoft 4.x.

Copyright ©2022

 | API Gateway integration | 650

1. Create a project directory by following the instructions explained in Getting started with Custom Policies
development link. The following screenshot shows an illustrative sample of a project directory structure.

2. PingIntelligence policy package provides three files for 4.x :

▪ policy.xml- Contains the actual logic of the policy.
▪ policy.yaml- Has details that render policy configuration UI.
▪ pom.xml- Specifies dependencies for policy compilation.

When the project's directory structure is created, replace the contents of my-custom-policy.yaml
with that of policy.yaml file and the contents of template.xml with that of policy.xml.
Similarly, replace the contents of pom.xml with that of pom.xml file provided in PingIntelligence
policy package.

Edit the pom.xml file to enter your organization's groupID:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>7a0f5884-ba26-4929-a681-66ca288a6992</groupId>

 <artifactId>PingIntelligence</artifactId>
 <version>1.2.0</version>
 <name>PingIntelligence</name>
 <description>ASE Sideband Policy for mule 4 with username info</
description>

Copyright ©2022

https://docs.mulesoft.com/api-manager/2.x/custom-policy-getting-started
https://docs.mulesoft.com/api-manager/2.x/custom-policy-getting-started

 | API Gateway integration | 651

3. From the command line in your project' folder, run the following command. This packages the
PingIntelligence policy and creates a deployable JAR file.

> mvn clean install

i Note: You require license to MuleSoft Enterprise Repository for compiling the policy.

4. Upload the PingIntelligence policy to Exchange by following the instructions under Deploying a Policy
Created Using the Maven Archetype.

The PingIntelligence policy is now available to apply to your APIs. For more information, see Apply
PingIntelligence policy on page 651.

Apply PingIntelligence policy

Complete the following steps to attach the PingIntelligence policy to your API:

i Note: If you are applying the PingIntelligence policy in Mulesoft 3.9 and there is an earlier version of
the policy already applied to your API, then remove the policy before applying PingIntelligence 4.3 policy.
To remove the policy, follow the steps explained in Remove existing PingIntelligence policy on page 655.

1. Log in to your Mulesoft Anypoint account.
2. Navigate to the API manager and click on the Version of the

API to which you want to attach the PingIntelligence policy.

Copyright ©2022

https://docs.mulesoft.com/api-manager/2.x/custom-policy-uploading-to-exchange
https://docs.mulesoft.com/api-manager/2.x/custom-policy-uploading-to-exchange

 | API Gateway integration | 652

3. On the API page, click on Policies as shown in the following illustration.

The Policies page supports applying the PingIntelligence policy to the API. Click on Apply New:

Copyright ©2022

 | API Gateway integration | 653

4. In the Select Policy pop-up window, select the PingIntelligence Policy and click on Configure

Policy.
5. In the Apply policy page, enter the following values:

▪ ASE Token that was generated as part of prerequisite.
▪ ASE primary and secondary host and port. The traffic is sent to the ASE secondary host only when

the primary ASE node is unreachable.
▪ Enable SSL for a secure HTTPS connection between Mulesoft and PingIntelligence ASE.
▪ Check the Allow self-signed certificate check-box to enable Mulesoft to accept a self-signed

certificate from ASE.
▪ Configure the Connection Timeout and Read Timeout. The behavior of the API gateway is

governed by Connection Timeout and Read Timeout, in the event of API Gateway not able to
connect to ASE or the response from ASE is delayed.

Timeout parameter Description

Connection Timeout It governs the time the API gateway waits to
establish a connection with ASE, following which
it sends the client request to the backend server.

Copyright ©2022

 | API Gateway integration | 654

Timeout parameter Description

Read Timeout It governs the time the API Gateway waits for
ASE's response before sending the request to the
backend server.

The default value is 5000 milliseconds or Five-seconds. It is a good practice to configure a small
value to limit the delay in case ASE is not reachable or unresponsive.

i Note:

If there are any changes to the ASE endpoints, repeat the process explained in step-five and redeploy
the configurtion.

Copyright ©2022

 | API Gateway integration | 655

6. Navigate to your API and click on version number as described in step-one. In
the API page, scroll down to the Deployment Configuration section and click on

Redeploy.

Extracting response metadata for APIs with Basic endpoint

If your API is configured with Basic endpoint on Mulesoft version 3.9.x, then add the following properties in
your Mule application.

▪ http.status
▪ http.reason
▪ content-type
▪ content-length

You can use set-property element to configure these properties in the Mule application. If required,
you can also set other response side headers to send more information to the PingIntelligence policy. The
following is a sample configuration of setting response side details. For more information on setting the
properties in a Mule application, see property transformer.

<set-property propertyName="http.status" value="200" doc:name="Property"/>
<set-property propertyName="http.reason" value="OK" doc:name="Property"/>
<set-property propertyName="content-type" value="application/json"
 doc:name="Property"/>
<set-property propertyName="content-length" value="21" doc:name="Property"/>
<set-property propertyName="set-cookie" value="PHPSESSIONID=CookieValue"
 doc:name="Property"/>

Remove existing PingIntelligence policy

Remove earlier versions of PingIntelligence policy applied on your APIs, before applying PingIntelligence
4.3 policy. Complete the following steps to remove an exising pokicy from your API:

1. Log in to your Mulesoft Anypoint account.

Copyright ©2022

https://docs.mulesoft.com/mule-runtime/3.9/property-transformer-reference

 | API Gateway integration | 656

2. Navigate to the API manager. On the API Administation page, click on
the Version of the API for which you want to remove the PingIntelligence

policy.
3. On the API page, click on Policies. Click and expand the PingIntelligence policy and from the

Actions list, select Remove.

Copyright ©2022

 | API Gateway integration | 657

4.

Click Remove to confirm the policy removal.

Once you remove the exiting policy from the API, follow the steps explained in Apply PingIntelligence
policy on page 651 and apply the new PingIntelligence 4.3 policy.

Next steps - Integration

After the policy deployment is complete, refer the following topics for next steps:

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS Admin Guides:

▪ ASE port information
▪ API naming guidelines
▪ Adding APIs to ASE in Sideband ASE. You can add individual APIs or you can configure a global API.

For more information, see API discovery and configuration on page 329.
▪ Connect ASE and ABS

After you have added your APIs in ASE, the API model needs to be trained. The training of API model is
completed in ABS. The following topics give a high level view, however it is a good practice to read the
entire ABS Admin Guide.

▪ Train your API model
▪ Generate and view the REST API reports using Postman.
▪ View PingIntelligence for APIs Dashboard.

API discovery
PingIntelligence API discovery is a process to discover, and report APIs from your API environment. The
discovered APIs are reported in PingIntelligence Dashboard. APIs are discovered when a global API JSON
is defined in the ASE. For more information, see API discovery and configuration on page 329 . You can
edit the discovered API's JSON definition in Dashboard before adding them to ASE. For more information
on editing and configuring API discovery, see Discovered APIs on page 496.

NGINX integration

NGINX sideband integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with NGINX.
PingIntelligence policy modules are installed in the NGINX and pass API metadata to PingIntelligence for
detailed API activity reporting and attack detection with optional client blocking.

Copyright ©2022

 | API Gateway integration | 658

Here is the traffic flow through NGINX and PingIntelligence for APIs components.

1. Client sends an incoming request to NGINX
2. NGINX makes an API call to send the request metadata to ASE
3. ASE checks the request against a registered set of APIs and looks for the origin IP, cookie, OAuth2

token or API key in PingIntelligence AI engine generated Blacklist. If all checks pass, ASE returns
a 200-OK response to the NGINX. If not, a different response code is sent to NGINX. The request
information is also logged by ASE and sent to the AI Engine for processing.

4. If NGINX receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, NGINX optionally blocks the client.

5. The response from the backend server is received by NGINX.
6. NGINX makes a second API call to pass the response information to ASE which sends the information

to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to NGINX.
8. NGINX sends the response received from the backend server to the client.

Prerequisites

Prerequisite is divided in three sections. Prerequisite for PingIntelligence applies to both RHEL 7.6 and
Ubuntu 16.04. Complete the prerequisite based on your operating system.

▪ Prerequisites for PingIntelligence
▪ Prerequisite for RHEL 7.6
▪ Prerequisite for Ubuntu 16.04

Copyright ©2022

 | API Gateway integration | 659

Prerequisite for PingIntelligence

The prerequisites are divided in the three sections:

This section assumes that you have installed and configured PingIntelligence software. For more
information on PingIntelligence installation, see PingIntelligence for APIs setup on page 44 or
PingIntelligence manual deployment on page 79

▪ Verify that ASE is in sideband mode: Log in to your ASE machine and check that ASE is in
sideband mode by running the following status command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For secure communication between NGINX and ASE, enable
sideband authentication by entering the following ASE command:

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for NGINX to authenticate with ASE. To generate the token in ASE, enter the
following command in the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use in Configure NGINX for PingIntelligence on
page 662

Prerequisites for RHEL 7.6

Complete the following prerequisites before deploying PingIntelligence policy on NGINX:

▪ NGINX version: The PingIntelligence policy modules are complied for NGINX 1.14.2. If you have a
different version of NGINX, contact Ping Identity support.

▪ RHEL version: RHEL 7.6. Verify your RHEL version by entering the following command on your
machine:

$ cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.6 (Maipo)

▪ OpenSSL version: OpenSSL 1.0.2k-fips on your RHEL 7.6 machine. You can the check the
OpenSSL version using the openssl version command.

$ openssl version
OpenSSL 1.0.2k-fips 26 Jan 2017

Copyright ©2022

 | API Gateway integration | 660

▪ Extract ASE certificate: Complete the following steps to extract the ASE certificate:

1. Make sure that ASE is running. If ASE is not running, run the following command on ASE command
line to start ASE:

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 4.0.2...
please see /opt/pingidentity/ase/logs/controller.log for more details

For more information on starting ASE, see Start and stop ASE on page 122
2. Run the following command:

openssl s_client -connect <ASE_IP>:<ASE_PORT> 2>/dev/null </dev/null |
 sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > test.ase.pi

This command extract the ASE certificate and appends in test.ase.pi file. Copy the certificate
file to the NGINX machine and configure the certificate path in nginx.conf file.

▪ Download dependencies for RHEL: Run the following command to download RHEL dependencies for
compiling NGINX:

yum install pcre-devel.x86_64 openssl-devel.x86_64 zlib-devel.x86_64
 wget gcc

i Important: The PingIntelligence modules for NGINX 1.14.2 are specifically compiled for RHEL 7.6
and OpenSSL 1.0.2k-fips. If you do not have these specific versions of RHEL and OpenSSL, contact
Ping Identity support.

Prerequisites for Ubuntu 16.0.4 LTS

Complete the following prerequisites before deploying PingIntelligence policy on NGINX:

▪ NGINX version: The PingIntelligence policy modules are complied for NGINX 1.14.2. If you have a
different version of NGINX, contact Ping Identity support.

▪ Ubuntu version: Ubuntu 16.04 LTS. Run the following command to check your Ubuntu version:

$ cat /etc/os-release
NAME="Ubuntu"
VERSION="16.04.6 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.6 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

▪ OpenSSL version: OpenSSL 1.0.2g. You can the check the OpenSSL version using the openssl
version command:

$ openssl version
OpenSSL 1.0.2g 26 Jan 2017

Copyright ©2022

 | API Gateway integration | 661

▪ Extract ASE certificate: Complete the following steps to extract the ASE certificate:

1. Make sure that ASE is running. If ASE is not running, run the following command on ASE command
line to start ASE:

/opt/pingidentity/ase/bin/start.sh
Starting API Security Enforcer 4.0.2...
please see /opt/pingidentity/ase/logs/controller.log for more details

For more information on starting ASE, see Start and stop ASE on page 122
2. Run the following command:

openssl s_client -connect <ASE_IP>:<ASE_PORT> 2>/dev/null </dev/null |
 sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > test.ase.pi

This command extract the ASE certificate and appends in test.ase.pi file. Copy the certificate
file to the NGINX machine and configure the certificate path in nginx.conf file.

▪ Download dependencies for Ubuntu: Run the following command to download Ubuntu dependencies
for compiling NGINX:

apt-get -yq install make g++ gcc libpcre3 libpcre3-dev apt-utils zlib1g
 zlib1g-dev curl openssl libssl-dev

i Important: The PingIntelligence modules are specifically compiled for Ubuntu 16.0.4 and OpenSSL
1.0.2g. If you do not have these specific versions of Ubuntu and OpenSSL, contact Ping Identity support.

NGINX for RHEL 7.6

To compile NGINX Community Edition 1.14.2 for PingIntelligence for APIs, complete the following steps:

1. Download the NGINX community version:

wget https://nginx.org/download/nginx-1.14.2.tar.gz

2. Untar the NGINX file:

tar -xvzf nginx-1.14.2.tar.gz

3. Change directory to nginx-1.14.2

cd nginx-1.14.2

4. Compile and install NGINX by running the following command: Note that these options for compiling
NGINX are in addition to your environment specific options.

./configure --with-compat --with-http_ssl_module

--with-compat: This option enables NGINX to load dynamic modules.

--with_http_ssl_module: This flag is used configure SSL support in NGINX.
5. Run the make command to compile NGINX:

make

6. Run the make install command to install NGINX:

sudo make install

Copyright ©2022

 | API Gateway integration | 662

7. Verify the compilation by entering the following command:

sudo /usr/local/nginx/sbin/nginx -V

The output of the above command should display --with-compat and --with_http_ssl_module
flags.

Configure NGINX for PingIntelligence

Configure the nginx.conf setup NGINX and PingIntelligence sideband integration. Following is a
summary of steps to configure NGINX for PingIntelligence:

1. Create modules directory inside NGINX
2. Download PingIntelligence modules
3. Copy PingIntelligence modules in the modules directory
4. Edit nginx.conf for PingIntelligence

Create modules directory and download PingIntelligence modules

1. Create a modules directory in NGINX:

mkdir /usr/local/nginx/modules

2. Download the NGINX - PingIntelligence modules from the download site
3. Untar the downloaded file.

tar -xvzf rhel_modules_1.14.2.tgz
modules/
modules/nginx-oss-list.txt
modules/ngx_ase_integration_module.so
modules/ngx_http_ase_integration_response_module.so
modules/ngx_http_ase_integration_request_module.so

The three PingIntelligence modules are:

a. ngx_ase_integration_module.so
b. ngx_http_ase_integration_request_module.so
c. ngx_http_ase_integration_response_module.so

4. Copy the three PingIntelligence modules files for RHEL to the modules directory of NGINX.

cp ngx_ase_integration_module.so /usr/local/nginx/modules
cp ngx_http_ase_integration_request_module.so /usr/local/nginx/modules
cp ngx_http_ase_integration_response_module.so /usr/local/nginx/modules

Configure nginx.conf:

Complete the following steps to configure nginx.conf for PingIntelligence. Make sure that the
PingIntelligence module and other configurations are added at the correct place in nginx.conf as shown
in the sample file at the end of the section.

1. Load PingIntelligence modules: Edit the nginx.conf file to load the PingIntelligence modules.
Following is a snippet of nginx.conf file showing the loaded PingIntelligence modules:

worker_processes 1;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 663

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;

events {
 worker_connections 1024;
}

http {
 keepalive_timeout 65;
 upstream pi.ase {
 server IP:PORT max_fails=1 max_conns=1024 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=1024 fail_timeout=10 backup;
 keepalive 32;
 }
truncated nginx.conf

IP:PORT is the IP address of primary and secondary ASE.
2. Add primary and secondary ASE hosts in nginx.conf in the upstream section. Following is a snippet

of nginx.conf file with an ASE primary and secondary host configuration:

http {
 keepalive_timeout 65;
 upstream pi.ase {
 server 192.168.11.12:443 max_fails=3 max_conns=1024 fail_timeout=10;
 server 192.168.11.13:443 max_fails=3 max_conns=1024 fail_timeout=10 backup
 keepalive 32;
 }

3. Configure SSL certificate:

Configure a SSL certificate location and ASE sideband authentication token in nginx.conf. ASE
certificate was extracted from ASE in Prerequisites on page 658. Copy the certificate to /usr/
local/nginx/ssl/test.ase.pi on the NGINX machine and configure the certificate path in
nginx.conf file.

The sideband authentication token was created as part of the Prerequisites in the PingIntelligence
section. Following is a snippet the showing certificate location and sideband authentication token:

#Certificiate location of ASE
 set $certificate /usr/local/nginx/ssl/test.ase.pi;
 #ASE Token for sideband authentication
 set $ase_token <YOUR ASE SIDEBAND TOKEN>;

i Note: You can also use your own SSL certificate by providing the path to the certificate in set
$certificate. Make sure that ASE has the updated certificate.

4. Configure ASE request and response: Configure ASE request and response API endpoints in
nginx.conf. Following snippet of nginx.conf shows ASE request and response:

 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;

Copyright ©2022

 | API Gateway integration | 664

 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host pi.ase;
 ase_integration_ssl_trusted_certificate /usr/local/nginx/ssl/
test.ase.pi;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name on;
 ase_integration_ssl_name test.ase.pi;
 ase_integration_next_upstream error timeout non_idempotent;

 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host pi.ase;
 ase_integration_ssl_trusted_certificate /usr/local/nginx/ssl/
test.ase.pi;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name on;
 ase_integration_ssl_name test.ase.pi;
 ase_integration_next_upstream error timeout non_idempotent;

i Note: ase_integration_ssl_verify is optional for non-SSL ASE connection.

5. Apply PingIntelligence policy: Apply PingIntelligence modules for APIs by configuring
location in nginx.conf. ase_integration_request should be the first and a
ase_integration_response should be the last.

location / {
 ase_integration_request;
 proxy_pass http://localhost:8080/;
 ase_integration_response;
}

If you have more than more than one API, configure a location for each API as shown above.
6. Verify: Verify that nginx.conf is syntactically correct by running the following command:

sudo /usr/local/nginx/sbin/nginx -t
nginx: the configuration file /usr/local/nginx/conf/nginx.conf syntax is
 ok
nginx: configuration file /usr/local/nginx/conf/nginx.conf test is
 successful

7. Restart: Restart NGINX by entering the following command:

sudo /usr/local/nginx/sbin/nginx -s stop
sudo /usr/local/nginx/sbin/nginx

8. Run the following command to verify if --with-compat and --with-http_ssl_module is in the list
of flags under configured arguments.

sudo /usr/local/nginx/sbin/nginx -V
nginx version: nginx/1.14.2
built by gcc 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.11)

Copyright ©2022

 | API Gateway integration | 665

built with OpenSSL 1.0.2g 1 Mar 2016
TLS SNI support enabled
configure arguments: --with-compat --with-http_ssl_module

9. Verify that NGINX has restarted by entering the following command:

netstat -tulpn | grep 4443

Following is a sample nginx.conf for reference:

worker_processes 1;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;

events {
 worker_connections 1024;
}

http {
 keepalive_timeout 65;
 upstream pi.ase {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

server {
 # remove "ssl" from the below line for a non-SSL frontend
 listen 4443 ssl bind;
 server_name localhost;

 # Comment out the next 5-lines for a non-SSL frontend
 ssl_certificate /usr/local/nginx/ssl/cert.pem;
 ssl_certificate_key /usr/local/nginx/ssl/key.pem;
 ssl_password_file /usr/local/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;

 #root /usr/share/nginx/html;
 #charset koi8-r;
 #access_log /var/log/nginx/host.access.log main;
 resolver 8.8.8.8 ipv6=off;

 #The following location configuration is to configure your application.
 A corresponding API JSON should be present in ASE.
 location / {
 ase_integration_request;
 proxy_pass http://localhost:8080/;
 ase_integration_response;
 }

Copyright ©2022

 | API Gateway integration | 666

 #The following configuration is a Ping Intelligence configuration and do
 not edit
 set $correlationid $pid-$request_id-$server_addr-$remote_addr-
$remote_port-$request_length-$connection;

ASE token must be configured
ASE certificate must be copied under /usr/local/nginx/ssl/ and update the
 set $certificate to the # certificate file path
#Certificate location of ASE
 set $certificate /usr/local/nginx/ssl/test.ase.pi;
 #ASE Token for sideband authentication
 set $ase_token <YOUR ASE SIDEBAND TOKEN HERE>;
 #Host header which should be send to ASE
 set $ase_host pi.ase;
 #SNI value to use for ASE
 set $ase_ssl_host pi.ase;
 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
}

NGINX for Ubuntu 16.04

To compile NGINX Community Edition 1.14.2 for PingIntelligence for APIs, complete the following steps:

1. Download the NGINX community version:

wget https://nginx.org/download/nginx-1.14.2.tar.gz

2. Untar the NGINX file:

tar -xvzf nginx-1.14.2.tar.gz

Copyright ©2022

 | API Gateway integration | 667

3. Change directory to nginx-1.14.2

cd nginx-1.14.2

4. Compile and install NGINX by running the following command: Note that these options for compiling
NGINX are in addition to your environment specific options.

./configure --with-compat --with-http_ssl_module

--with-compat: This option enables NGINX to load dynamic modules.

--with_http_ssl_module: This flag is used configure SSL support in NGINX.
5. Run the make command to compile NGINX:

make

6. Run the make install command to install NGINX:

sudo make install

7. Verify the compilation by entering the following command:

sudo /usr/local/nginx/sbin/nginx -V

The output of the above command should display --with-compat and --with_http_ssl_module
flags.

Configure NGINX for PingIntelligence

Configure the nginx.conf setup NGINX and PingIntelligence sideband integration. Following is a
summary of steps to configure NGINX for PingIntelligence:

1. Create modules directory inside NGINX
2. Download PingIntelligence modules
3. Copy PingIntelligence modules in the modules directory
4. Edit nginx.conf for PingIntelligence

Create modules directory and download PingIntelligence modules

1. Create a modules directory in NGINX:

mkdir /usr/local/nginx/modules

2. Download the NGINX - PingIntelligence modules from the download site
3. Untar the downloaded file.

tar -xvzf ubuntu_modules_1.14.2.tgz
modules/
modules/nginx-oss-list.txt
modules/ngx_ase_integration_module.so
modules/ngx_http_ase_integration_response_module.so
modules/ngx_http_ase_integration_request_module.so

The three PingIntelligence modules are:

a. ngx_ase_integration_module.so
b. ngx_http_ase_integration_request_module.so
c. ngx_http_ase_integration_response_module.so

4. Copy the three PingIntelligence modules for Ubuntu to the modules directory of NGINX.

cp ngx_ase_integration_module.so /usr/local/nginx/modules

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 668

cp ngx_http_ase_integration_request_module.so /usr/local/nginx/modules
cp ngx_http_ase_integration_response_module.so /usr/local/nginx/modules

Configure nginx.conf:

Complete the following steps to configure nginx.conf for PingIntelligence. Make sure that the
PingIntelligence module and other configurations are added at the correct place in nginx.conf as shown
in the sample file at the end of the section.

1. Load PingIntelligence modules: Edit the nginx.conf file to load the PingIntelligence modules.
Following is a snippet of nginx.conf file showing the loaded PingIntelligence modules:

worker_processes 1;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;

events {
 worker_connections 1024;
}

http {
 keepalive_timeout 65;
 upstream pi.ase {
 server IP:PORT max_fails=1 max_conns=1024 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=1024 fail_timeout=10 backup;
 keepalive 32;
 }
truncated nginx.conf

IP:PORT is the IP address of primary and secondary ASE.
2. Add primary and secondary ASE hosts in nginx.conf in the upstream section. Following is a snippet

of nginx.conf file with an ASE primary and secondary host configuration:

http {
 keepalive_timeout 65;
 upstream pi.ase {
 server 192.168.11.12:443 max_fails=3 max_conns=1024 fail_timeout=10;
 server 192.168.11.13:443 max_fails=3 max_conns=1024 fail_timeout=10 backup;
 keepalive 32;
 }

3. Configure SSL certificate:

Configure a SSL certificate location and ASE sideband authentication token in nginx.conf. ASE
certificate was extracted from ASE in Prerequisites on page 658. Copy the certificate to /usr/

Copyright ©2022

 | API Gateway integration | 669

local/nginx/ssl/test.ase.pi on the NGINX machine and configure the certificate path in
nginx.conf file.

The sideband authentication token was created as part of the Prerequisites in the PingIntelligence
section. Following is a snippet the showing certificate location and sideband authentication token:

#Certificiate location of ASE
 set $certificate /usr/local/nginx/ssl/test.ase.pi;
 #ASE Token for sideband authentication
 set $ase_token <YOUR ASE SIDEBAND TOKEN>;

i Note: You can also use your own SSL certificate by providing the path to the certificate in set
$certificate. Make sure that ASE has the updated certificate.

4. Configure ASE request and response: Configure ASE request and response API endpoints in
nginx.conf. Following snippet of nginx.conf shows ASE request and response:

 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host pi.ase;
 ase_integration_ssl_trusted_certificate /usr/local/nginx/ssl/
test.ase.pi;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name on;
 ase_integration_ssl_name test.ase.pi;
 ase_integration_next_upstream error timeout non_idempotent;

 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host pi.ase;
 ase_integration_ssl_trusted_certificate /usr/local/nginx/ssl/
test.ase.pi;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name on;
 ase_integration_ssl_name test.ase.pi;
 ase_integration_next_upstream error timeout non_idempotent;

i Note: ase_integration_ssl_verify is optional for non-SSL ASE connection.

Copyright ©2022

 | API Gateway integration | 670

5. Apply PingIntelligence policy: Apply PingIntelligence modules for APIs by configuring
location in nginx.conf. ase_integration_request should be the first and
aase_integration_response should be the last.

location /shop {
 ase_integration_request;
 proxy_pass http://localhost:8000/;
 ase_integration_response;
}

If you have more than more than one API, configure a location for each API as shown above.
6. Verify: Verify that nginx.conf is syntactically correct by running the following command:

sudo /usr/local/nginx/sbin/nginx -t
nginx: the configuration file /usr/local/nginx/conf/nginx.conf syntax is
 ok
nginx: configuration file /usr/local/nginx/conf/nginx.conf test is
 successful

7. Restart: Restart NGINX by entering the following command:

sudo /usr/local/nginx/sbin/nginx -s stop
sudo /usr/local/nginx/sbin/nginx

8. Run the following command to verify if --with-compat and --with-http_ssl_module is in the list
of flags under configured arguments.

sudo /usr/local/nginx/sbin/nginx -V
nginx version: nginx/1.14.2
built by gcc 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.11)
built with OpenSSL 1.0.2g 1 Mar 2016
TLS SNI support enabled
configure arguments: --with-compat --with-http_ssl_module

9. Verify that NGINX has restarted by entering the following command:

netstat -tulpn | grep 4443

Following is a sample nginx.conf for reference:

worker_processes 1;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;

events {
 worker_connections 1024;
}

http {
 keepalive_timeout 65;

Copyright ©2022

 | API Gateway integration | 671

 upstream pi.ase {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

server {
 # remove "ssl" from the below line for a non-SSL frontend
 listen 4443 ssl bind;
 server_name localhost;

 # Comment out the next 5-lines for a non-SSL frontend
 ssl_certificate /usr/local/nginx/ssl/cert.pem;
 ssl_certificate_key /usr/local/nginx/ssl/key.pem;
 ssl_password_file /usr/local/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;

 #root /usr/share/nginx/html;
 #charset koi8-r;
 #access_log /var/log/nginx/host.access.log main;
 resolver 8.8.8.8 ipv6=off;

 #The following location configuration is to configure your application.
 A corresponding API JSON should be present in ASE.
 location / {
 ase_integration_request;
 proxy_pass http://localhost:8080/;
 ase_integration_response;
 }
 #The following configuration is a Ping Intelligence configuration and do
 not edit
 set $correlationid $pid-$request_id-$server_addr-$remote_addr-
$remote_port-$request_length-$connection;

ASE token must be configured
ASE certificate must be copied under /usr/local/nginx/ssl/ and update the
 set $certificate to the # certificate file path
#Certificate location of ASE
 set $certificate /usr/local/nginx/ssl/test.ase.pi;
 #ASE Token for sideband authentication
 set $ase_token <YOUR ASE SIDEBAND TOKEN HERE>;
 #Host header which should be send to ASE
 set $ase_host pi.ase;
 #SNI value to use for ASE
 set $ase_ssl_host pi.ase;
 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;

Copyright ©2022

 | API Gateway integration | 672

 }
 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://pi.ase;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
}

Next steps - integration

After the policy deployment is complete, refer the following topics for next steps:

It is recommended to read the following topics (part of the admin guides) apart from reading the ASE and
ABS Admin Guides:

▪ Customizing ASE ports on page 120
▪ API naming guidelines on page 159
▪ Adding APIs to ASE in Defining an API – API JSON configuration file on page 159. You can add

individual APIs or you can configure a global API. For more information on global API, see API
discovery and configuration on page 329.

▪ ABS AI-based security on page 178

After you have added your APIs in ASE, the API model needs to be trained. The training of API model is
completed in ABS. The following topics give a high level view, however it is a good practice to read the
entire ABS Admin Guide.

▪ Training the ABS model on page 320
▪ API reports using Postman on page 394 .
▪ Access PingIntelligence Dashboard on page 17 .

API discovery

PingIntelligence API discovery is a process to discover, and report APIs from your API environment. The
discovered APIs are reported in PingIntelligence Dashboard. APIs are discovered when a global API JSON
is defined in the ASE. For more information, see API discovery and configuration on page 329 . You can
edit the discovered API's JSON definition in Dashboard before adding them to ASE. For more information
on editing and configuring API discovery, see Discovered APIs on page 496.

NGINX Plus integration

NGINX Plus sideband integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with NGINX
Plus. A PingIntelligence policy is installed in NGINX Plus and passes API metadata to PingIntelligence for
detailed API activity reporting and attack detection with optional client blocking. PingIntelligence software
adds support for reporting and attack detection based on usernames captured from token attributes.

Traffic flow for NGINX Plus integration without user information

Copyright ©2022

https://support.pingidentity.com/s/document-item?bundleId=pingintelligence-40&topicId=xkz1564008964170.html
https://support.pingidentity.com/s/document-item?bundleId=pingintelligence-40&topicId=pme1564008968350.html

 | API Gateway integration | 673

Here is the traffic flow through NGINX and PingIntelligence for APIs components.

1. Client sends an incoming request to NGINX
2. NGINX makes an API call to send the request metadata to ASE
3. ASE checks the request against a registered set of APIs and looks for the origin IP, cookie, OAuth2

token or API key in PingIntelligence AI engine generated Blacklist. If all checks pass, ASE returns
a 200-OK response to the NGINX. If not, a different response code is sent to NGINX. The request
information is also logged by ASE and sent to the AI Engine for processing.

4. If NGINX receives a 200-OK response from ASE, then it forwards the request to the backend server.
Otherwise, NGINX optionally blocks the client.

5. The response from the backend server is received by NGINX.
6. NGINX makes a second API call to pass the response information to ASE which sends the information

to the AI engine for processing.
7. ASE receives the response information and sends a 200-OK to NGINX.
8. NGINX sends the response received from the backend server to the client.

Traffic flow for NGINX Plus integration with user information

Here is the traffic flow through the NGINX Plus and PingIntelligence for APIs components. PingFederate is
used as the OAuth server to gather the user information:

Copyright ©2022

 | API Gateway integration | 674

1. Client requests and receives an access token from PingFederate.
2. Client sends a request with the access token received from PingFederate.
3. NGINX Plus verifies the authenticity of the access token with PingFederate.
4. If the request is invalid, ASE sends a 403 error and NGINX Plus drops the connection request.
5. If the token is valid, the PingIntelligence policy running in NGINX Plus collects API metadata and token

attributes. In case of an invalid token, the request is allowed, however, without user information.
6. NGINX Plus makes an API call to send the request information to ASE. ASE checks the request against

a registered set of APIs and checks the origin IP, cookie or OAuth2 token against the AI generated
Blacklist. If all checks pass, ASE returns a 200-OK response to the NGINX Plus. If not, a different
response code is sent to NGINX Plus. The request information is also logged by ASE and sent to the AI
Engine for processing.

7. If NGINX Plus receives a 200-OK response from ASE, then it forwards the request to the backend
server. Otherwise, the Gateway optionally blocks the client.

8. The response from the backend server is received by NGINX Plus. NGINX Plus sends the response
received from the backend server to the client.

9. NGINX Plus makes a second API call to pass the response information to ASE which sends the
information to the AI engine for processing. ASE receives the response information and sends a 200-
OK to NGINX Plus.

10.NGINX Plus sends the response to the client.

Prerequisites

Prerequisite is divided in three sections. Prerequisite for PingIntelligence applies to both RHEL 7.6 and
Ubuntu 16.0.4. Complete the prerequisite based on your operating system. The prerequisite section is
divided in the following three sections:

▪ Prerequisites for PingIntelligence on page 675
▪ Prerequisites for RHEL 7.6 on page 675
▪ Prerequisites for Ubuntu 16.0.4 on page 676

Copyright ©2022

 | API Gateway integration | 675

▪ Prerequisites for Debian 9 on page 677

Prerequisites for PingIntelligence

This section assumes that you have installed and configured PingIntelligence software. For more
information on PingIntelligence installation, see PingIntelligence for APIs setup on page 44 or
PingIntelligence manual deployment on page 79

▪ Verify that ASE is in sideband mode: Log in to your ASE machine and check that ASE is in
sideband mode by running the following status command:

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : enabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.60 MB, free 102.40
 MB

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication: For secure communication between NGINX and ASE, enable
sideband authentication by entering the following ASE command:

./bin/cli.sh enable_sideband_authentication -u admin –p admin

▪ Generate sideband authentication token

A token is required for NGINX to authenticate with ASE. To generate the token in ASE, enter the
following command in the ASE command line:

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use in Configure NGINX Plus for RHEL 7.6 or
Configure NGINX Plus for Ubuntu 16.0.4

Prerequisites for RHEL 7.6

Complete the following prerequisites before deploying PingIntelligence policy on NGINX Plus:

▪ NGINX Plus version: The PingIntelligence policy modules are complied for NGINX Plus R16. If you
have a different version of NGINX Plus, contact Ping Identity support.

▪ RHEL version: RHEL 7.6. Verify your RHEL version by entering the following command on your
machine:

$ cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.6 (Maipo)

▪ OpenSSL version: OpenSSL 1.0.2k-fips on your RHEL 7.6 machine. You can the check the
OpenSSL version using the openssl version command.

$ openssl version

Copyright ©2022

 | API Gateway integration | 676

OpenSSL 1.0.2k-fips 26 Jan 2017

i Important: The PingIntelligence modules for NGINX Plus have been specifically compiled for
RHEL 7.6 and OpenSSL 1.0.2k-fips. If you have different versions of these component, contact
Ping Identity support.

▪ Configure NGINX Plus certificates: Complete the following steps to configure certificate for NGINX
Plus:

1. Create a directory for SSL certificates:

sudo mkdir -p /etc/ssl/nginx

2. Login to NGINX customer portal and download nginx-repo.key and nginx-repo.crt to /etc/
ss/nginx

For more information, see Installing NGINX Plus
▪ Download dependencies for RHEL: Run the following command to download dependencies for

RHEL:

yum install wget ca-certificates

Prerequisites for Ubuntu 16.0.4

Complete the following prerequisites before deploying PingIntelligence policy on NGINX Plus:

▪ NGINX version: The PingIntelligence policy modules are complied for NGINX Plus R16. If you have a
different version of NGINX Plus, contact Ping Identity support.

▪ Ubuntu version: Ubuntu 16.04 LTS. Run the following command to check your Ubuntu version:

$ cat /etc/os-release
NAME="Ubuntu"
VERSION="16.04 LTS (Xenial Xerus)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 16.04.6 LTS"
VERSION_ID="16.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
VERSION_CODENAME=xenial
UBUNTU_CODENAME=xenial

▪ OpenSSL version: OpenSSL 1.0.2g. You can the check the OpenSSL version using the openssl
version command:

$ openssl version
OpenSSL 1.0.2g 26 Jan 2017

▪ Download dependencies for Ubuntu: Run the following command to download dependencies for
Ubuntu:

sudo apt-get install apt-transport-https lsb-release ca-certificates

Copyright ©2022

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-plus/

 | API Gateway integration | 677

▪ Configure NGINX Plus certificates: Complete the following steps to configure certificate for NGINX
Plus:

1. Create a directory for SSL certificates:

sudo mkdir -p /etc/ssl/nginx

2. Login to NGINX customer portal and download nginx-repo.key and nginx-repo.crt to /etc/
ssl/nginx

For more information, see Installing NGINX Plus

i Important: The PingIntelligence modules are specifically compiled for Ubuntu 16.0.4 and OpenSSL
1.0.2g. If you do not have these specific versions of Ubuntu and OpenSSL, contact Ping Identity support.

Prerequisites for Debian 9

Complete the following prerequisites before deploying PingIntelligence policy on NGINX Plus:

▪ NGINX version: The PingIntelligence policy modules are complied for NGINX Plus R19. If you have a
different version of NGINX Plus, contact Ping Identity support.

▪ Debian version:Debian 9 (stretch). Run the following command to check your Debian version:

$ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 9 (stretch)"

NAME="Debian GNU/Linux"
VERSION_ID="9"
VERSION="9 (stretch)"
VERSION_CODENAME=stretch
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

▪ OpenSSL version: OpenSSL 1.1.0l. You can the check the OpenSSL version using the openssl
version command:

$ openssl version
OpenSSL 1.1.0l 10 Sep 2019

▪ Configure NGINX Plus certificates: Complete the following steps to configure certificate for NGINX
Plus:

1. Create a directory for SSL certificates:

sudo mkdir -p /etc/ssl/nginx

2. Login to NGINX customer portal and download nginx-repo.key and nginx-repo.crt to /etc/
ssl/nginx

For more information, see Installing NGINX Plus

NGINX Plus for RHEL 7.6

Complete the following steps to install NGINX Plus:

1. Download NGINX Plus R16 repository:

sudo wget -P /etc/yum.repos.d https://cs.nginx.com/static/files/nginx-
plus-7.4.repo

Copyright ©2022

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-plus/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-plus/

 | API Gateway integration | 678

2. Complete the following steps to install Lua modules:

a. Check whether the Lua version 16+0.10.13-1.el7_4.ngx is available in the list

sudo yum list nginx-plus-module-lua --showduplicates

b. Install Lua module:

sudo yum install nginx-plus-module-lua-16+0.10.13-1.el7_4.ngx

3. Install NGINX Plus:

a. Check whether NGINX Plus version nginx-plus-16-1.el7_4.ngx is available in the list

sudo yum list nginx-plus --showduplicates

b. Install NGINX Plus:

sudo yum install nginx-plus-16-1.el7_4.ngx

Configure NGINX Plus for PingIntelligence

Configure the nginx.conf to setup NGINX Plus and PingIntelligence sideband integration. Following is a
summary of steps to configure NGINX Plus for PingIntelligence:

1. Create modules directory inside NGINX
2. Download PingIntelligence modules
3. Copy PingIntelligence modules in the modules directory
4. Edit nginx.conf for PingIntelligence

Create modules directory and download PingIntelligence modules

1. Create a modules directory in NGINX Plus:

mkdir /etc/nginx/modules

2. Download the NGINX Plus - PingIntelligence modules from the download site
3. Untar the downloaded file.

tar -xvzf pi-api-nginx-plus-policy-4.3.tar.gz

The three PingIntelligence modules are:

▪ ngx_ase_integration_module.so
▪ ngx_http_ase_integration_request_module.so
▪ ngx_http_ase_integration_response_module.so

The pi-pf.conf file has the OAuth policy details.
4. Copy the three PingIntelligence modules files for RHEL to the modules directory of NGINX Plus and

pi-pf.conf file to /usr/local/nginx/conf/ directory.

cp ngx_ase_integration_module.so /etc/nginx/modules
cp ngx_http_ase_integration_request_module.so /etc/nginx/modules
cp ngx_http_ase_integration_response_module.so /etc/nginx/modules
cp pi-pf.conf /usr/local/nginx/conf/

5. Change to root user:

sudo su

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 679

6. Export client credentials as environment variables:

export PF_ID=<ID>
export PF_SECRET=<SECRET>

Here PF_ID and PF_SECRET are PingFederate client ID and secret.

Configure nginx.conf file

Complete the following steps to configure nginx.conf for PingIntelligence. Make sure that the
PingIntelligence module and other configurations are added at the correct place in nginx.conf as shown
in the sample file at the end of the section.

1. Load PingIntelligence modules: Edit the nginx.conf file to load the PingIntelligence modules.
Following is a snippet of nginx.conf file showing the loaded PingIntelligence modules:

worker_processes 4;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;
env PF_ID;
env PF_SECRET;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;
load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;

events {
 worker_connections 1024;
}
truncated nginx.conf file

2. Configure ASE primary and secondary node: Configure ASE primary and secondary node IP
address by replacing IP:PORT in the nginx.conf file snippet show below:

http {

 keepalive_timeout 65;
 upstream ase.pi {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 #keepalive_timeout 3600s; # NOT allowed < 1.15.3
 }

truncated nginx.conf file

3. Configure introspect server IP address: Configure introspect server IP address by replacing
IP:PORT in the nginx.conf file snippet show below:

upstream introspect_server {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

Copyright ©2022

 | API Gateway integration | 680

truncated nginx.conf file

4. Configure username and client ID key: Configure the username and client ID keys in nginx.conf.
These are the keys for username and client ID that you have configured in PingFederate.

set $oauth_username_key Username;
set $oauth_client_id_key ClientID;

truncated nginx.conf file

5. Configure token parameter name: Configure the token parameter name after $arg_ and in ase/
request:

Set the token parameter name below after $arg_ and inside /ase/request.
 set $oauth_key_param $arg_access_token;
 set $oauth_token_param $arg_access_token;

 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }

truncated nginx.conf file

6. Configure introspection URL: Configure the URL of the introspection server:

Set introspection URL
 set $oauth_url https://introspect_server/as/introspect.oauth2;

truncated nginx.conf file

7. Configure ASE Sideband token: The sideband authentication token was created as part of
thePrerequisites on page 674 in the PingIntelligence section. Following is a snippet showing sideband
authentication token:

 #ASE Token for sideband authentication
 set $ase_token <ASE_TOKEN>;

8. Configure ASE request and response: Configure ASE request and response API endpoints in
nginx.conf. Following snippet of nginx.conf shows ASE request and response:

 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";

Copyright ©2022

 | API Gateway integration | 681

 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }

truncated nginx.conf file

9. Apply PingIntelligence policy: You can apply PingIntelligence policy at the global level, that is, for all
the APIs in your environment or for an individual API.

i Note: If the authorization header in the request has multiple tokens, the PingIntelligence policy
extracts only the first valid bearer token from the authorization header.

▪ Apply PingIntelligence policy globally: To apply PingIntelligence policy globally, add
ase_integration_request and ase_integration_response in the serversection of
nginx.conf as shown below:

server {
 listen 4443 ssl bind;
 server_name localhost;
 ssl_certificate /usr/local/nginx/ssl/cert.pem;
 ssl_certificate_key /usr/local/nginx/ssl/key.pem;
 ssl_password_file /usr/local/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 resolver 8.8.8.8 ipv6=off;
 ase_integration_request;
 ase_integration_response;

 # Set OAuth Client details

Copyright ©2022

 | API Gateway integration | 682

truncated nginx.conf file

▪ Apply PingIntelligence policy for a specific API: Apply PingIntelligence modules for APIs by
configuring location in nginx.conf. ase_integration_request should be the first and a
ase_integration_response should be the last.

i Note: Comment-out the ase_integration_request and ase_integration_response
that was configured to apply PingIntelligence policy globally.

location / {
 include /usr/local/nginx/conf/pi-pf.conf;
 ase_integration_request;
 proxy_pass http://localhost:8080/;
 ase_integration_response;
}

truncated nginx.conf file

10.Verify syntactical correctness of nginx.conf: To verify the syntactical correctness of nginx.conf, run
the following command:

/usr/local/nginx/sbin/nginx -t
nginx: the configuration file /usr/local/nginx/conf/nginx.conf syntax is
 ok
nginx: configuration file /usr/local/nginx/conf/nginx.conf test is
 successful

Final configuration steps: Complete the following steps to configure PingIntelligence policy for NGINX
Plus:

1. Restart NGINX by entering the following command:

/usr/local/nginx/sbin/nginx -s stop
/usr/local/nginx/sbin/nginx

2. Run the following command to verify if --with-compat and --with-http_ssl_module is in the list
of flags under configured arguments.

sudo /usr/local/nginx/sbin/nginx -V
nginx version: nginx/1.15.2 (nginx-plus-r16)
built by gcc 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.9)
built with OpenSSL 1.0.2g 1 Mar 2016
TLS SNI support enabled
configure arguments: --with-compat --with-http_ssl_module

3. Verify that NGINX has restarted by entering the following command:

netstat -tulpn | grep 4443

Following is a sample nginx.conf file:

worker_processes 4;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;
env PF_ID;
env PF_SECRET;

Copyright ©2022

 | API Gateway integration | 683

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;
load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;

events {
 worker_connections 1024;
}

http {

 keepalive_timeout 65;
 upstream test.ase.pi {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
keepalive_timeout 3600s; # NOT allowed < 1.15.3
 }

 upstream introspect_server {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

 lua_shared_dict cache_dict 128m;

server {
 listen 4443 ssl bind;
 server_name localhost;
 ssl_certificate /usr/local/nginx/ssl/cert.pem;
 ssl_certificate_key /usr/local/nginx/ssl/key.pem;
 ssl_password_file /usr/local/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 resolver 8.8.8.8 ipv6=off;
 ase_integration_request;
 ase_integration_response;

 # Set OAuth Client details

 # Set env variable PF_ID &PF_SECRET
 set_by_lua $client_id 'return os.getenv("PF_ID")';
 set_by_lua $client_secret 'return os.getenv("PF_SECRET")';

 # Uncomment next 2 lines to set client credentials here.
 # set $client_id nginx_client;
 # set $client_secret nginx_secret;

 set $oauth_username_key Username;
 set $oauth_client_id_key ClientID;

 # Set the token parameter name below after $arg_ and inside /ase/
request.
 set $oauth_key_param $arg_access_token;
 set $oauth_token_param $arg_access_token;
 # Set cache lifetime, default is 120s.
 set $oauth_cache_timeout 120;

 # Set introspection URL
 set $oauth_url https://introspect_server/as/introspect.oauth2;

Copyright ©2022

 | API Gateway integration | 684

 location /introspect {
 internal;
 proxy_method POST;
 if ($arg_auth_token) {
 set $auth_token $arg_auth_token;
 }
 if ($http_authorization ~* .*?(bearer)(\s+)([-a-zA-Z0-9._~+/]+)(,|
\s|$)) {
 set $auth_token $3;
 }
 proxy_set_header Content-Type "application/x-www-form-urlencoded";
 proxy_set_body "client_id=${client_id}&client_secret=
${client_secret}&token=${auth_token}";
 proxy_pass_request_body off;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 proxy_pass $oauth_url;
 }

 location /shop {
 include /usr/local/nginx/conf/pi-pf.conf;
 proxy_pass http://18.209.173.37:4100/shop;

 }
 #DO NOT EDIT BELOW VARIABLE
 set $correlationid $pid-$request_id-$server_addr-$remote_addr-
$remote_port-$request_length-$connection;
 #Certificate location of ASE
 set $certificate /usr/local/nginx/ssl/test.ase.pi;
 #ASE Token for sideband authentication
 set $ase_token <ASE_TOKEN>;
 #Host header which should be send to ASE
 set $ase_host test.ase.pi;
 #SNI value to use for ASE
 set $ase_ssl_host test.ase.pi;
 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;

Copyright ©2022

 | API Gateway integration | 685

 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
}

}

NGINX Plus for Ubuntu 16.0.4

Complete the following steps to install NGINX Plus:

1. Download NGINX Plus R16 repository:

printf "deb https://plus-pkgs.nginx.com/ubuntu `lsb_release -cs` nginx-
plus\n" | sudo tee /etc/apt/sources.list.d/nginx-plus.list
sudo wget -q -O /etc/apt/apt.conf.d/90nginx https://cs.nginx.com/static/
files/90nginx
sudo apt-get update

2. Complete the following steps to install NGINX Plus with Lua modules:

a. Check whether 16-1~xenial is available in the list

sudo apt-cache show nginx-plus | grep "Version"

b. Install NGINX Plus:

sudo apt-get install nginx-plus=16-1~xenial
sudo apt-get install nginx-plus-module-ndk=16+0.3.0-1~xenial
sudo apt-get install nginx-plus-module-lua=16+0.10.13-2~xenial

Configure NGINX Plus for PingIntelligence

Configure the nginx.conf to setup NGINX Plus and PingIntelligence sideband integration. Following is a
summary of steps to configure NGINX Plus for PingIntelligence:

1. Create modules directory inside NGINX working directory
2. Download PingIntelligence modules
3. Copy PingIntelligence modules in the modules directory
4. Edit nginx.conf for PingIntelligence

Create modules directory and download PingIntelligence modules

1. Create a modules directory in NGINX Plus:

mkdir /etc/nginx/modules

2. Download the NGINX Plus - PingIntelligence modules from the download site

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 686

3. Untar the downloaded file.

tar -xvzf pi-api-nginx-plus-policy-4.3.tar.gz

The three PingIntelligence modules are:

▪ ngx_ase_integration_module.so
▪ ngx_http_ase_integration_request_module.so
▪ ngx_http_ase_integration_response_module.so

The pi-pf.conf file has the OAuth policy details.
4. Copy the three PingIntelligence modules files for Ubuntu to the modules directory of NGINX Plus and

pi-pf.conf file to /usr/local/nginx/conf/ directory.

cp ngx_ase_integration_module.so /etc/nginx/modules
cp ngx_http_ase_integration_request_module.so /etc/nginx/modules
cp ngx_http_ase_integration_response_module.so /etc/nginx/modules
cp pi-pf.conf /usr/local/nginx/conf/

5. Change to root user:

sudo su

6. Export client credentials as environment variables:

export PF_ID=<ID>
export PF_SECRET=<SECRET>

Here PF_ID and PF_SECRET are PingFederate client ID and secret.

Configure nginx.conf file

Complete the following steps to configure nginx.conf for PingIntelligence. Make sure that the
PingIntelligence module and other configurations are added at the correct place in nginx.conf as shown
in the sample file at the end of the section.

1. Load PingIntelligence modules: Edit the nginx.conf file to load the PingIntelligence modules.
Following is a snippet of nginx.conf file showing the loaded PingIntelligence modules:

worker_processes 4;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;
env PF_ID;
env PF_SECRET;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;
load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;

events {
 worker_connections 1024;
}
truncated nginx.conf file

Copyright ©2022

 | API Gateway integration | 687

2. Configure ASE primary and secondary node: Configure ASE primary and secondary node IP
address by replacing IP:PORT in the nginx.conf file snippet show below:

http {

 keepalive_timeout 65;
 upstream ase.pi {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 #keepalive_timeout 3600s; # NOT allowed < 1.15.3
 }

truncated nginx.conf file

3. Configure introspect server IP address: Configure introspect server IP address by replacing
IP:PORT in the nginx.conf file snippet show below:

upstream introspect_server {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

truncated nginx.conf file

4. Configure username and client ID key: Configure the username and client ID keys in nginx.conf.
These are the keys for username and client ID that you have configured in PingFederate.

set $oauth_username_key Username;
set $oauth_client_id_key ClientID;

truncated nginx.conf file

5. Configure token parameter name: Configure the token parameter name after $arg_ and in ase/
request:

Set the token parameter name below after $arg_ and inside /ase/request.
 set $oauth_key_param $arg_access_token;
 set $oauth_token_param $arg_access_token;
 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }

truncated nginx.conf file

Copyright ©2022

 | API Gateway integration | 688

6. Configure introspection URL: Configure the URL of the introspection server:

Set introspection URL
 set $oauth_url https://introspect_server/as/introspect.oauth2;

truncated nginx.conf file

7. Configure ASE Sideband token: The sideband authentication token was created as part of
thePrerequisites on page 674 in the PingIntelligence section. Following is a snippet the showing
certificate location and sideband authentication token:

8. Configure ASE request and response: Configure ASE request and response API endpoints in
nginx.conf. Following snippet of nginx.conf shows ASE request and response:

 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }

truncated nginx.conf file

9. Apply PingIntelligence policy: You can apply PingIntelligence policy at the global level, that is, for all
the APIs in your environment or for an individual API.

i Note: If the authorization header in the request has multiple tokens, the PingIntelligence policy
extracts only the first valid bearer token from the authorization header.

▪ Apply PingIntelligence policy globally: To apply PingIntelligence policy globally, add
ase_integration_request and ase_integration_response in the serversection of
nginx.conf as shown below:

server {

Copyright ©2022

 | API Gateway integration | 689

 listen 4443 ssl bind;
 server_name localhost;
 ssl_certificate /usr/local/nginx/ssl/cert.pem;
 ssl_certificate_key /usr/local/nginx/ssl/key.pem;
 ssl_password_file /usr/local/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 resolver 8.8.8.8 ipv6=off;
 ase_integration_request;
 ase_integration_response;

 # Set OAuth Client details

truncated nginx.conf file

▪ Apply PingIntelligence policy for a specific API: Apply PingIntelligence modules for APIs by
configuring location in nginx.conf. ase_integration_request should be the first and a
ase_integration_response should be the last.

i Note: Comment-out the ase_integration_request and ase_integration_response
that was configured to apply PingIntelligence policy globally.

location / {
 include /usr/local/nginx/conf/pi-pf.conf;
 ase_integration_request;
 proxy_pass http://localhost:8080/;
 ase_integration_response;
}

truncated nginx.conf file

10.Verify syntactical correctness of nginx.conf: To verify the syntactical correctness of nginx.conf, run
the following command:

/usr/local/nginx/sbin/nginx -t
nginx: the configuration file /usr/local/nginx/conf/nginx.conf syntax is
 ok
nginx: configuration file /usr/local/nginx/conf/nginx.conf test is
 successful

Final configuration steps: Complete the following steps to configure PingIntelligence policy for NGINX
Plus:

1. Restart NGINX by entering the following command:

/usr/local/nginx/sbin/nginx -s stop
/usr/local/nginx/sbin/nginx

2. Run the following command to verify if --with-compat and --with-http_ssl_module is in the list
of flags under configured arguments.

sudo /usr/local/nginx/sbin/nginx -V
nginx version: nginx/1.15.2 (nginx-plus-r16)
built by gcc 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.9)
built with OpenSSL 1.0.2g 1 Mar 2016
TLS SNI support enabled
configure arguments: --with-compat --with-http_ssl_module

Copyright ©2022

 | API Gateway integration | 690

3. Verify that NGINX has restarted by entering the following command:

netstat -tulpn | grep 4443

Following is a sample nginx.conf file:

worker_processes 4;

error_log /usr/local/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /usr/local/nginx;

pid /usr/local/nginx/pid/nginx.pid;
env PF_ID;
env PF_SECRET;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;
load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;

events {
 worker_connections 1024;
}

http {

 keepalive_timeout 65;
 upstream test.ase.pi {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
keepalive_timeout 3600s; # NOT allowed < 1.15.3
 }

 upstream introspect_server {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

 lua_shared_dict cache_dict 128m;

server {
 listen 4443 ssl bind;
 server_name localhost;
 ssl_certificate /usr/local/nginx/ssl/cert.pem;
 ssl_certificate_key /usr/local/nginx/ssl/key.pem;
 ssl_password_file /usr/local/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 resolver 8.8.8.8 ipv6=off;
 ase_integration_request;
 ase_integration_response;

 # Set OAuth Client details

 # Set env variable PF_ID &PF_SECRET
 set_by_lua $client_id 'return os.getenv("PF_ID")';
 set_by_lua $client_secret 'return os.getenv("PF_SECRET")';

 # Uncomment next 2 lines to set client credentials here.

Copyright ©2022

 | API Gateway integration | 691

 # set $client_id nginx_client;
 # set $client_secret nginx_secret;

 set $oauth_username_key Username;
 set $oauth_client_id_key ClientID;

 # Set the token parameter name below after $arg_ and inside /ase/
request.
 set $oauth_key_param $arg_access_token;
 set $oauth_token_param $arg_access_token;

 # Set cache lifetime, default is 120s.
 set $oauth_cache_timeout 120;

 # Set introspection URL
 set $oauth_url https://introspect_server/as/introspect.oauth2;

 location /introspect {
 internal;
 proxy_method POST;
 if ($arg_auth_token) {
 set $auth_token $arg_auth_token;
 }
 if ($http_authorization ~* .*?(bearer)(\s+)([-a-zA-Z0-9._~+/]+)(,|
\s|$)) {
 set $auth_token $3;
 }
 proxy_set_header Content-Type "application/x-www-form-urlencoded";
 proxy_set_body "client_id=${client_id}&client_secret=
${client_secret}&token=${auth_token}";
 proxy_pass_request_body off;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 proxy_pass $oauth_url;
 }

 location /shop {
 include /usr/local/nginx/conf/pi-pf.conf;
 proxy_pass http://18.209.173.37:4100/shop;

 }
 #DO NOT EDIT BELOW VARIABLE
 set $correlationid $pid-$request_id-$server_addr-$remote_addr-
$remote_port-$request_length-$connection;
 #Certificate location of ASE
 set $certificate /usr/local/nginx/ssl/test.ase.pi;
 #ASE Token for sideband authentication
 set $ase_token <ASE_TOKEN>;
 #Host header which should be send to ASE
 set $ase_host test.ase.pi;
 #SNI value to use for ASE
 set $ase_ssl_host test.ase.pi;
 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;

Copyright ©2022

 | API Gateway integration | 692

 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
}

}

NGINX Plus for Debian 9

Complete the following steps to install NGINX Plus:

1. Download NGINX Plus R19 repository

printf "deb https://plus-pkgs.nginx.com/debian `lsb_release -cs` nginx-
plus\n" | sudo tee /etc/apt/sources.list.d/nginx-plus.list
sudo wget -q -O /etc/apt/apt.conf.d/90nginx https://cs.nginx.com/static/
files/90nginx
sudo apt-get update

2. Complete the following steps to install NGINX Plus:

a. Check whether 19-1~stretch is available in the list

sudo apt-cache show nginx-plus | grep "Version"

b. Install NGINX Plus and related modules:

sudo apt-get install nginx-plus=19-1~stretch
sudo apt-get install nginx-plus-module-ndk=19+0.3.0-1~stretch
sudo apt-get install nginx-plus-module-lua=19+0.10.15-1~stretch

Configure NGINX Plus for PingIntelligence

Complete the following steps to configure the nginx.conf to setup NGINX Plus and PingIntelligence
sideband integration:

Create modules directory and download PingIntelligence modules

1. Create a modules directory in NGINX Plus, if it is not existing already.

mkdir /etc/nginx/modules

2. Download the NGINX Plus - PingIntelligence modules from the download site

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 693

3. Untar the downloaded file.

tar -xvzf pi-api-nginx-plus-policy-4.3.tar.gz

The following is the directory structure.

4. Copy the three PingIntelligence modules files for Debian to the /etc/nginx/modules/ directory of
NGINX Plus and pi-pf.conf file to /etc/nginx/ directory. The pi-pf.conf file has the OAuth
policy details.

cp ngx_ase_integration_module.so /etc/nginx/modules/
cp ngx_http_ase_integration_request_module.so /etc/nginx/modules/
cp ngx_http_ase_integration_response_module.so /etc/nginx/modules/
cp pi-pf.conf /etc/nginx/

5. Change to root user:

sudo su

6. Export client credentials as environment variables:

export PF_ID=<ID>
export PF_SECRET=<SECRET>

Here PF_ID and PF_SECRET are PingFederate client ID and secret.

Copyright ©2022

 | API Gateway integration | 694

Configure nginx.conf file

Complete the following steps to configure nginx.conf for PingIntelligence. Make sure that the
PingIntelligence module and other configurations are added at the correct place in nginx.conf as shown
in the sample file at the end of the section.

1. Load PingIntelligence modules: Edit the nginx.conf file to load the PingIntelligence modules.
Following is a snippet of nginx.conf file showing the loaded PingIntelligence modules:

worker_processes 4;

error_log /etc/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /etc/nginx;

pid /etc/nginx/pid/nginx.pid;
env PF_ID;
env PF_SECRET;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;
load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;

events {
 worker_connections 1024;
}
truncated nginx.conf file

2. Configure ASE primary and secondary node: Configure ASE primary and secondary node IP
address by replacing IP:PORT in the nginx.conf file snippet show below:

http {

 keepalive_timeout 65;
 upstream test.ase.pi {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 #keepalive_timeout 3600s; # NOT allowed < 1.15.3
 }

truncated nginx.conf file

3. Configure introspect server IP address: Configure introspect server IP address by replacing
IP:PORT in the nginx.conf file snippet show below:

upstream introspect_server {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

truncated nginx.conf file

4. Configure username and client ID key: Configure the username and client ID keys in nginx.conf.
These are the keys for username and client ID that you have configured in PingFederate.

set $oauth_username_key Username;

Copyright ©2022

 | API Gateway integration | 695

set $oauth_client_id_key ClientID;

truncated nginx.conf file

5. Configure token parameter name: Configure the token parameter name after $arg_ and in ase/
request:

Set the token parameter name below after $arg_ and inside /ase/request.
 set $oauth_key_param $arg_access_token;
 set $oauth_token_param $arg_access_token;
 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }

truncated nginx.conf file

6. Configure introspection URL: Configure the URL of the introspection server:

Set introspection URL
 set $oauth_url https://introspect_server/as/introspect.oauth2;

truncated nginx.conf file

7. Configure ASE Sideband token: The sideband authentication token was created as part of
thePrerequisites on page 674 in the PingIntelligence section. Following snippet in step-8 shows the
certificate location and sideband authentication token:

8. Configure ASE request and response: Configure ASE request and response API endpoints in
nginx.conf. Following snippet of nginx.conf shows ASE request and response:

 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }

Copyright ©2022

 | API Gateway integration | 696

 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }

truncated nginx.conf file

9. Apply PingIntelligence policy: You can apply PingIntelligence policy at the global level, that is, for all
the APIs in your environment or for an individual API.

i Note: If the authorization header in the request has multiple tokens, the PingIntelligence policy
extracts only the first valid bearer token from the authorization header.

▪ Apply PingIntelligence policy globally: To apply PingIntelligence policy globally, add
ase_integration_request and ase_integration_response in the server section of
nginx.conf file as shown below:

server {
 listen 4443 ssl bind;
 server_name localhost;
 ssl_certificate /etc/nginx/ssl/cert.pem;
 ssl_certificate_key /etc/nginx/ssl/key.pem;
 ssl_password_file /etc/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 resolver 8.8.8.8 ipv6=off;
 ase_integration_request;
 ase_integration_response;

 # Set OAuth Client details

truncated nginx.conf file

▪ Apply PingIntelligence policy for a specific API: Apply PingIntelligence modules for specific APIs
by configuring location in nginx.conf. ase_integration_request should be the first and
ase_integration_response should be the last, as shown in the following snippet.

i Note: When applying the policy to a specific API, comment-out the
ase_integration_request and ase_integration_response, that are configured in the
server section of the nginx.conf file to apply PingIntelligence policy globally.

location / {
 include /etc/nginx/pi-pf.conf;
 ase_integration_request;
 proxy_pass http://localhost:8080/;
 ase_integration_response;
}

Copyright ©2022

 | API Gateway integration | 697

truncated nginx.conf file

10.Verify syntactical correctness of nginx.conf: To verify the syntactical correctness of nginx.conf, run
the following command:

/usr/sbin/nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

Final configuration steps: Complete the following steps to configure PingIntelligence policy for NGINX
Plus:

1. Restart NGINX by entering the following command:

/usr/sbin/nginx -s stop
/usr/sbin/nginx

2. Run the following command to verify if --with-compat and --with-http_ssl_module is in the list
of flags under configured arguments.

sudo /usr/sbin/nginx -V
nginx version: nginx/1.17.3 (nginx-plus-r19)
built by gcc 6.3.0 20170516 (Debian 6.3.0-18+deb9u1)
built with OpenSSL 1.1.0j 20 Nov 2018 (running with OpenSSL 1.1.0l 10 Sep
 2019)
TLS SNI support enabled

3. Verify that NGINX has restarted by entering the following command:

netstat -tulpn | grep 4443

Following is a sample nginx.conf file:

worker_processes 4;

error_log /etc/nginx/logs/error.log debug;
worker_rlimit_core 500M;
working_directory /etc/nginx;

pid /etc/nginx/pid/nginx.pid;
env PF_ID;
env PF_SECRET;

load_module modules/ngx_ase_integration_module.so;
load_module modules/ngx_http_ase_integration_request_module.so;
load_module modules/ngx_http_ase_integration_response_module.so;
load_module modules/ndk_http_module.so;
load_module modules/ngx_http_lua_module.so;

events {
 worker_connections 1024;
}

http {

 keepalive_timeout 65;
 upstream test.ase.pi {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
keepalive_timeout 3600s; # NOT allowed < 1.15.3
 }

Copyright ©2022

 | API Gateway integration | 698

 upstream introspect_server {
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10;
 server IP:PORT max_fails=1 max_conns=100 fail_timeout=10 backup;
 keepalive 32;
 }

 lua_shared_dict cache_dict 128m;

server {
 listen 4443 ssl bind;
 server_name localhost;
 ssl_certificate /etc/nginx/ssl/cert.pem;
 ssl_certificate_key /etc/nginx/ssl/key.pem;
 ssl_password_file /etc/nginx/ssl/password_file;
 ssl_protocols TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!MD5;
 resolver 8.8.8.8 ipv6=off;
 ase_integration_request;
 ase_integration_response;

 # Set OAuth Client details

 # Set env variable PF_ID &PF_SECRET
 set_by_lua $client_id 'return os.getenv("PF_ID")';
 set_by_lua $client_secret 'return os.getenv("PF_SECRET")';

 # Uncomment next 2 lines to set client credentials here.
 # set $client_id nginx_client;
 # set $client_secret nginx_secret;

 set $oauth_username_key Username;
 set $oauth_client_id_key ClientID;

 # Set the token parameter name below after $arg_ and inside /ase/
request.
 set $oauth_key_param $arg_access_token;
 set $oauth_token_param $arg_access_token;

 # Set cache lifetime, default is 120s.
 set $oauth_cache_timeout 120;

 # Set introspection URL
 set $oauth_url https://introspect_server/as/introspect.oauth2;

 location /introspect {
 internal;
 proxy_method POST;
 if ($arg_auth_token) {
 set $auth_token $arg_auth_token;
 }
 if ($http_authorization ~* .*?(bearer)(\s+)([-a-zA-Z0-9._~+/]+)(,|
\s|$)) {
 set $auth_token $3;
 }
 proxy_set_header Content-Type "application/x-www-form-urlencoded";
 proxy_set_body "client_id=${client_id}&client_secret=
${client_secret}&token=${auth_token}";
 proxy_pass_request_body off;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 proxy_pass $oauth_url;
 }

Copyright ©2022

 | API Gateway integration | 699

 location /shop {
 include /etc/nginx/pi-pf.conf;
 proxy_pass http://18.209.173.37:4100/shop;

 }
 #DO NOT EDIT BELOW VARIABLE
 set $correlationid $pid-$request_id-$server_addr-$remote_addr-
$remote_port-$request_length-$connection;
 #Certificate location of ASE
 set $certificate /etc/nginx/ssl/test.ase.pi;
 #ASE Token for sideband authentication
 set $ase_token <ASE_TOKEN>;
 #Host header which should be send to ASE
 set $ase_host test.ase.pi;
 #SNI value to use for ASE
 set $ase_ssl_host test.ase.pi;
 #ASE Request Proxy Configuration
 location = /ase/request {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 # set token key here.
 ase_integration_token_key access_token;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
 #ASE Response Proxy Configuration
 location = /ase/response {
 internal;
 ase_integration https://test.ase.pi;
 ase_integration_method "POST";
 ase_integration_http_version 1.1;
 ase_integration_ase_token $ase_token;
 ase_integration_correlation_id $correlationid;
 ase_integration_host $ase_host;
 ase_integration_ssl_trusted_certificate $certificate;
 ase_integration_ssl_verify off;
 ase_integration_ssl_verify_depth 1;
 ase_integration_ssl_server_name off;
 ase_integration_ssl_name $ase_ssl_host;
 ase_integration_next_upstream error timeout non_idempotent;
 }
}

}

Copyright ©2022

 | API Gateway integration | 700

PingAccess API gateway integration

PingAccess sideband integration

This guide describes the deployment of PingIntelligence for APIs in a sideband configuration with
PingAccess. A PingIntelligence policy is installed in PingAccess and passes API metadata to
PingIntelligence for detailed API activity reporting and attack detection with optional client blocking.

The PingIntelligence 4.2 policy supports interception of OAuth Tokens that come as part of a query string.
It also supports optional enablement of Asynchronous mode to API Security Enforcer (ASE).

The following diagram depicts the architecture of PingIntelligence for APIs components along with
PingAccess and PingFederate.

Here is the traffic flow through the PingAccess and PingIntelligence for APIs components.

1. Client requests and receives an access token from PingFederate.
2. Client sends a request with the access token received from PingFederate.
3. PingAccess verifies the authenticity of the access token with PingFederate.
4. If the token is invalid, PingAccess returns a 401-unauthorized message to the client.
5. If the token is valid, the PingIntelligence policy running in PingAccess collects API metadata and token

attributes.
6. PingAccess makes an API call to send the request information to ASE. ASE checks the request against

a registered set of APIs and checks the client identifiers such as IP addresses, cookies against the AI
generated Blacklist. If all checks pass, ASE returns a 200-OK response to the PingAccess. If not, a
403- forbidden response code is sent to PingAccess. The request information is also logged by ASE
and sent to the API Behavioral Security (ABS) AI Engine for processing.

7. If PingAccess receives a 200-OK response from ASE, it forwards the request to the backend server.
Otherwise, the gateway optionally blocks the client. In synchronous mode, the gateway waits for a
response from ASE before forwarding the request to backend server. However, if asynchronous mode
is enabled, the gateway forwards the request to the backend server without waiting for the response

Copyright ©2022

 | API Gateway integration | 701

from ASE. The ASE passively logs the request and forwards it to ABS for attack analysis. It performs
attack detection without blocking of attacks.

8. The response from the backend server is received by PingAccess. PingAccess sends the response
received from the backend server to the client.

9. PingAccess makes a second API call to pass the response information to ASE which sends the
information to the ABS AI engine for processing. ASE receives the response information and sends a
200-OK to PingAccess.

10.PingAccess sends the response to the client.

Prerequisites

Complete the following before configuring PingAccess:

▪ Confirm the PingAccess version - The PingIntelligence policy supports PingAccess versions 5.x and
6.x. If you are using any other version, contact Ping Identity support.

▪ Install PingIntelligence software

PingIntelligence software should be installed and configured. For more information on PingIntelligence
deployment, see PingIntelligence for APIs setup on page 44 and PingIntelligence manual
deployment on page 79 .

▪ Verify that ASE is in sideband mode

Check ASE is in sideband mode by running the following command in ASE command line.

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.61 MB, free 102.39
 MB
google pubsub : disabled
log level : debug
timezone : local (UTC)

If ASE is not in sideband mode, then stop ASE and change the mode by editing the /opt/
pingidentity/ase/config/ase.conf file. Set mode as sideband and start ASE.

▪ Enable sideband authentication

For secure communication between PingAccess and ASE, enable sideband authentication by entering
the following ASE command.

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for PingAccess to authenticate with ASE. To generate the token, enter the following
ASE command.

./bin/cli.sh -u admin -p admin create_sideband_token

Save the generated authentication token for further use.

Copyright ©2022

 | API Gateway integration | 702

Configure PingFederate to extract token attributes

You need to configure PingFederate for PingIntelligence policy to be able to extract the username from the
incoming token. Complete the following steps to configure PingFederate to extract token attributes:

1. While configuring Access Token Management in PingFederate, add all the attributes that should be
exposed for the token. PingFederate provides these attribute values to PingAccess for OAuth tokens.

2. Click Access Token Attribute Contract under Access token management
Instance and add the required attributes. Make sure to at least add

username.

Copyright ©2022

 | API Gateway integration | 703

3. After Adding the required attributes, configure the attribute sources:

a. Click Access Token Mapping
b. Select the relevant Context
c. Click Contract Fulfilment

Deploying the PingIntelligence policy

About this task

To integrate PingAccess with PingIntelligence components, complete the following steps in PingAccess:

i Note: We recommend that you increase the default heap size in PingAccess before deploying the
PingIntelligence policy for PingAccess 6.x. Refer to the instructions explained in Modifying the Java heap
size for changing the default heap size. For more information, contact PingIdentity support.

Copyright ©2022

https://docs.pingidentity.com/bundle/pingaccess-60/page/roh1564006729988.html
https://docs.pingidentity.com/bundle/pingaccess-60/page/roh1564006729988.html

 | API Gateway integration | 704

Steps

1. Download the PingIntelligence policy from the Ping Identity download site and unzip it. The zip file
contains three policy files based on the JDK version. Use the policy based on your deployment
environment.

2. Copy the PingIntelligence.jar file into the lib directory in PA_home.

3. Restart PingAccess.

4. Log in to PingAccess.

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html

 | API Gateway integration | 705

5. Add the Primary and Secondary ASEs :

a. In the left pane click Sites. Navigate to THIRD-PARTY SERVICES and click + Add Third-Party
Service to add the two

ASEs.
b. In the New Third-Party Service page add the Primary and Secondary ASE endpoints and click

Save.

i Note: Select options under SECURE to connect PingAccess to PingIntelligence ASE using
HTTPS.

Copyright ©2022

 | API Gateway integration | 706

6. Add a Rule for the Primary and Secondary ASEs :

a. In the left pane click Rules. In the new Rule page, in the NAME field, enter the name of the rule for
PingIntelligence.

b. In the TYPE drop-down list, select PingIntelligence. This appears in the drop-down list after adding
PingIntelligence.jar in PA_HOME in step 3.

c. Select the ASE Endpoint for Primary ASE in PINGINTELLIGENCE ASE ENDPOINT drop-down list.
d. Select the ASE Endpoint for Secondary ASE in PINGINTELLIGENCE ASE ENDPOINT-BACKUP

drop-down list.

i Note: If the Secondary ASE is not installed, you can choose Primary ASE Endpoint in
PINGINTELLIGENCE ASE ENDPOINT-BACKUP drop-down list.

e. In the PINGINTELLIGENCE ASE TOKEN field, enter ASE sideband token that is generated for
authentication between PingAccess and ASE.

f. If an OAuth token comes as part of a query string, enter the name of the query string in the
PINGINTELLIGENCE QS OAUTH field.

i Note: The PingIntelligence policy extracts the OAuth token from the query string, configured
in PINGINTELLIGENCE QS OAUTH. A new Authorization header- Authorization: Bearer
<OAuth token> is added to the metadata sent to ASE. If there is an existing Authorization header,
the token is prepended so that ABS AI engine can analyse it. If the query string has multiple query
parameters with the same name, the first parameter is intercepted by the policy.

g. Select the ENABLE ASYNC MODE to choose Asynchronous mode between PingAccess and ASE.

i Note: The PingIntelligence policy supports both synchronous and asynchronous modes of
communication between PingAccess and ASE. By default, the communication mode is synchronous.
When the asynchronous mode is enabled, the PingAccess gateway does not wait for a response

Copyright ©2022

 | API Gateway integration | 707

from ASE and sends the request to backend server. ASE performs attack detection without blocking
of attacks in asynchronous mode.

Copyright ©2022

 | API Gateway integration | 708

7. Apply the rule by completing the following steps :

a. Edit the existing application.
b. In the edit application page, click on API Policy.
c.

Under Available Rules, Click the sign for the PingIntelligence rule.
d.

After clicking on the sign, the PingIntelligence rule moves under the API APPLICATION POLICY
as shown in the screen capture below.

e. Click Save to save the rule.

Configure ASE persistent connection

You can optionally configure TCP keep-alive connections in the ase.conf file of ASE. Following is a
snippet of ase.conf displaying the enable_sideband_keepalive variable. The default value is set to
false.

; enable connection keepalive for requests from gateway to ase.
; This setting is applicable only in sideband mode.
; Once enabled ase will add 'Connection: keep-alive' header in response
; Once disabled ase will add 'Connection: close' header in response
enable_sideband_keepalive=false

API discovery

PingIntelligence API discovery is a process to discover, and report APIs from your API environment. The
discovered APIs are reported in PingIntelligence Dashboard. APIs are discovered when a global API JSON
is defined in the ASE. For more information, see API discovery and configuration on page 329 . You can
edit the discovered API's JSON definition in Dashboard before adding them to ASE. For more information
on editing and configuring API discovery, see Discovered APIs on page 496.

Copyright ©2022

 | API Gateway integration | 709

Configure API discovery in PingAccess

To configure API discovery in PingAccess add Applications in PingAccess with Application Type as API.
For PingIntelligence Dashboard to automatically capture the definition, include the following parameters in
the DESCRIPTION section when you add an Application:

{
"ping_ai": true,
"ping_host": "",
"ping_url": "",
"ping_login": "",
"ping_cookie": "JSESSIONIDTEST",
"apikey_qs": "X-API-KEY",
"apikey_header": "",
"ping_decoy": false,
"oauth2_access_token": false,
"ping_blocking": true
}

The following table describes the parameters captured when PingIntelligence Dashboard fetches the API
definition from PingAccess and adds it to ASE.

Parameter Description

ping_ai When true, PingIntelligence processing is applied to this API.
Set to false for no PingIntelligence processing. Default value is
true.

ping_host Hostname of the API. You can configure * as hostname to
support any hostname.

ping_url The base URL of the managed API, for example, /shopping.
This field cannot be empty.

ping_login Login URL for the API. The field can be empty.

ping_cookie Cookie name for the API. The field can be empty.

apikey_qs When API Key is sent in the query string, ASE uses the specified
parameter name to capture the API key value.

apikey_header When API Key is part of the header field, ASE uses the specified
parameter name to capture the API key value.

ping_decoy When true, API is a decoy API. The values can be true or
false.

oauth2_access_token When true, PingIntelligence expects an OAuth token. The values
can be true or false.

ping_blocking When true, enable PingIntelligence blocking when attack are
detected on the API. The default value is true. To disable
blocking for the API, set to false.

Handle exceptions

This topic discusses exception handling by PingIntelligence policy when ASE is unavailable. To ensure
High-Availability the policy supports Primary and Secondary ASEs. In the event of an exception the
gateway processes the current request or response to the corresponding destination. From the subsequent
request or response a switch happens between the ASEs and the metadata is routed to the other ASE.
The following diagram shows, the flow when an exception occurs.

Copyright ©2022

 | API Gateway integration | 710

Copyright ©2022

 | API Gateway integration | 711

You can configure an Availability profile to define the way PingAccess
manages network requests. For more information, see Availability profiles

PingFederate integration

PingFederate sideband integration

You can deploy PingIntelligence for APIs in a sideband configuration with PingFederate server.
PingIntelligence provides a sideband policy that extracts metadata from an authentication request or
response processed by PingFederate. This metadata is passed to PingIntelligence to detect anomalous
behavior and attacks by the client. PingIntelligence provides key metrics and forensics around such
attacks. It also gives insights into normal traffic patterns by providing detailed client activity reports

The PingIntelligence policy for PingFederate is executed when a client requests an access token or
refresh token from PingFederate. The policy secures the token endpoint /as/token.oauth2. For more
information on the OAuth endpoints exposed by PingFederate, see PingFederate OAuth 2.0 endpoints.

The PingIntelligence policy supports attack detection and reporting based on IP addresses of the clients. It
is deployed in PingFederate as a servlet filter. It supports both OIDC and SAML V2 standards. The policy
deployment does not require any reconfiguration of password credential validator (PCV).

The following diagram shows the architecture of PingIntelligence for APIs components
and the interaction flow with PingFederate. The LDAP directory component in the diagram
is used for illustrative purpose. PingFederate also supports other directories and user

Copyright ©2022

https://docs.pingidentity.com/bundle/pingaccess-61/page/dzz1564006737574.html
https://docs.pingidentity.com/bundle/pingfederate-101/page/lhk1564003024628.html

 | API Gateway integration | 712

data-stores through PCVs. For more information, see Password Credential Validators.

The traffic flow through the PingFederate and PingIntelligence for APIs components is as follows:

1. A client sends a request with its authorization grant to PingFederate to obtain an access or refresh
token.

2. The PingIntelligence for APIs policy deployed in PingFederate intercepts this request and extracts
metadata such as origin IP address, and so on.

3. PingFederate makes an API call to send the metadata to API Security Enforcer (ASE). The ASE
checks the client identifiers such as IP addresses against its blacklist. A blacklist is a list of client
identifiers that were detected executing an attack. If all checks pass, ASE returns a 200-OK response
to PingFederate. If the checks do not pass, ASE sends a 403-Forbidden response code to
PingFederate and optionally blocks the client. In both the cases, ASE logs the request information and
sends it to the API Behavioral Security (ABS) AI Engine to analyze the traffic patterns.

4. PingFederate forwards the client authentication request to the supported directory server.
5. PingFederate receives the response from the server.
6. The Ping Intelligence for APIs policy intercepts the response and extracts the metadata.
7. PingFederate makes a second API call to pass the response information to ASE, which sends the

information to the ABS AI engine for processing.
8. PingFederate sends the requested token to the client.

Related links

▪ Sideband ASE on page 150
▪ ABS AI Engine
▪ PingIntelligence for APIs Dashboard

Prerequisites

Complete the following prerequisites before deploying PingIntelligence policy on PingFederate:

Copyright ©2022

https://docs.pingidentity.com/bundle/pingfederate-101/page/dva1564002969008.html

 | API Gateway integration | 713

▪ Verify versions supported

The PingIntelligence policy is qualified with the following combination.

PingFederate Version JDK version Password Credential Validator
(PCV)

PingFederate 9.3.3 Oracle JDK8.0.u261 ▪ OpenLDAP-2.4.44
▪ Simple Username Password

Credential Validator

If you are using any other versions of PingFederate or JDK, or any other PingFederate supported PCV,
contact the Ping Identity support team for deployment support.

▪ Install PingIntelligence software

PingIntelligence software should be installed and configured. For more information on PingIntelligence
deployment, see PingIntelligence automated deployment or PingIntelligence manual deployment on
page 79.

▪ Verify that API Security Enforcer (ASE) is in sideband mode

Check that ASE is in sideband mode by running the following ASE command.

/opt/pingidentity/ase/bin/cli.sh status
API Security Enforcer
status : started
mode : sideband
http/ws : port 80
https/wss : port 443
firewall : enabled
abs : disabled, ssl: enabled
abs attack : disabled
audit : enabled
sideband authentication : disabled
ase detected attack : disabled
attack list memory : configured 128.00 MB, used 25.61 MB, free 102.39
 MB
google pubsub : disabled
log level : debug
timezone : local (UTC)

If ASE is not in sideband mode, complete the following steps:

1. Stop ASE if it is running. For more information, see Start and stop ASE on page 122.
2. Navigate to /opt/pingidentity/ase/config/.
3. Edit the ase.conf file and set mode parameter to sideband.
4. Start ASE. For more information, see Start and stop ASE on page 122.

▪ Enable sideband authentication

For a secure communication between PingFederate and ASE, enable sideband authentication by
entering the following ASE command.

./bin/cli.sh enable_sideband_authentication -u admin –p

▪ Generate sideband authentication token

A token is required for PingFederate to authenticate with ASE. To generate the token in ASE, enter the
following command in the ASE command line. Save the generated authentication token for further use.

./bin/cli.sh -u admin -p admin create_sideband_token

Copyright ©2022

 | API Gateway integration | 714

▪ Enable connection keepalive between PingFederate and ASE

1. Stop ASE if it is running. For more information, see Start and stop ASE on page 122.
2. Navigate to /opt/pingidentity/ase/config/.
3. Edit the ase.conf file and set enable_sideband_keepalive parameter to true.
4. Start ASE. For more information, see Start and stop ASE on page 122.

Deploying the PingIntelligence policy
Deploy the PingIntelligence for APIs policy in PingFederate and complete the required configurations.

About this task

To deploy the PingIntelligence policy:

Steps

1. Download the PingIntelligence for APIs policy file from the Sideband Integrations section of the
PingIntelligence download page and copy it to the node hosting PingFederate server.

i Note:

If the PingFederate server is deployed in a cluster, then copy the policy to all the runtime engine nodes
of the cluster.

2. Extract the policy file by entering the following command.

$ untar pi-api-pf-policy-4.3.tar.gz

3. Stop PingFederate. For more information, see Start and stop PingFederate.

4. Copy the policy to the pingfederate/server/default/deploy directory.

$ cp pingidentity/pf-policy/pf-pi4api-filter.jar <pf_install>/
pingfederate/server/default/deploy/

5. Complete the following configurations:

▪ Configuring PingIntelligence servlet filter on page 714
▪ Configure API JSON in ASE

6. Start PingFederate. For more information, see Start and stop PingFederate.

Configuring PingIntelligence servlet filter
Configure the servlet filter for PingIntelligence policy in the webdefault.xml file in PingFederate.

About this task

To define the PingIntelligence for APIs servlet filter:

Copyright ©2022

https://www.pingidentity.com/en/resources/downloads/pingintelligence.html
https://docs.pingidentity.com/bundle/pingfederate-101/page/tmg1564002960433.html
https://docs.pingidentity.com/bundle/pingfederate-101/page/tmg1564002960433.html

 | API Gateway integration | 715

Steps

1. Add the the following filter configuration to the <pf_install>/pingfederate/etc/
webdefault.xml file. Add the filter configuration within the <web-app></web-app> element.

i Note:

If there are multiple filters in the webdefault.xml file, then place pi4APIFilter at the end.

<filter>
 <filter-name>pi4APIFilter</filter-name>
 <filter-class>com.pingidentity.pi.servlets.PI4APIServletFilter</
filter-class>
 <init-param>
 <param-name>ASE-Primary-URL</param-name>
 <param-value>https://<IP address of primary ASE>:<Port number></
param-value>
 </init-param>
 <init-param>
 <param-name>ASE-Secondary-URL</param-name>
 <param-value>https://<IP address of secondary ASE>:<Port number></
param-value>
 </init-param>
 <init-param>
 <param-name>ASE-Token</param-name>
 <param-value><ASE authenticaltion token></param-value>
 </init-param>
 <init-param>
 <param-name>Enable-Blocking</param-name>
 <param-value>false</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>pi4APIFilter</filter-name>
 <url-pattern>/as/token.oauth2</url-pattern>
 </filter-mapping>

2. Make sure the following configurations are set correctly:

▪ The filter-class element is configured to
com.pingidentity.pi.servlets.PI4APIServletFilter.

▪ The pi4APIFilter is mapped to the token endpoint URL of PingFederate by configuring the url-
pattern element to /as/token.oauth2.

▪ The filter-name element in both the <filter> and <filter-mapping> blocks is
pi4APIFilter.

3. Substitute the actual values for the init parameters in the pi44APIFilter filter.

The following table explains the PI4API init parameters in detail. They control the communication with
API Security Enforcer (ASE). You can contact PingIdentity support team for the actual values of these
parameters.

Parameter name Description

ASE-Primary-URL The URL or IP address of the ASE primary host.

i Note:

To support high availability, PingIntelligence
provides ASE primary and secondary nodes.

Copyright ©2022

 | API Gateway integration | 716

Parameter name Description

ASE-Secondary-URL The URL or IP address of the ASE secondary host.

ASE-Token The ASE sideband authentication token. You
can obfuscate the sideband authentication token
using one of the following utilities available in the
PingFederate <pf_install>/pingfederate/
bin/ directory:

▪ On Windows: obfuscate.bat
▪ On Linux: ./obfuscate.sh

If you need further assistance in using the utility,
contact Ping Identity support.

Enable-Blocking You can optionally block a client that has been
detected executing an attack. To block the client,
you need to enable blocking in ASE by setting
the Enable-Blocking to true. The default value
isfalse.

Configuring API JSON
Configure the API JSON file in API Security Enforcer (ASE).

About this task
The API JSON file parameters define the connectivity to the token endpoint.

To configure the API JSON file:

Steps

1. Navigate to the /pingidentity/ase/config/ directory.

2. Edit the sideband_api.json.example file, and set the value of url parameter to /as and login_url
parameter to /as/token.oauth2.

i Note:

/as/token.oauth2 is the token endpoint of PingFederate authorization server.

3. Rename the sideband_api.json.example file to pf.json.

4. After configuring the API JSON file, add it to ASE by executing the following command.

/opt/pingidentity/ase/bin/cli.sh –u admin -p admin add_api pf.json

The following is a sample configuration of the API JSON file.

{
 "api_metadata": {
 "protocol": "http",
 "url": "/as",
 "hostname": "*",
 "cookie": "",
 "oauth2_access_token": false,
 "apikey_qs": "",
 "apikey_header": "",
 "login_url": "/as/token.oauth2",
 "enable_blocking": true,

Copyright ©2022

 | PingIntelligence Docker toolkit | 717

 "api_memory_size": "128mb",
 "decoy_config": {
 "decoy_enabled": false,
 "response_code": 200,
 "response_def": "",
 "response_message": "",
 "decoy_subpaths": []
 }
 }
}

i Note:

For more information on configuring API JSON parameters, see Defining an API – API JSON
configuration file on page 159.

WSO2 API gateway integration

PingIntelligence WSO2 integration

PingIntelligence for APIs in a sideband deployment integrates with WSO2 API gateway to provide in depth
analytics on API traffic. In the deployment WSO2 API Gateway is the primary component that intercepts
API requests and applies various types of policies. Each policy is executed using something we call an
“API Handler”. The API gateway architecture allows users to add specific handlers to perform various
tasks in different stages of the request flow. This implementation comes with a handler that allows users
to perform sideband calls to the Ping ASE. With these sideband calls, it publishes API request metadata
to Ping and checks the validity of the request. It does the same for the response as well. With the provided
request metadata Ping ASE can detect abnormal access patterns. It also builds a knowledge base using
API request data sent to it.

For more information on PingIntelligence - WSO2 integration, see Artificial Intelligence Based API Security
with WSO2 and PingIntelligence for APIs.

PingIntelligence Docker toolkit

PingIntelligence Docker toolkit
PingIntelligence for APIs provides a Docker toolkit which is used to create Docker images
of PingIntelligence components and MongoDB. The Docker toolkit can be run on either on a RHEL 7.6
or a Ubuntu 16.0.4 LTS machine. The Docker toolkit provides information on environment variables
available for the PingIntelligence components, and an example Kubernetes yaml file for automated
deployment of PingIntelligence in Kubernetes environments. For more information on using the yaml file,
see PingIntelligence Kubernetes PoC deployment on page 30

Prerequisites: Download the following PingIntelligence components, tools, and open source modules.

Copyright ©2022

https://wso2.com/library/articles/2019/06/artificial-intelligence-based-api-security-with-wso2-and-pingintelligence-for-apis/
https://wso2.com/library/articles/2019/06/artificial-intelligence-based-api-security-with-wso2-and-pingintelligence-for-apis/
https://www.pingidentity.com/en/resources/downloads.html

 | PingIntelligence Docker toolkit | 718

▪ Download products:

▪ PingIntelligence ASE 4.3
▪ PingIntelligence ABS 4.3
▪ PingIntelligence Dashboard 4.3
▪ MongoDB 4.2.0
▪ OpenJDK 11.0.2 to 11.0.6
▪ Kibana 6.8.1
▪ Elasticsearch 6.8.1

▪ License Obtain valid ASE and ABS license files from the PingIntelligence sales team.

i Note:

▪ Make sure to download the correct ASE binary (RHEL7.6 or Ubuntu 16 LTS) based on the base image
you want to create.

▪ Download the correct MongoDB 4.2.0 binary (RHEL7.6 or Ubuntu) based on the Docker image you
want to build.

 Untar the Docker toolkit
To use the Docker toolkit, you need to untar the toolkit. Run the following command to untar the toolkit:

tar -zxf pi-api-docker-toolkit-4.3.tar.gz

Untarring the Docker toolkit, creates the directory structure as shown in the following table:

Directory Description

bin Contains the build.sh script to build the Docker images

config Contains the docker.conf file to configure the base image name and
the base image operating system

certs/webgui Contains the PingFederate public certificate file, webgui-sso-oidc-
provider.crt. PingIntelligence Dashboard Docker image can be
generated by optionally packaging it with the PingFederate public
certificate.

data For internal use

external Contains the third-party software:

▪ MongoDB 4.2.0
▪ Elasticsearch 6.8.1
▪ Kibana 6.8.1
▪ OpenJDK 11.0.2 to 11.0.6

images Contains the created Docker images using the build.sh script

lib For internal use

Copyright ©2022

 | PingIntelligence Docker toolkit | 719

license Contains the ase and abs directory to copy the respective license files.

i Note: You can build the images without adding the license files to the
ase and abs directory. If you build the Docker images without the license
file in ase and abs directory, then you need to map or mount the license
file in the following exact location:

▪ ASE: /opt/pingidentity/ase/config/
PingIntelligence.lic

▪ ABS: /opt/pingidentity/abs/config/
PingIntelligence.lic

logs Contains the log files

software Contains PingIntelligence ASE, ABS, and Dashboard

Configure docker.conf

Navigate to the config directory and edit the docker.conf file for base image name and base image
operating system. Following is a sample docker.conf field:

Base image name using which all the PingIntelligence images are created
base_image=registry.access.redhat.com/rhel7:latest

Operating system of the base image. The valid values are ubuntu or rhel
base_image_os=rhel

Define the username for images. This user is added to the Docker
images. Containers created from these Docker images use the configured
 user to run PingIntelligence software
user_name=pinguser

i Note: Do not set the user_name as root in docker.conf file.

Build the PingIntelligence Docker images
Use the build.sh script available in the bin directory to build the Docker images. You can build all the
following Docker images at once or you can choose to build the images individually. The following Docker
images are built:

▪ ASE
▪ ABS
▪ Dashboard
▪ MongoDB

It is a good practice to obfuscate the various keys and password in ASE, ABS, and Dashboard before
building the Docker images. For more information on obfuscating keys and passwords, see the following
topics:

▪ ASE - Obfuscate keys and passwords
▪ ABS - Obfuscate passwords
▪ Dashboard - Obfuscate keys and passwords

Complete the following steps to build the Docker images:

Copyright ©2022

 | PingIntelligence Docker toolkit | 720

1. Configure the base image name and base image operating system details in the config/
docker.conf file.

2. Download the following PingIntelligence software in to the software directory:

▪ ASE
▪ ABS
▪ PingIntelligence Dashboard

3. Download OpenJDK 11.0.2, Kibana 6.8.1, Elasticsearch 6.8.1 and MongoDB 4.2.0 in the external
directory and save them with the name as shown in the following table:

Software File name

Elasticsearch elasticsearch.tar.gz

OpenJDK 11.0.2 openjdk11.tar.gz

Kibana kibana.tar.gz

MongoDB mongodb.tgz

i Note: Make sure that MongoDB is as per the base image configured in docker.conf file.

4. Run the build.sh script to build the Docker images:

docker-setup# ./bin/build.sh all
Base image os: rhel
Creating build context for ASE
Creating Image
Image created with tag pingidentity/ase:4.3
Image saved to /home/ubuntu/docker-setup/images/pingidentity_ase.tar
Creating build context for abs
Creating Image
Image created with tag pingidentity/abs:4.3
Image saved to /home/ubuntu/docker-setup/images/pingidentity_abs.tar
Creating build context for dashboard
Creating Image
Image created with tag pingidentity/dashboard:4.3
Image saved to /home/ubuntu/docker-setup/images/pingidentity_dashboard.tar
Creating build context for mongo
Creating Image
Image created with tag pingidentity/mongo:4.2.0
Image saved to /home/ubuntu/docker-setup/images/pingidentity_mongo.tar
root@ip-172-31-25-146:/home/ubuntu/docker-setup# vim lib/dashboard/
context/entrypoint.sh

The other options that you can give with build.sh are: ase, abs, dashboard, and mongo.
5. Verify that the images are created by checking the local registry. Run the following command:

sudo docker image ls | grep pingidentity
pingidentity/dashboard 4.3 4c2b1378bec0
 38 minutes ago 2.07GB
pingidentity/mongo 4.2.0 fcf3986eab34
 3 days ago 781MB
pingidentity/abs 4.3 feced8848a28
 3 days ago 910MB
pingidentity/ase 4.3 5ab75d3180ed
 3 days ago 595MB

6. Verify that the Docker images are saved in the images directory:

docker-setup# ls -ltra images/

Copyright ©2022

 | PingIntelligence Docker toolkit | 721

total 3437116
drwxr-xr-x 11 root root 4096 Sep 18 18:39 ..
-rw------- 1 root root 782182400 Sep 21 10:18 pingidentity_abs.tar
-rw------- 1 root root 495038976 Sep 21 10:20 pingidentity_mongo.tar
-rw------- 1 root root 339437568 Sep 23 06:57 pingidentity_ase.tar
-rw------- 1 root root 1302484480 Sep 23 08:08 pingidentity_dashboard.tar
drwxr-xr-x 2 root root 4096 Sep 23 08:08 .

i Note: The Docker images do not install any additional packages like vi editor and so on.

Environment variables exposed in Docker images
Environment variables are exposed in the Docker images. If you do not set the environment variable, the
default values are used. The following tables list the environment variables for ASE, ABS, Dashboard, and
MongoDB.

ASE Environment Variables: The following table lists the ASE environment variables and the values:

Environment Value Usage

MODE inline/
sideband

ASE can be deployed either in inline mode or sideband mode. For
more information, see the ASE admin guide.

ASE_TIMEZONE string Set the timezone of ASE to either local or UTC. Default value is
local.

ENABLE_CLUSTERtrue/false Set the value to true to enable ASE cluster.

ENABLE_ABS true/false Set the value to true to enable ABS.

PEER_NODE <IP or
hostname>:port

ASE cluster peer node's IP address and port number

ASE_SECRET_KEYstring Set the value of the ASE secret key.

i Note: ASE access key cannot be changed. Its value always
remains admin.

ABS_ENDPOINT <IP or
hostname>:port

IP address or host name of the ABS endpoint

ABS_ACCESS_KEYstring Access key to connect to ABS

ABS_SECRET_KEYstring Secret key to connect to ABS

ADMIN_LOG_LEVEL1-5 1-5 (FATAL, ERROR, WARNING, INFO, DEBUG)

ENABLE_SIDEBAND_AUTHENTICATIONtrue/false Enable client side authentication. This setting is applicable only in
sideband mode. Once enabled, ASE authenticates requests using
ASE authentication tokens.

ENABLE_SIDEBAND_KEEPALIVEtrue/false Set the value to true to enable connection keepalive for requests
from gateway to ASE. This configuration is applicable only in
sideband mode.

ENABLE_ASE_HEALTHtrue/false Set the value to true to enable ASE health check module.

ENABLE_GOOGLE_PUBSUBtrue/false Google Pub/Sub configuration

GOOGLE_PUBSUB_TOPICstring

Copyright ©2022

 | PingIntelligence Docker toolkit | 722

GOOGLE_PUBSUB_CONCURRENCYnumber Number of concurrent connections to Google Pub/Sub

Minimum: 1, Default: 1000, Maximum: 1024

GOOGLE_PUBSUB_QPSnumber Number of messages published per second.

Minimum: 1, Default: 1000, Maximum: 10000

GOOGLE_PUBSUB_APIKEYstring Google service account API key (Optional)

CACHE_QUEUE_SIZEnumber Maximum number of messages buffered in memory. If queue is full,
messages are written to logs/google_pubsub_failed.log

Minimum: 1, Default: 300, Maximum: 10000

GOOGLE_PUBSUB_TIMEOUTnumber Timeout in seconds to publish a message to Google Pub/Sub.

Minimum: 10, Default: 30, Maximum: 300

ABS Environment Variables: The following table lists the ABS environment variables and the values:

Environment Value Usage

MONGO_RS <IP or hostname>:port MongoDB replica set IP address or host
name and port.

MONGO_USERNAME string MongoDB username

MONGO_PASSWORD string MongoDB password

HOST_IP IP or hostname If you have multiple network interfaces or if
you are running inside a Docker, specify the
externally visible IP address for ABS to bind

ABS_LOG_LEVEL string Log levels (ALL > DEBUG > INFO > WARN
> ERROR > FATAL > OFF)

Default is INFO

MONGO_SSL true/false Set to true if MongoDB instance is
configured in SSL mode.

By default, ABS will try to connect to
MongoDB using non-SSL connection.
Default is false

IS_DASHBOARD_NODE true/false Setting as true makes an ABS node for
dashboard engine query only and does not
participate in ABS cluster for log processing

ENABLE_EMAILS true/false Enable (true) or disable (false) ABS email
notifications.

SENDER_EMAIL string Email address used for sending email alerts
and reports.

Copyright ©2022

 | PingIntelligence Docker toolkit | 723

SENDER_EMAIL_PASSWORDstring Password of sender's email account.

i Note: You can leave this field blank
if your SMTP server does not require
authentication.

RECEIVER_EMAIL string Email address notified about alerts and
reports. If you want more than one person to
be notified, use an email alias.

ABS_CLI_ADMIN_PASSWORDstring Set the ABS CLI admin password.

MongoDB Environment Variables: The following table lists the MongoDB environment variables and the
values:

Environment Value Usage

POC_MODE string Sets the mode in which ABS trains its API models. Set it to true
for running ABS in POC mode. For more information, seeABS POC
mode on page 291

ABS_ACCESS_KEY string The access key for the ABS admin user. For more information, see
ABS users

ABS_SECRET_KEY string The secret key for the ABS admin user. For more information, see
ABS users

ABS_ACCESS_KEY_RUstring The access key for the restricted user. For more information on
restricted user, see ABS users.

ABS_SECRET_KEY_RUstring The secret key for the restrict ired user. For more information on
restricted user, see ABS users.

MONGO_USERNAME string MongoDB username

MONGO_PASSWORD string MongoDB password

MUTLI_NODE_REPLICA_SETstring Set it to true if you wan to run multiple MongoDB nodes in
MongoDB replica set. The default value is false. If you have set to
it to true, then manually add MongoDB nodes into replica set. Run
abs_init.js script from the primary MongoDB node.

ATTACK_INITIAL_TRAININGinteger The attack training period

ATTACK_UPDATE_INTERVALinteger Attack threshold uphold interval

API_DISCOVERY true/false Set the value to true to enable API discovery in ABS. For ABS to
discover APIs, a global API JSON must be configured in ASE. See
API discovery for more information.

API_DISCOVERY_INITIAL_PERIODinteger The initial period set in hours in which ABS has to be discover APIs.
It is a good practice to keep the API discovery interval period less
than the initial attack training interval.

API_DISCOVERY_UPDATE_INTERVALinteger The time period in hours in which ABS reports the newly discovered
APIs

API_DISCOVERY_SUBPATHinteger The number of subpaths that are discovered in an API. The
maximum value is 3.

WIRED_TIGER_CACHE_SIZE_GBfloat Memory in GB to be used by MongoDB cache.

Copyright ©2022

 | PingIntelligence Docker toolkit | 724

MONGO_SSL string Configures whether MongoDB uses SSL. Default values is false.

Dashboard Environment Variables: The following table lists the Dashboard environment variables and
the values:

Environment Value Usage

DISCOVERY_SOURCEstring Source of API discovery. Values can be abs, pingaccess, or
axway.

PINGACCESS_URL string URL of PingAccess if you set the discovery source as pingaccess.

PINGACCESS_USERNAMEstring PingAccess username for API discovery.

PINGACCESS_PASSWORDstring PingAccess password for API discovery.

AXWAY_URL string URL of Axway if you set the discovery source as axway.

AXWAY_USERNAME string Axway username for API discovery.

AXWAY_PASSWORD string Axway username for API discovery.

DISCOVERY_MODE string Mode in which Dashboard publishes APIs to ASE. Values can be
auto or manual. For more information, seeDiscovered APIs on
page 496

DISCOVERY_MODE_AUTO_POLLING_INTERVALinteger If the DISCOVERY_MODE is set as auto, set the polling interval
at which Dashboard polls the discovery source for APIs. It is
recommended to have minimum value of 10-minutes.

DISCOVERY_MODE_AUTO_DELETE_NON_DISCOVERED_APISstring If the DISCOVERY_MODE is set as auto, you can choose to retain to
delete APIs in ASE which are added manually. Set it to true, if you
want to delete the APIs that are manually added in ASE.

ASE_MODE string Sets the mode in which ASE is deployed. Values can be either
inline or sideband. Make sure this value is same as that set in
ASE.

ABS_ACCESS_KEY string The access key for the ABS admin user. For more information, see
ABS users

ABS_SECRET_KEY string The secret key for the ABS admin user. For more information, see
ABS users

ABS_HOST string IP address of ABS host

ENABLE_XPACK string Configures whether x-pack is installed. Default value is true. If the
variable is set to false, the Web GUI protocol should be HTTP.

ENABLE_SYSLOG string Configures whether Dashboard sends syslog messages to the
syslog server. The default value is false.

i Important: ENABLE_SYSLOG and ENABLE_UI both cannot be
false at the same time.

When ENABLE_SYSLOG environment variable is passed to the
container, SYSLOG_HOST and SYSLOG_PORT should also be
passed. These are to configure the syslog server and port number.

ABS_RESTRICTED_USER_ACCESStrue/false Set to true if you want to use ABS restricted user. For more
information on restricted user, see ABS users.

Copyright ©2022

 | PingIntelligence Docker toolkit | 725

ABS_URL string The URL should be in the form of https://<IP>:<port>. The
URL is used by Web GUI to connect to ABS.

ASE_URL string The URL should be in the form of https://<IP>:<port>. The
URL is used by Web GUI to connect to ASE.

ASE_ACCESS_KEY string Access key of the ASE admin user

ASE_SECRET_KEY string Secret key of the ASE admin user

DASHBOARD_URL string The URL should be in the form of https://<IP>:<port. The URL
is used by Web GUI to connect to dashboard. IP and port number
are of Kibana.

H2_DB_PASSWORD string Password for H2 database

H2_DB_ENCRYPTION_PASSWORDstring Password to change encryption method of H2 database

WEBGUI_ADMIN_PASSWORDstring Password for admin user of Web GUI

WEBGUI_PING_USER_PASSWORDstring Password for ping_user of Web GUI

SESSION_MAX_AGE6h Defines the maximum time for a session. The configured values
should be in the form of <number><duration_suffix>. Duration
should be > 0. Allowed duration_suffix values: m for minutes, h
for hours, and d for days.

MAX_ACTIVE_SESSIONS50 Defines the maximum number of active UI sessions at any given
time. The value should be greater than 1.

ES_INDEX_ROLLOVER_MAX_SIZE7GB Defines the maximum size of the Elasticsearch rollover index.
When the index size reaches the defined value, it roll overs.
rollover_max_size value should be a positive non-zero number.
Allowed units are MB and GB.

i Important: Rollover index configuration takes effect only when
enable_xpack is set to true.

ES_INDEX_ROLLOVER_MAX_AGE7d Defines the maximum age of the Elasticsearch rollover index
configuration. rollover_max_age value should be a positive non-
zero number. Allowed units are h for hours and d for the number of
days.

i Important: Rollover index configuration takes effect only when
enable_xpack is set to true.

If both rollover_max_size and rollover_max_ageare
configured, then index rolls over based on the value which is
achieved first.

WEBGUI_SSL_KEYSTORE_PASSWORDstring

AUTHENTICATION_MODEnative or
sso

Set the value to sso to authenticate Dashboard with PingFedereate

SSO_OIDC_CLIENT_IDstring Client ID value in configured in the Identity provider.

SSO_OIDC_CLIENT_SECRETstring Client Secret configured for the corresponding Client ID.

Copyright ©2022

 | PingIntelligence Docker toolkit | 726

SSO_OIDC_CLIENT_AUTHENTICATION_METHODBASIC,
POST, and
NONE

OIDC Client authentication mode. The valid values are BASIC,
POST, or NONE

SSO_OIDC_PROVIDER_ISSUER_URIstring PingFederate URI that is required by webgui to establish SSO. The
default value is https://127.0.0.1:9031.

i Note: PingIntelligence Dashboard Docker image can be
generated by packaging it with PingFederate public certificate. For
doing this the certificate needs to be placed in certs/webgui
directory with the name webgui-sso-oidc-provider.crt.

SSO_OIDC_PROVIDER_USER_UNIQUEID_CLAIM_NAMEstring Claim name for unique ID of the user in UserInfo response. A new
user is provisioned using this unique ID value.

SSO_OIDC_PROVIDER_USER_FIRST_NAME_CLAIM_NAMEstring Claim name for first name of the user in UserInfo response. Either
first name or last name can be empty, but both should not be empty.

SSO_OIDC_PROVIDER_USER_LAST_NAME_CLAIM_NAMEstring Claim name for last name of the user in UserInfo response. Either
first name or last name can be empty, but both should not be empty

SSO_OIDC_PROVIDER_USER_ROLE_CLAIM_NAMEstring Claim name for role of the user in UserInfo response. Valid values
for roles are ADMIN and REGULAR.

SSO_OIDC_PROVIDER_CLIENT_ADDITIONAL_SCOPESstring Additional scopes in authorization request. Multiple scopes should
be comma (,) separated values. OpenID, profile scopes are always
requested.

Using environment variables - example
The following sections show example of using environment variables to create containers. The containers
must be created in the following order:

1. MongoDB
2. ABS
3. ASE
4. Dashboard

Launch MongoDB container: Run the following command with some sample environment variables to
launch the MongoDB container:

docker run -d --name mongo --hostname mongo -e ABS_ACCESS_KEY="new_abs_ak" \
-e ABS_SECRET_KEY="new_abs_sk" -e ABS_ACCESS_KEY_RU="new_abs_ak_ru" \
-e ABS_SECRET_KEY_RU="new_abs_sk_ru" -e MONGO_USERNAME="new_mongo_user" \
-e MONGO_PASSWORD="new_mongo_password" -e ATTACK_INITIAL_TRAINING="24" \
-e API_DISCOVERY="true" -e API_DISCOVERY_INITIAL_PERIOD="6" \
-e API_DISCOVERY_UPDATE_INTERVAL="1" \
-e API_DISCOVERY_SUBPATH="3" -e WIRED_TIGER_CACHE_SIZE_GB="1.8" \
-e MONGO_SSL="true" pingidentity/mongo:4.2.0

Running this command creates the MongoDB container with settings in environment variable provided. If
any of the environment variable is not used, then the container is launched with default values.

Launch ABS container: Run the following command with some sample environment variables to launch
the ABS container:

docker run -d --name abs --hostname abs --link mongo:mongo -e
 MONGO_RS=mongo:27017 \

Copyright ©2022

 | PingIntelligence Docker toolkit | 727

-e MONGO_USERNAME="new_mongo_user" \
-e MONGO_PASSWORD="new_mongo_password" -e MONGO_SSL="true" \
pingidentity/abs:4.2

Launch ASE container: Run the following command with some sample environment variables to launch
the ASE container:

docker run -d --name ase --link abs:abs --hostname ase -e MODE="inline" \
-e ENABLE_CLUSTER="true" -e ENABLE_ABS="true" -e ABS_ENDPOINT="abs:8080" \
-e ABS_ACCESS_KEY="new_abs_ak" -e ABS_SECRET_KEY="new_abs_sk" --shm-size=1g
 pingidentity/ase:4.2

Launch the second ASE node in ASE cluster: Run the following command with some sample
environment variables to launch the ASE node in a cluster:

docker run -d --name ase1 --link abs:abs --link ase:ase --hostname ase1 \
-e MODE="inline" -e ENABLE_CLUSTER="true" \
-e PEER_NODE="ase:8020" -e ENABLE_ABS="true" \
-e ABS_ENDPOINT="abs:8080" -e ABS_ACCESS_KEY="new_abs_ak" \
-e ABS_SECRET_KEY="new_abs_sk" --shm-size=1g pingidentity/ase:4.2

Launch Dashboard: Run the following command with some sample environment variables to launch the
Dashboard container:

docker run -d --name webgui --link abs:abs --link ase:ase --hostname webgui
 \
-e ABS_RESTRICTED_USE_ACCESS="false" \
-e ABS_ACCESS_KEY="new_abs_ak" -e ABS_SECRET_KEY="new_abs_sk" -e
 ABS_HOST="abs" \
-e ABS_URL="https://abs:8080" -e ASE_URL="https://ase:8010" \
-e DASHBOARD_URL="https://localhost:5601" -e
 WEBGUI_ADMIN_PASSWORD="new_webgui_admin_password" \
-e WEBGUI_PING_USER_PASSWORD="new_webgui_pinguser_password" \
-e WEBGUI_ADMIN_PASSWORD="new_webgui_admin_password" \
-p 8030:8030 pingidentity/dashboard:4.2

Port mapping

When the containers are created, the exposed ports are not mapped. To map the ports, you need to
complete port mapping using the -p option in the docker run command. The following table lists the
ports that should be exposed in the container.

Component Port number Usage

8080 HTTP data plane

8443 HTTPS data plane

8010 Management port number

ASE

8020 Cluster port number

8080 API server port numberABS

9090 Access log upload port number

Dashboard 8030 Dashboard port number

MongoDB 27017 MongoDB port number

Copyright ©2022

 | PingIntelligence Hardening Guide | 728

PingIntelligence Hardening Guide

PingIntelligence security hardening guide
The PingIntelligence for APIs hardening document provides administrators with a single point of reference
for configurations and best practices available to harden their PingIntelligence for APIs platform. To avoid
duplication, this document does to include the detailed configuration instructions. Instead, it refers readers
to information on hardening the PingIntelligence platform.

Ping security overview

One of the key security principles we follow at Ping is to make configurations secure by default. However,
it is not always possible to create one-size-fits-all security configurations. This document contains
recommendations on how PingIntelligence administrators can further harden their platform based on their
individual needs.

The recommendations are grouped by different PingIntelligence functional components. When
administrators work on deploying a component in PingIntelligence, they can look up the corresponding
section in this document.

Accessing the document

Click on PingIntelligence security hardening guide, to access this document. You must have a registered
account to the PingIdentity support and community portal, for accessing it. If you need any further
assistance, contact Ping sales team.

Copyright ©2022

https://support.pingidentity.com/s/article/PingIntelligence-Security-Hardening-Guide
https://www.pingidentity.com/en/account/sign-on.html

	Contents
	PingIntelligence for APIs Overview
	PingIntelligence for APIs Release Notes
	PingIntelligence 4.3 Release Notes

	PingIntelligence PoC
	PingIntelligence Docker PoC deployment
	Docker PoC setup
	Installation requirements
	Download and untar Docker package
	Configure Docker PoC for sideband
	Install and load Docker images
	Setup the PoC environment
	Start the training
	Generate sample attacks
	API deception
	API discovery
	Access PingIntelligence Dashboard
	API
	Attack management

	Dashboard
	Interactive blacklists
	Dashboard time series

	ABS detailed reporting
	Shutdown the PoC environment
	Appendix: Verify the Setup

	PingIntelligence Kubernetes PoC deployment
	PingIntelligence Kubernetes PoC deployment
	Installing Docker on RHEL or Ubuntu
	Installing minikube and kubectl
	Installing Kubernetes cluster node
	Deploying PingIntelligence in Kubernetes cluster

	PingIntelligence Cloud service deployment
	PingIntelligence Cloud service
	Downloading and installing ASE software
	ASE License

	Configure PingIntelligence Cloud Connection
	Obfuscate access and secret key
	Start and stop ASE
	Enable ASE to ABS engine communication
	Integrate PingIntelligence into your API environment
	Configure ASE and Dashboard
	Add APIs to ASE
	AI engine training
	Connect to the PingIntelligence dashboard
	Access ABS reporting

	PingIntelligence Production Deployment
	Automated deployment
	PingIntelligence for APIs setup
	PingIntelligence deployment modes
	Prerequisites
	Download the deployment package
	Step 1 - User and authentication
	Step 2 - Configure licenses
	Step 3 - Configure hosts file and download software
	Manually download third-party components
	Download PingIntelligence for APIs software
	Checking SSH connectivity

	Change default settings
	Change ASE's default settings
	Change ABS default settings
	Change Dashboard default settings

	Step 4 - Configure system parameters
	Step 5 - Install the PingIntelligence for APIs software
	Install PingIntelligence as a systemd service
	Verify PingIntelligence Installation
	Next steps - Integrate PingIntelligence into your environment
	Shut down the deployment
	Logs

	Manual deployment
	PingIntelligence manual deployment
	Part A – Install ABS and MongoDB
	Install ABS AI engine software
	ABS License
	Obfuscate passwords
	Configure SSL
	Import existing CA-signed certificates
	Install MongoDB software
	Change default settings
	Connect ABS to MongoDB
	Start and Stop ABS

	Part B – Install ASE
	ASE ports
	API Security Enforcer deployment modes
	Install ASE software
	ASE license
	Change default settings
	Obfuscate keys and passwords
	Tune host system for high performance
	Start and Stop ASE
	Configure SSL for external APIs
	ASE cluster setup (optional)
	Scale up the ASE cluster
	Scale down the ASE cluster
	Delete a cluster node
	Stop ASE cluster

	Part C – Integrate ASE and ABS
	Connect ASE to ABS AI engine
	Enable ASE to ABS engine communication
	Add APIs to ASE
	Train ABS AI engine

	Part D – Install PingIntelligence Dashboard
	Install PingIntelligence Dashboard
	Start and stop Dashboard

	Part E – Access ABS reporting
	Install Postman with PingIntelligence for APIs Reports
	Using ABS self-signed certificate with Postman
	View ABS Reports in Postman

	Part F - Integrate API gateways for sideband deployment

	API Security Enforcer
	Introduction
	Administration
	ASE license
	ASE interfaces
	Customizing ASE ports
	Configure time zone
	Tune host system for high performance
	Start and stop ASE
	Change default settings
	Obfuscate keys and passwords
	Delete UUID to propagate changed password
	PKCS#12 keystore
	Directory structure
	ASE cluster setup
	Start ASE cluster
	Scale up the ASE cluster
	Scale down ASE cluster
	Delete ASE cluster node
	Stop ASE cluster
	Restart ASE cluster

	Configure SSL for external APIs
	Configure SSL for management APIs
	Configure native and PAM authentication
	ASE management, access and audit logs
	Change management log levels
	Purge log files
	Configure syslog
	Email alerts and reports
	ASE alerts resolution

	Sideband ASE
	ASE configuration - ase.conf
	API naming guidelines
	Defining an API – API JSON configuration file
	Activate API cybersecurity
	ASE attack detection
	Capture client identifiers
	Extract user information from JWT in sideband mode
	Manage whitelist and blacklist
	ASE generated error messages for blocked requests
	Per API blocking

	API deception environment
	ABS AI-based security
	Configure ASE to ABS connectivity
	Manage ASE blocking of ABS detected attacks

	Configure Google Pub/Sub
	CLI for sideband ASE

	Inline ASE
	ASE configuration - ase.conf
	API naming guidelines
	Define an Inline API JSON configuration file
	API routing
	Real-time API cybersecurity
	ASE attack detection
	API name mapping – hide internal URLs
	Capturing client identifiers
	Extract user information from JWT in inline mode
	Manage whitelist and blacklist
	Map server error messages to custom error messages
	ASE generated error messages for blocked requests
	Per API blocking

	API deception environment
	In-context decoy API
	Out-of-context decoy API
	Real-time API deception attack blocking

	ASE DoS and DDoS protection
	REST API protection from DoS and DDoS
	WebSocket API protection from DoS and DDoS
	Server connection queuing for REST and WebSocket APIs

	ABS AI-based security
	Configure ASE to ABS connectivity
	Manage ASE blocking of ABS detected attacks

	CLI for inline ASE

	ASE REST APIs using Postman
	ASE self-signed certificate with Postman
	View ASE REST APIs in Postman

	REST API for inline and sideband ASE
	Audit log
	Supported encryption protocols
	Autoscaling ASE in AWS environment
	Create an AMI for ASE
	Creating an IAM role in the security, identity, and compliance
	Create the security group
	Creating launch configuration
	Creating an auto-scale group

	ASE log messages

	ABS AI Engine
	Introduction
	Administration
	ABS License and timezone
	Change default settings
	Obfuscate passwords
	ABS POC mode
	Start and Stop ABS
	ABS users for API reports
	ABS directory structure
	Configure SSL
	Import existing CA-signed certificates
	ABS ports
	ABS configuration - abs.properties
	Connect ABS to API Security Enforcer
	ABS cluster
	ABS logs
	Purge the processed access logs from ABS
	Purge MongoDB data
	Reset MongoDB
	Add a member to an existing MongoDB replica set
	Remove a member from a MongoDB replica set
	Email alerts and reports
	ABS alerts
	ABS reports

	ABS REST API format
	Admin REST API
	AI Engine training
	Training the ABS model
	AI Engine training variables
	Training period status
	Update the training variables
	Tune thresholds for false positives
	Resetting trained APIs
	Disable attack detection

	API discovery and configuration
	API discovery process
	Discovery Subpaths
	ABS Discovery API
	Manage discovery intervals

	Global configuration update REST API
	REST API attacks
	REST API attack types
	Attacks based on username activity
	Attacks based on API Key activity
	Attacks based on cookie activity
	Attacks based on token activity
	Attacks based on IP activity

	WebSocket API attack detection
	Attack detection on root API
	Manage attack blocking
	ABS blacklist reporting
	Delete individual client identifiers
	Bulk delete client identifiers

	Enable or disable attack IDs
	TTL for client identifiers in ABS
	Automated ASE attack blocking
	Attack management in ASE
	Manage ASE whitelist
	Manage ASE blacklist
	Per API blocking in ASE

	Attack reporting
	Consolidated result of attack types
	Real-time Detected attacks for inline ASE
	Anomalous activity reporting

	Deception and decoy API
	Blocked connection reporting
	API forensics reporting
	API metrics reporting
	Username based metrics
	API Key based metrics
	OAuth token based metrics

	List valid URL
	Hacker's URL
	Backend error reporting
	API DoS and DDoS threshold
	API reports using Postman
	ABS self-signed certificate with Postman
	View ABS reports in Postman

	ABS CLI
	ABS external REST APIs
	Admin REST API
	Discovery REST API
	Decoy REST API
	Threshold REST API
	GET Threshold
	PUT Threshold

	Metrics REST API
	API Key Metrics REST API
	OAuth2 Token Metrics REST API
	Username Metrics REST API
	Anomalies REST API
	Anomalies across APIs
	OAuth2 Token Forensics REST API
	IP Forensics REST API
	Cookie Forensics REST API
	Token Forensics REST API
	API Key Forensics REST API
	Username Forensics REST API
	Attack Types REST and WebSocket APIs
	Flow Control REST API
	Blocked Connection REST API
	Backend Error REST API
	List Valid URLs REST API
	List Hacker's URL REST API
	Delete Blacklist REST API

	Threshold range for Tn and Tx
	Splunk for PingIntelligence
	Installing and configuring Splunk for PingIntelligence
	Types of data captured
	Installing and configuring the Splunk Universal Forwarder method
	Alert notification on Slack and Email

	ABS log messages

	PingIntelligence Dashboard
	Introduction
	Installation prerequisite
	Install PingIntelligence Dashboard
	Configure authentication - SSO or native
	Configuring an OAuth client in PingFederate for PingIntelligence Dashboard SSO
	Dashboard sso.properties configuration

	Start and stop Dashboard
	Access PingIntelligence Dashboard
	Automatic rollover index

	Dashboard
	Interactive blacklists
	Dashboard time series
	Per API activity
	Forensic reports
	Client forensic report

	Cross API attacks and recently discovered APIs
	Attack insights

	APIs
	Administer API groups
	Search or sort API groups and APIs

	Attack management
	Discovered APIs
	Configure API discovery
	Edit the discovered APIs

	Configure dashboard engine
	Dashboard engine fast forward
	Configure dashboard engine for syslog
	attack.log for Splunk

	Dashboard log messages
	Purge dashboard logs
	Purge data from Elasticsearch
	Purge Web GUI logs

	API Gateway integration
	Akana API gateway integration
	Akana API gateway sideband integration
	Prerequisites
	Add PingIntelligence ASE APIs
	Secure PingIntelligence ASE APIs
	Capture ASE details
	Deploy PingIntelligence policies

	Apigee API gateway integration
	PingIntelligence Apigee Integration
	Prerequisites to deploying PingIntelligence shared flow
	Download automated policy tool
	Configure Apigee properties file
	Resetting timeout configurations

	Extract user information from access tokens
	Deploy the PingIntelligence policy
	Deploy PingIntelligence Policy for Flow Hook
	Deploy PingIntelligence Policy for Flow Call Out
	Configure PingIntelligence Flow Call Out in Apigee

	Change deployed policy mode
	Add APIs to ASE
	Undeploy the PingIntelligence policy
	Troubleshoot mismatch of self-signed certificates

	AWS API gateway integration
	PingIntelligence AWS API Gateway Integration
	Prerequisites
	Configure automated policy tool
	Deploy PingIntelligence Policy for AWS
	Next steps - Integrate into your API environment
	Uninstall CloudFront sideband policy

	Axway API gateway integration
	Axway sideband integration
	Prerequisites
	Deploy PingIntelligence policy
	Axway Policy Studio configuration
	Configure ASE persistent connection
	Axway API Manager configuration

	API discovery
	Axway API Manager configuration for PingIntelligence Dashboard
	Configure tags in API Manager
	Configure tags for decoy API
	Axway XFF policy for decoy APIs

	OAuth2 Token and API Keys

	Azure API gateway integration
	Azure APIM sideband integration
	Prerequisites
	Deploy PingIntelligence policy
	Integrate PingIntelligence
	Configure ASE persistent connection

	CA API gateway integration
	PingIntelligence - CA API gateway sideband integration
	Prerequisite
	Install and configure the PingIntelligence bundle
	Import PingIntelligence policy
	Configure ASE token and certificate
	Apply PingIntelligence policy
	Integrate PingIntelligence

	F5 BIG-IP integration
	F5 BIG-IP PingIntelligence integration
	Prerequisite
	Deploy PingIntelligence policy
	Import and configure PingIntelligence policy
	Create LX plugin
	(Optional) Create backend server pool and frontend virtual server
	Add PingIntelligence policy

	IBM DataPower gateway integration
	IBM DataPower Gateway sideband integration
	Prerequisites
	Deploy PingIntelligence policy
	Add PingIntelligence policy components
	Configure PingIntelligence policy components

	Kong API gateway integration
	PingIntelligence - Kong API gateway integration
	Prerequisites
	Deploy PingIntelligence policy

	Mulesoft API gateway integration
	Mulesoft sideband integration
	Prerequisites
	Deploy PingIntelligence policy
	PingIntelligence for Mulesoft 3.9
	PingIntelligence for Mulesoft 4.x

	Apply PingIntelligence policy
	Remove existing PingIntelligence policy
	Next steps - Integration

	NGINX integration
	NGINX sideband integration
	Prerequisites
	NGINX for RHEL 7.6
	Configure NGINX for PingIntelligence

	NGINX for Ubuntu 16.04
	Configure NGINX for PingIntelligence

	Next steps - integration

	NGINX Plus integration
	NGINX Plus sideband integration
	Prerequisites
	NGINX Plus for RHEL 7.6
	Configure NGINX Plus for PingIntelligence

	NGINX Plus for Ubuntu 16.0.4
	Configure NGINX Plus for PingIntelligence

	NGINX Plus for Debian 9
	Configure NGINX Plus for PingIntelligence

	PingAccess API gateway integration
	PingAccess sideband integration
	Prerequisites
	Configure PingFederate to extract token attributes
	Deploying the PingIntelligence policy
	Configure ASE persistent connection
	API discovery
	Handle exceptions

	PingFederate integration
	PingFederate sideband integration
	Prerequisites
	Deploying the PingIntelligence policy
	Configuring PingIntelligence servlet filter
	Configuring API JSON

	WSO2 API gateway integration
	PingIntelligence WSO2 integration

	PingIntelligence Docker toolkit
	PingIntelligence Docker toolkit
	Untar the Docker toolkit
	Build the PingIntelligence Docker images
	Environment variables exposed in Docker images
	Using environment variables - example

	PingIntelligence Hardening Guide
	PingIntelligence security hardening guide

